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Abstract

In environmentally sensitive areas, especially the arid and semi-arid regions, the greening
stability process and its influencing factors can directly affect the sustainable development
of the ecological environment. In this study, multi-source remote sensing data such as land
use/cover data, MODIS NDVI, and soil moisture, methods such as stability index, vegetation
quantitative remote sensing, and Geodetector were employed to analyze the sustainability
of the greening process in the Mu Us Sandy in 2000—2020, which were viewed from three
aspects: changes in stability of land use types and function, soil moisture change and influ-
encing factors on greening stability. The results showed that, (1) From the stability of land
use types, continuous stable ecological land accounted for more than 50%, showing that
decreased from northwest toward southeast. (2) From the functional stability, NDVI showed
a fluctuated growth (0.035/a), with an increasing distribution pattern from northwest to
southeast. Additionally, Vegetation changes were unstable and concentrated in the western
part of the study area (OtogBanner and Otog Front Banner), while the eastern part was sta-
ble, in which vegetation improvement took the main position. Moreover, mobile dunes
almost disappeared, and semi-fixed dunes decreased and gradually shrank to the west of
the sandy area, while fixed dunes soared and were concentrated in the middle of the sandy
land. (3) From the soil moisture change, soil moisture at different underground depths
showed an overall increasing trend, but the deep soil moisture was higher than the shallow,
and spatial distribution varied greatly. (4) From the influencing factors, natural factors signifi-
cantly influence greening stability, among which precipitation had a particularly profound
impact, and interactions with other natural and social factors were higher explanatory. The
paper aims to explore whether the ecological environment is developing in a good and
orderly direction in the Mu Us Sandy Land, and the potential factors that cause its changes,
to provide a theoretical basis for scientific governance in the Mu Us Sandy Land and other
arid and semi-arid areas in the future.
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Introduction

Since the 1980s, in the face of the increasing ecosystem degradation under the influence of
global warming and human activities, the international scientific community has initiated and
organized major scientific research on global change and earth system. Indeed, ecological con-
struction activities centered on vegetation restoration have been implemented in various coun-
tries around the world, and remarkable progress has been made, as evidenced by global
greening trends based on various data sources [1-3]. In terms of countries, China has the high-
est contribution to global greening, reaching 25% [1]. Northern China, located in the agro-pas-
toral zone and the northern edge of the East Asian monsoon, has seen significant greening in
the past two decades due to ecological restoration projects and grazing prohibition policies [4-
6], concerns have been raised by scholars about the long-term stability of the concentrated
greening due to the unique geographical location and fragile natural environment of this
region [7, 8].

Terrestrial vegetation is the primary producer of ecosystems and an important component
of terrestrial ecosystems [9]. It plays an important role in natural ecological services such as cli-
mate regulation, carbon cycle, and energy exchange on different time scales from regional to
global scales [10, 11]. Among them, ecological land, including forest and grassland with eco-
logical service functions and benefits, directly expresses land greening and serves as the basic
carrier of natural ecosystem service supply. Currently, vegetation changes are represented by
land use/land cover (LULC) change, which are specifically manifested in the spatial-temporal
pattern change and internal transfers of ecological land [12, 13]. However, the stability of eco-
logical land, which reflects the characteristics of ecological land patterns and sustainability of
ecological processes, and reveals the coordination between regional land use mode and natural
ecosystem, is relatively scarce compared to dynamic research on ecological land, and mostly
focuses on quantitative characteristics [14-17], while the explorations of functional stability
are relatively weak. The land type stability of ecological land is the result of cumulative vegeta-
tion greening under the background of water availability, while functional stability reflects the
impacts on the local ecosystem due to the composition and evolution of intrinsic vegetation
structure. In recent years, remote sensing data has gradually become an important dataset for
regional vegetation dynamic monitoring due to its continuity, timeliness, and other advan-
tages [18]. Vegetation indices derived from remote sensing data can quantitatively express veg-
etation changes, among which the Normalized Difference Vegetation Index (NDVI), which
has a significant linear correlation with vegetation distribution density, is widely used for mon-
itoring ecological environmental conditions and evolutionary changes, such as desertification
[19, 20]. Therefore, based on land use/land cover data and the NDVT index, it is possible to
explore the land use types and functional stability of ecological land.

Research has shown that dynamic changes in soil moisture are important indicators of veg-
etation recovery. It has been found that vegetation greening may intensify inter-plant competi-
tion, exacerbate soil water deficit, and even trigger intra-plant water stress in northern China
with water shortage [21-25]. Vegetation greening can lead to decreased soil moisture, which
may worsen land desertification and cause irreversible degradation of the natural ecosystem.
Therefore, understanding the dynamic changes in soil moisture is crucial for assessing the sus-
tainability of the local ecosystem. Additionally, deep insights into the driving mechanisms of
vegetation greening are essential for promoting ecosystem sustainable development. Natural
factors such as climate change and nitrogen deposition significantly affect the growth and dis-
tribution of vegetation [2, 3, 26, 27], while human activities such as land management prac-
tices, ecological environmental protection projects and policies directly modify land cover
conditions [4-6, 26]. Both natural environment and human activities have a profound impact
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on global vegetation greening. However, current research has mainly focused on investigating
single driving factors, and it is still worth further exploration of the integrated effects of multi-
ple factors and their dynamic changes.

