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Abstract

Fluorescence is a widespread phenomenon found in animals, bacteria, fungi, and plants. In

marine environments fluorescence has been proposed to play a role in physiological and

behavioral responses. Many fluorescent proteins and other molecules have been described

in jellyfish, corals, and fish. Here we describe fluorescence in marine species, which we

observed and photographed during night dives in the Banda Sea, Indonesia, and in the Red

Sea, Egypt. Among various phyla we found fluorescence in sponges, molluscs, tunicates,

and fish. Our study extends the knowledge on how many different organisms fluoresce in

marine environments. We describe the occurrence of fluorescence in 27 species, in which

fluorescence has not been described yet in peer-reviewed literature. It especially extends

the knowledge beyond Scleractinia, the so far best described taxon regarding diversity in

fluorescent proteins.

Introduction

Fluorescence is the property of a molecule to absorb light of a certain wavelength followed by

the emission of light with longer wavelength. In bacteria, plants, fungi, and animals, various

fluorescent molecules have been described such as chitin, minerals, carotenoids, flavonoids,

porphyrins, chlorophyll, phycobiliproteins or green fluorescent protein (GFP) and (GFP)-like

fluorescent proteins [1–3].

In marine environments many fluorescent species have been described and for some of

these species an ecological, behavioral and/or physiological function has been suggested [2–4].

In the jellyfish Aequorea victoria, for example, where the first fluorescent protein (avGFP) was

characterized, GFP is expressed as an acceptor molecule for bioluminescent light [5]. So far

fluorescent proteins (FP) have been found in Cnidaria, Vertebrata, Cephalochordata (lance-

lets), and Arthropoda, but have not been described (i.e. published in peer-reviewed literature)

in Porifera (sponges), Ctenophora (comb jellies), Tunicata (tunicates), Hemichordata (hemi-

chordates), Echinodermata (echinoderms), Mollusca (molluscs), Annelida (segmented
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worms), and Nematoda (roundworms) [2,6–11]. Most fluorescent proteins with blue to red

emission spectra (GFP-like fluorescent proteins) have been identified in Anthozoa (e.g. corals

and anemones) [6]. There, the fluorescence has been hypothesized to be involved in attraction

of photosynthetic symbionts, in photoprotection of the symbionts and in converting blue light

to longer wavelength light in mesophotic environments (photoenhancement) [2,4] where the

green to red components of the sunlight are selectively removed with water depth resulting in

a blue light environment [2,4]. In fish, red fluorescent body coloration and red fluorescent iris

have been proposed to be involved in intraspecific communication [12–16]. In addition, differ-

ences in the fluorescence pattern between males and females have been suggested to play a role

in sexual communication [13,17].

In contrast to jellyfish, corals, anemones, copepods, lancelets, eels, and moray eels, where

fluorescence is based on the expression of fluorescent proteins, non-FP based fluorescence has

been observed in Porifera (sponges), Heterobranchia (slugs and snails), Annelida (segmented

worms), Crustacea (crustaceans), Osteichthyes (bony fish), and Chondrichthyes (cartilaginous

fishes) [8,18–22].

Here we show photographs of new cases of fluorescence in marine species, which were

taken during night dives in the Banda Sea, Banda Islands, Indonesia and the Red Sea, Dahab,

Egypt. These fluorescent species include nudibranchs, tunicates, sponges, various other inver-

tebrates, and fish. In addition to these new records of fluorescence in marine species, we show

detailed Leica THUNDER microscopy images of known fluorescent species to provide precise

information about the distribution of fluorescence in different body parts.

Methods

Ethics statement

No permits were required for the in-situ images as specimen were neither collected nor han-

dled, and photos were taken during recreational Scuba dives. For the THUNDER images, fish

and invertebrates were purchased from the wholesale trader DeJong Marinelife (Netherlands)

in 2021/2022 or from Korallenfarm Joe & Co (Germany).