Current research on vegetation restoration in large-scale areas has provided valuable
insights into the hydrological effects, carbon balance, surface energy, and other ecosystem ser-
vices [28-32], which are important for understanding the overall change trends of ecosystem
services and large-scale ecological effects. However, it may not capture the spatial heterogene-
ity within the geographic region. Therefore, small-scale regional studies have become particu-
larly essential. The Mu Us Sandy land (MUSL), one of the four major sandy lands in China, is
located in the ecotone of farming and grazing in northern China, the lake alluvial plain depres-
sion between the Ordos Plateau and the Loess Plateau, and the intersection of the northern
part of the East Asian monsoon region and the eastern edge of the westerly circulation. In
addition, the community structure is relatively simple, dominated by shrubs and herbs [33],
and there is a prominent conflict between humans and the environment, with a fragile ecologi-
cal environment. Particularly since 2000, significant changes in vegetation conditions in the
MUSL have occurred due to the strong influence of multiple major vegetation restoration
projects and climate change [34-36]. The large-scale greening in a short period of time is the
result of our country’s efforts to spend numerous human, financial and material resources,
and how to maintain the stability of the greening results so that it can truly play the role of The
Great Green Wall has become particularly important. Therefore, the paper takes the MUSL as
an example, based on multi-source remote sensing data and these methods, such as stability
index, quantitative remote sensing of vegetation, and Geodetector, the paper explores the sus-
tainability of greening process in the study area from three aspects. From the changes of land
use type and functional stability, firstly, LULC data is used to represent the greening stability
of land classes (ecological land); And then, due to the obvious phenomenon of single domi-
nance of vegetation communities in the MUSL (dominated by temperate grasslands), the func-
tional greening stability is further explored through using MODIS NDVI data and derived
FVC data. Additionally, the MUSL is located at the northern edge of the eastern monsoon
region, so the water restriction factors for vegetation growth are particularly important to
investigate. Finally, the influence mechanism of greening stability in the MUSL is explored.

Materials and methods
Study area

The MUSL is located at the intersection of Inner Mongolia, Ningxia, and Shaanxi Province
(37°27.5'N—39°22.5'N, 107°20'E—111°30'E) in northern China. It encompassed 10 counties
(banners, districts), including OtogBanner, Otog Front Banner, Wushen Banner, and Ejin
Horo Banner in Inner Mongolia; Shenmu County, Yuyang District, Hengshan County, Jing-
bian County, and Dingbian County in Shaanxi; Yanchi County in Ningxia [34] (Fig 1). The
MUSL lies in the transition zone from the Ordos Plateau to the Loess Plateau, and it’s an
important agro-pastoral ecotone of northern China. The terrain is generally high in the west
and low in the east (Fig 1). Located at the edge of the East Asian monsoon and the Westerlies,
the MUSL is characterized by temperate continental climate. The average annual precipitation
ranges from 180 mm in the northwest to 560 mm in the southeast (Fig 1), which is largely con-
centrated in July—September, and the annual mean temperature reaches 7.4-9.0°C.

Data sources

Land use/land cover (LULC) data were provided by the Data Center for Resources and Envi-
ronmental Sciences, Chinese Academy of Sciences (https://www.resdc.cn/), which were
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Fig 1. Location(a), landform(b) and distribution of average annual precipitation(c) in the study area.

https://doi.org/10.1371/journal.pone.0292469.g001

generated by human-computer interaction interpretation of Landsat TM/ETM and Landsat 8
remote sensing image data [37]. The accuracy of the interpreted data was determined by sev-
eral field surveys and random sampling checks performed over the years, and the results
showed that the average classification accuracy exceeded 90%, indicating that the LULC data
can be used as reliable base maps for subsequent analyses [38]. The data included five images
taken in the years 2000, 2005, 2010, 2015, and 2020, with a spatial resolution of 30 m. The first-
level classification included six categories: cultivated land, forest, grassland, water, construc-
tion land, and unused land [37]. Forest and grassland, with ecological service functions, were
classified as ecological land. The LULC data were then resampled to 250 m. In addition to the
LULC data, the global 30 m land cover product with a fine classification system in 2020 [39],
and the 1:1000000 vegetation map of China [40] were also used in this paper.