Photo acquisition in the field

Images of fluorescent species were acquired during SCUBA diving in the Red Sea in Dahab,

Egypt (28˚29’20.0”N 34˚30’57.2”E) and in the Banda Sea at the Banda Islands, Maluku, Indo-

nesia (4˚30’55.62”S 129˚53’35.92”E). All dives were started after sunset and limited to a maxi-

mum depth of 15 meters, which was monitored by a dive computer. Field observations were

carried out in May 2019 (Red Sea) and in February-March 2019 and September 2022 (Banda

Sea).

Fluorescence was excited with “Sola” light source (NightSea, USA; ʎmax = 449 nm), Flash-

light (D2000; INON; Japan), Ex-Inon excitation filter (NightSea, USA; ʎmax = 454 nm) (Fig

1) or “Blue Star” light source (NightSea, USA; ʎmax = 470 nm). The plastic transmission filter

(BF 2, NightSea, USA) in front of the underwater housing showed a low cut at ʎ< 500 nm

(Fig 1). Fluorescence photography was performed with Powershot G15 (Canon, Japan) placed

in a WP DC 48 (Canon, Japan) underwater housing or Sony α 6000 (Sony, Japan) placed in a

SF-A6500 (Seafrogs, Hongkong) underwater housing (details on emission and transmission

spectra of light sources and filter specified in Fig 1, details on camera specifications and set-

tings in S1 File). All images were processed with Lightroom (Version 2015.1.1, Adobe, USA)

and Corel Draw (Version 20.0.0.633, Corel Corporation, Canada), by correcting the brightness

and contrast uniformly throughout the entire image and cropping the images (example of digi-

tal processing provided in S1 File).
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Species were identified with standard literature [23–32]. The species were identified by

comparison of digital underwater pictures with the description and pictures in the literature.

Photo acquisition by Leica THUNDER microscopy

Detailed images of Anampses meleagrides, Cirrhilabrus aquamarines, Cirrhilabrus rubrisqua-
mis, Doryrhamphus excisus, Eviota atriventris, Eviota nigriventris, Lybia tessellata, Nembrotha
kubaryana, Odontodactylus scyllarus, Synchiropus sycorax, and one species of Polyplacophora

were acquired with the fluorescence THUNDER stereo microscope Leica M205 FCA equipped

with a DFC90000 GT Camera and a GFP (ʎ Ex: 395–455 nm, ʎ Em: 480 long pass filter),

mCherry (ʎ Ex: 540–580 nm, ʎ Em: 593–667 nm), and a CY5 (ʎ Ex: 590–650 nm, ʎ Em: 663–737

nm) filter cube. All images were processed with LASX (Version 3.7.6.25997, Leica, Germay),

Lightroom (Version 2015.1.1, Adobe, USA), and Corel Draw (Version 20.0.0.633, Corel Cor-

poration, Canada) by correcting the brightness and contrast uniformly, and cropping the

images.

Results

We could identify fluorescence in 27 marine species that had not been described to be fluores-

cent so far. The species in which the new fluorescent signals were observed belonged to the

phyla Porifera, Mollusca, Arthropoda, Annelida, and Chordata.

Fig 1. Fluorescence was excited with “Sola” light source (NightSea, USA; ʎ max = 449 nm; A), Flashlight (D2000;

INON; Japan) with Ex-Inon excitation filter (NightSea, USA; ʎ max = 454 nm; B) or “Blue Star” light source (NightSea,

USA; ʎ max = 470 nm; C). Transmission of the yellow plastic filter BF 2 (NightSea, USA; E) showing a low cut at ʎ<
500 nm. Relative intensity (A-C) and transmission (D) were determined with a Spectrometer (Flame S-UV-VIS-ES,

Ocean Optics, USA). A halogen Light Source (HL-3 plus, Ocean Optics, USA) was used to measure transmission of

yellow long pass filter.

https://doi.org/10.1371/journal.pone.0292476.g001

PLOS ONE New observations of fluorescent organisms

PLOS ONE | https://doi.org/10.1371/journal.pone.0292476 June 12, 2024 3 / 21

https://doi.org/10.1371/journal.pone.0292476.g001
https://doi.org/10.1371/journal.pone.0292476


Porifera–We found green fluorescent spots on the surface of the sponge Gelliodes fibulata
(Fig 2A and 2B). Furthermore, we observed yellow and orange fluorescence in different

unidentified sponges in the Red Sea (Fig 2C) and Banda Sea (Fig 2D).

Scleractinia–We found six species of stony corals that exhibited yellow fluorescence (Fig 3),

Physogyra lichtensteini, three different species ofMontipora, and two Cycloseris/Fungia species.

Molluscs—In molluscs we found fluorescence in the families Octopodidae, Strombidae,

Cardiidae, Facelinidae (Fig 4), Polyceridae (Fig 5) and unidentified families of Polyplacophora

(Fig 6). The octopus Abdopus aculeatus revealed orange fluorescent markings on its body.

Bright fluorescent patches were located below the yellow fluorescent eyes and on every arm

(Fig 4A & 4B). Other species (unspecified) of the same family showed no fluorescent body

markings, but had yellow fluorescent eyes (Fig 4B, 4D and 4E). We found green and red fluo-

rescence in several snails. The bubble conch Euprotomus bulla had a bright green fluorescent

operculum and weak green fluorescent eyes. The giant clam Tridacna crocea showed bright

red fluorescence (Fig 4G). In addition, the nudibranch Facelina rhodopos (Fig 4H) showed

bright orange fluorescence at the tip of the cerata. Another nudibranch Nembrotha kubaryana
that we photographed in the Banda Sea in its natural habitat (Fig 5A) and had purchased from

Fig 2. Fluorescence in Porifera in the Banda Sea: The thorny stem sponge Gelliodes fibulata ((A & B) white light in A, fluorescence in B) shows green

fluorescent spots. Two unidentified sponges (C, D) fluoresce yellow and green. The scale bars are approximated based on published sizes of the

respective organism.

https://doi.org/10.1371/journal.pone.0292476.g002
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DeJong Marinelife (Netherlands) to image with THUNDER microscopy (Fig 5B) revealed

strong red fluorescence. We were able to localize the fluorescence in more detail under labora-

tory settings and found fluorescent patches around the mouth (Fig 5D), the rhinophores (Fig

5E–5G), gills (Fig 5B), and the dorsal rim (Fig 5B & 5H). We also found a variety of different

Polyplacophora that exhibited bright green, yellow, and red fluorescence (Fig 6A–6D).

Echinodermata–We found bright green, yellow, and red fluorescent crinoid species of dif-

ferent genera in the Banda Sea and in the Red Sea (Fig 7).

Fig 3. Fluorescence in corals: Yellow fluorescent corals in the Banda Sea and in the Red Sea. Physogyra lichensteinii
(A),Montipora sp. (B—D), and Cycloseris sp./Fungia sp. (E & F). A, B, D–F: Banda Sea, C: Red Sea. The scale bars are

approximated based on published sizes of the respective organism.

https://doi.org/10.1371/journal.pone.0292476.g003
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Arthropoda—Several fluorescent Decapoda of the family Inachidae, Scyllaridae and, Palae-

monidae were found. The decorator crab Camposcia retusa (Fig 8A Banda Sea) showed a

bright green fluorescent carapace. In the Red Sea we discovered a bright green fluorescing slip-

per lobster Scyllarides sp. (Fig 8B). In addition, we found bright green fluorescence in the cara-

pace of Coleman‘s Shrimp, Periclimenes colemani (Fig 8C), living in symbiosis with fire

urchins that do not fluoresce. Green and red fluorescence of the carapace was discovered in

peacock mantis shrimps Odontodactylus scyllarus. The THUNDER images revealed

Fig 4. Fluorescence in Mollusca: Three different types of fluorescent Octopods; Abdopus aculeatus (A (white light) &

B (fluorescence)) with orange fluorescent skin patches, two unidentified species of Octopodidae (C (white light)–E

(fluorescence)) with fluorescent eyes, green fluorescent operculum of Euprotomus bulla (F), red fluorescent mantle of

Tridacna crocea (G), orange fluorescent Facelina rhodopus (H) onMillepora sp. A–G: Banda Sea, H: Red Sea. The scale

bars are approximated based on published sizes of the respective organism.

https://doi.org/10.1371/journal.pone.0292476.g004
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Fig 5. Fluorescence in the nudibranchNebrotha kubaryana: (A) natural habitat (Banda Sea), white light &

Fluorescence (B), whole body (B, C), oral tentacles (D), rhinophores (E-G), gill (H) fluorescence. Pictures C–H created

with a THUNDER microscope (Leica, Germany) with CY5 filter. The scale bars (A & B) are approximated based on

published sizes of the respective organism.

https://doi.org/10.1371/journal.pone.0292476.g005
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fluorescence in filamentous structures on maxillipeds (Fig 9A, 9B and 9F), pleopods (Fig 9C),

uropods (Fig 9E), and on paraeopods (Fig 9D) of Odontodactylus scyllarus. Furthermore, we

identified fluorescent body parts of the mosaic boxer crab (Lybia tessellata) (Fig 9G).

Annelida—We also found fluorescence in two types of bristle worms (polychaetes) from

the families Eunicidae and Sabellidae. In the subclass Eunicida only the bristles fluoresced

bright green (Fig 8D and 8F). In addition, we found bright yellow fluorescence in a feather

duster worm (Sabellidae) (Fig 8E).

Chordata–Two fluorescent ascidian species and three species of fluorescent bony fish were

photographed in the Banda Sea. Both ascidians Clavelina coerulea (Fig 10A & 10B) and Clave-
lina robusta (Fig 10C & 10D) revealed a bright green rim-like fluorescence around their

Fig 6. Fluorescence in Polyplacophora: Red, yellow and green fluorescent Polyplacophora in the Red Sea (A-C) and in

the Banda Sea (D). Bright green and red fluorescent Polyplacophora in a reef tank in E-F. Picture F is created with a

THUNDER microscope (Leica, Germany) with GFP & CY5 filter. The scale bars of A-E are approximated based on

published sizes of the respective organism.

https://doi.org/10.1371/journal.pone.0292476.g006
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siphons. In both species the fluorescent rims appeared yellow under white light conditions.

We found two green and orange fluorescent scarlet frogfish Antennatus coccineus (Fig 11A &

11B). The green fluorescence was distributed over the entire body, while the orange fluores-

cence was found in patches and in the lures. In addition, we found a bright fluorescing green

leopard flounder Bothus pantherinus (Fig 11C). Green fluorescence was more prominent in

the white banded sections of the skin. We also found individual differences in fluorescence in

Fig 7. Fluorescence in echinoderms: New observations of red, yellow and green fluorescence in crinoids from the

Banda Sea (A-E) and in the Red Sea (F-H). The scale bars are approximated based on published sizes of the respective

organism.

https://doi.org/10.1371/journal.pone.0292476.g007
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the banded pipefish Corythoichthys intestinalis. Individuals revealed either green or orange

fluorescent skin patterns (Fig 11D–11F). However, all individuals showed a bright yellow/

orange fluorescence around the eyes and the caudal fin (Fig 11D–11F). Moreover, we observed

two individuals of Pleurosicya mossambica in the Banda Sea with bright orange-red fluores-

cence around the eyes and the spinal column (Fig 12A & 12B) and two individuals of Scorpae-
nopsis possi with orange and red fluorescent patches in their tissue (Fig 12C & 12D). In

addition, we found two different color morphs of Soleichthys heterorhinos from the Banda Sea

Fig 8. Fluorescence in Arthropoda and Annelida: Green fluorescent Camposcia retusa (A), Scyllarides sp. (B), Periclimenes
colemani (C), Eunicida (D, F), Yellow fluorescent chaeta of an unidentified species of Sabellidae (E). A, C, D, F: Banda Sea, B &

E: Red Sea. The scale bars are approximated based on published sizes of the respective organism.

https://doi.org/10.1371/journal.pone.0292476.g008
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Fig 9. Fluorescence of Odontodactylus scyllarus and Lybia tessalata: Green (GFP filter) and red fluorescing (Cy5 filter)

structures of maxillipeds (A, B, F), pleopods(C), uropods (E), and paraeopods (D). Green and red fluorescing Lybia
tessellata (G; overlay of brightfield, GFP & CY5 filter). Pictures were taken with a THUNDER microscope (Leica,

Germany).

https://doi.org/10.1371/journal.pone.0292476.g009
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(E) and Red Sea (F) and a green fluorescent undefined species of Lutjanidae (G), and Brachyso-
mophis henshawi with a red fluorescent head (H) (Figs 13 & 14).

Discussion

During night dives in the Banda Sea, Indonesia and the Red Sea, Egypt we photographed

marine species, in which, to our knowledge, fluorescence had not been documented in scien-

tific journals before and for which fluorescence has not been characterized. These included

species of sponges, crustaceans, polychaetes, slugs, snails, octopus, ascidians, and fish.

Various molecules and anatomical structures that mediate fluorescence have been identi-

fied in different species. These include fluorescent proteins, carotenoids, pteridine, porphyrins,

tryptophane derivatives, and chlorophyll [2,22,33,34]. Fluorescent proteins have been found in

a few taxa of metazoans including Cnidaria and Arthropoda, but also in Cephalochordata and

Vertebrata [2,10]. Since we found fluorescence in two species of ascidians that are closer

related to vertebrates than other invertebrates, next generation sequencing techniques can

Fig 10. Fluorescence in ascidians in the Banda Sea: White light and fluorescent picture of Clavelina coerulea ((A, B) white light in A, fluorescence in B),

Clavelina robusta ((C, D) white light in C, fluorescence in D). The green fluorescence accumulates on the siphons of the ascidians. The scale bars are

approximated based on published sizes of the respective organism.

https://doi.org/10.1371/journal.pone.0292476.g010
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reveal if these ascidians contain FP-like genes. In both species bright green fluorescence was

seen in a rim-like structure around the oral and atrial siphon (Fig 6). Since food is ingested via

the oral siphon, fluorescence might be involved in attraction of plankton which has been dem-

onstrated for the green fluorescence of the jellyfish Olindias formosa [35] and for green and

orange fluorescence in corals [36].

In Arthropoda different molecules have been described to be fluorescent [9,37–39]. The

blue fluorescence in the carapace of the lobsterHomarus gammarus is mediated by a multimo-

lecular carotenoprotein, α crustacyanin, binding to the carotenoid astaxanthin [40]. The cuti-

cle of scorpions contains the alkaloid β-carboline which is derived from tryptamine and is

excited by UV light leading to the emission of blue fluorescent light [41]. The Drosophila mela-
nogastermutant ‘sepia’ is characterized by red-colored eyes, which is mediated by the accumu-

lation of sepiapterin, a yellow fluorescent pteridine derivative [42,43]. Sepiapterin is involved

Fig 11. Fluorescence in fish in the Banda Sea: Green and orange fluorescing Antennatus coccineus (A, B), green

fluorescing Bothus pantherinus (C) and different fluorescing individuals of Corythoichthys intestinalis (D-F). The scale

bars are approximated based on published sizes of the respective organism.

https://doi.org/10.1371/journal.pone.0292476.g011
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in the tetrahydrobiopterin pathway essential for the breakdown of phenylalanine, suggesting

that this molecule is conserved throughout evolution. The regulation of sepiapterin reductase

activity could therefore be a mechanism to accumulate sepiapterin to make specific body parts

fluorescent. However, this must be demonstrated. Whether α crustacyanin [40], β-carboline or

sepiapterin also contribute to the green fluorescent cuticula of the slipper lobster (Fig 8B) and

Fig 12. Fluorescence in fish: Red fluorescing Pleurosicya mossambica (A & B), Scorpaenopsis possi (C & D), different

colormorphs of orange fluorescing Soleichthys heterorhinos (E & F), undefined species of Lutjanidae (G), and

Brachysomophis henshawi (H) with a red fluorescing head. A, B, D, F-H: Banda Sea, C & E: Red Sea. The scale bars are

approximated based on published sizes of the respective organism.

https://doi.org/10.1371/journal.pone.0292476.g012
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Fig 13. Fluorescence in fish: Detailed fluorescent pictures of Anampses meleagrides (A, B; both overlay of GFP and CY5 filter),

Doryrhamphus excisus (C; overlay of mCherry and CY5 filter), Eviota atriventris (D, E; both overlay of GFP & CY5 filter), Eviota
nigriventris (F-I; F: overlay of GFP, CY5, mCherry filter; G: overlay of mCherry and CY5 filter; H: overlay of brightfield & CY5 filter; I:

mCherry filter), Cirrhilabrus aquamarinus (J; mCherry filter), Pictures were taken with a Thunder microscope (Leica, Germany).

https://doi.org/10.1371/journal.pone.0292476.g013
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other fluorescent Arthropoda has to be investigated. Because the fluorescence in crustacea and

some other species is not intense and only becomes visible with intense excitation, it is difficult

to conclude a functional purpose (e.g. Figs 6C, 8B, 8C, 8F, 9A, 9D and 9E).

Fluorescence has also been described in segmented worms. The intertidal worm Eulalia sp.

(Polychaeta) secretes a blue-green fluorescent mucus [21]. The gossamer worm (Tomopteris
spp., a pelagic annelid) uses fluorescence to enhance bioluminescent light [44]. The mucus of

the tubeworm Chaetopterus variopedatus contains blue and green fluorescence mediated by

riboflavin and related derivatives [45,46]. In addition, blue fluorescence and bioluminescence

Fig 14. Fluorescence in fish: Detailed fluorescent pictures of Cirrhilabrus aquamarinus (A; brightfield & Cy5 filter), Pair of Synchiropus sycorax (B; ♀ left and ♂
right; overlay of brightfield and Cy5 filter), first dorsal fin of Synchiropus sycorax ♂ (C; overlay of brightfield and Cy5 filter), detailed fluorophores of

Synchiropus sycorax (D-F; Cy5 filter), fluorescent patch around the eye of Synchiropus sycorax ♂ (G; Cy5 filter). Pictures were taken with a Thunder microscope

(Leica, Germany).

https://doi.org/10.1371/journal.pone.0292476.g014
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has also been observed in the fire worm Odontosyllis phosphorea [47,48]. We also found fluo-

rescence in bristle worms from the families Eunicidae and Sabellidae with so far unknown

composition and function (Fig 5D–5F).

Bioluminescence in some crinoid species is known [49], as well as fluorescent substances

derived from crinoids [50]. however, no in situ recordings of fluorescent Crinoidea is known

yet. We have found several species in which the fluorescence ranges from yellow/greenish tips

of the arms to green/red fluorescent bodies (Fig 7A–7H). The origin of fluorescence and its

possible ecological benefit still need to be investigated.

Various species from different phyla particularly Cnidaria, but also Porifera, Mollusca or

Arthropoda live in symbiosis with photosynthetic algae and/or bacteria, which reveal chloro-

phyll mediated red fluorescence [51–53]. For example, green and orange fluorescence is found

in the skeletal elements of a few sponge species. The fluorescence originates most likely from

associated algae within the sponge skeletal elements [54]. We also found green, yellow, and

orange fluorescence in sponges, where the origin and function has not been characterized. Iso-

pods and some molluscs, such as giant clams, also live in symbiosis with red fluorescent, pho-

tosynthetic microbes [22].

The fluorescence seen for Tridacna is therefore most likely associated to the chlorophyll

photosystem II of the algae [50,52] or involves porphyrins, which are responsible for the red

fluorescence in the shells of some gastropd species. In snails, fluorescence is often found in the

cerata, which originate either from ingested food (green fluorescence) or symbiotic algae (red

fluorescence) [20]. It could be possible, that the nudibranch Facelina rhodopos deposits

ingested fluorescent food in its cerata since this snail feeds on the hydrozoanMillepora that

has a weak fluorescence. Behavioural experiments with Goniobranchus splendidus revealed

that predators learn to avoid feeding on the unpalatable snail. The avoidance behaviour of the

fish is triggered by the yellow rim of the snail [55]. The red fluorescent rim of Nembrotha
kubaryanamay, therefore, have similar functions. While ingested or attached symbionts

explain the red fluorescence of snails and giant clams, the chemical composition of yellow and

red fluorescent rims in Goniobranchus splendidus and Nembrotha kubaryanamust be

investigated.

Green and red fluorescence is also common in fish [56]. Red fluorescence around 600 nm,

for example, has been reported in over 30 reef fish from more than 16 genera and 5 families

[57]. The red fluorescence has been associated with guanine crystals, frequently produced in

iridophores and has been found in pipefish (Fig 11), triplefins, blennies, and gobies [14,57].

Red fluorescence is found in the iris and parts of the head and thorax and more rarely in fins.

It has been shown that the black-faced blenny Tripterygion delaisi, which has red fluorescent

irises can perceive and respond to red fluorescence [14–16]. Perception of possible fluorescent

rivals leads to an increase in aggressive behavior in the red-eyed wrasse Cirrhilabrus solorensis
[12,13,17]. In crypto-benthic fish, such as the scarlet frogfish Antennatus coccineus and the

leopard flounder Bothus pantherinus (Fig 11) fluorescence may facilitate background matching

(camouflage) [8,56]. This has recently been demonstrated in scorpionfish for adjusting red

fluorescence to background luminance [58].

We also photographed yellow fluorescent corals that live near the water surface (� 15 m

(Fig 3). So far, no yellow GFP-like fluorescent protein has been isolated and cloned from stony

corals [6]. Also, it was rather known that yellow fluorescent corals can occur in mesophotic

reefs [59]. This could be useful for further studies on fluorescent proteins from stony corals.

However, yellow fluorescence could also be caused by red and green fluorescent proteins that

are colocalized. Isolation and characterisation of the fluorescent proteins from these corals

could provide further information.
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In summary, this study describes fluorescent marine organisms of different species in

which fluorescence has not been published before in scientific literature. A total of 27 species,

in which fluorescence has not been described in scientific literature before are added to the list

of known fluorescent marine organisms. Three of these species belong to the phylum Porifera,

seven to the phylum Mollusca, three to the subphylum Crustacea, three to the phylum of

Annelida, two to the class Ascidiacea, and three to the subphylum Vertebrata. We describe the

first cases of fluorescence in Octopoda and Ascidiacea, and show fluorescence in Nudibran-

chia, where the fluorescence–unlike most previous observations—is not linked to ingested

food. This study, therefore, extends the palette of fluorescence in marine species. It shows that

fluorescence likely is a common phenomenon and that its diversity is not limited to cnidarians.

Systematically searching marine biodiversity hotspots with blue or UV lights will, therefore,

likely result in the discovery of more fluorescent species and molecules, which will help under-

stand the diverse roles fluorescence may play in marine ecosystems.
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Stuttgart: Kosmos; 2009.

32. Kuiter RH, Debelius H. Atlas der wirbellosen Meerestiere. Weichtiere, Würmer, Stachelhäuter, Kreb-
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