MODIS NDVI (Normalized Difference Vegetation Index) was widely used in the study of
vegetation cover change after water, cloud, and heavy aerosol processing [41]. The MOD13Q1
dataset provides NDVI data with a spatial resolution of 250 m and a temporal resolution of 16
days, and is from United States Geological Survey (USGS) (https://earthexplorer.usgs.gov/). In
the study area, the annual maximum NDVI dataset for 2000, 2005, 2010, 2015, and 2020 were
obtained through the maximum synthesis method in ArcGIS10.8, and then the annual average
value of NDVI was calculated by means of average method. MOD13Q1_NDVI data has been
widely used in the study area [42, 43]. The MOD17A3 dataset provides net primary productiv-
ity (NPP) data with a spatial resolution of 500 m for the year 2020, which is from USGS.

The FLDAS NOAHO1_C_GL_M dataset provides soil moisture data (https://Idas.gsfc.nasa.
gov/) with a temporal resolution of months and a spatial resolution of 0.1°x0.1°. This dataset
assists in food security assessments in developing countries with scarce data, which contains
information on many climate-related variables [44]. What’s more, the data were monitored by
random sampling, the result showed that its spatial distribution was consistent with the
observed data [45].
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Meteorological data included variables such as average temperature (Tav), maximum
temperature (Tmax), minimum temperature (Tmin), precipitation (Pre), sunhour, and
average wind speed (Wind), and were provided by China Meteorological Information Shar-
ing System (https://data.cma.cn). The monthly dataset comprises over 790 meteorological
stations in China, of which a small number of missing values got completed by multiple lin-
ear regression, and then the Anusplin4.2 interpolation model [46] was used for spatial inter-
polation with a spatial resolution of 1000 m, finally extracted the meteorological elements
distribution of the study area using mask extraction. The digital elevation dataset (DEM)
with a spatial resolution of 90 m was provided by Shuttle Radar Topographic Mission
(SRTM) [47], and the slope was calculated by DEM. The population density distribution
data (Pop) were obtained from WorldPop (https://www.worldpop.org), with a spatial reso-
lution of 1000 m. The kilometer grid data of the spatial distribution of GDP were derived
from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sci-
ences in 2000, and from Zhao et al. [48] in 2020. The administrative boundary data is from
the public version of Natural Earth (https://www.naturalearthdata.com/), and the sandy
desert area is from Zhong [49]. All of the above data are publicly available, and are pro-
cessed in ArcGIS10.8 for Desktop software platform.

Methods
Spatial stability index based on LULC. From a LULC perspective, stability can be mea-

sured by the area proportion of the LULC types that remain unchanged within a region over a
while. For this reason, the spatial stability of ecological land refers to the characteristics that
ecological land maintains its land type attributes unchanged in the study area within a period
[50, 51]. Therefore, the calculation method is as follows:

" A
PSI = % x 100% (1)

Where PSI denotes the stability index of ecological land; A, is the area of ecological land
cover type i that maintains unchanged during the study period in the study area; A expresses
the total area of all land types in the study area. The larger the PSI value, the higher the stability
of regional ecological land; otherwise, the stability gets lower.

If ecological land maintains its land type attributes unchanged during the study period in
the study area, it can be called continuous stable ecological land, or greening stability [14-
17]; Instead, if changes, it is classified as stage-stable ecological land, which can be divided
into green stability addition and green stability reduction [17, 50, 51]. In five raster image
data (2000/2005/2010/2015/2020), the land type of the grid unit has always been grassland
(forest), which was continuous stable ecological land; If the land type was grassland (forest)
in the first two (three/four) periods, and there existed no grassland (forest) of two continu-
ous rasters in the last three (two/one) periods, which was called green stability reduction; If
it was no grassland (forest) of two continuous rasters in the first (two/three) periods, and
there existed grassland (forest) of two continuous rasters in the last four (three/two) peri-
ods, which was green stability addition. See Fig 2 for the conceptual concrete diagram, tak-
ing grassland as an example. The most basic and stable ecological land use—continuous
stable ecological land, can guarantee the local ecological environment quality. The paper
took it as the research subject to explore whether the ecological environment can be sustain-
able in the MUSL.

NDVI difference. Although NDVI can illustrate the overall change of regional vegetation,
it is still a macro statistical index. To evaluate changes in vegetation density over time, NDVI
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difference of the same location and pixel needs to be employed [52], as expressed below:

ANDVI = NDVI, — NDVI,,

—~
NS
~

Where NDVI; and NDVI,, denote the pixel values of T, and T (year) in the NDVI map
within a period of time, respectively; ANDVI is the NDVI difference, and its value ranges from
-2 to 2. The NDVI difference classification results are [52]: severe degeneration(ANDVI<-
0.15), moderate degeneration(-0.15<ANDVI<-0.05), slight degeneration(-0.05<ANDVI<0),
slight improvement (0<ANDVI<0.05), moderate improvement(0.05<ANDVI<0.15), and
extreme improvement(ANDVI>0.15).

Dune morphology recognition. The Mu Us Sandy Land is located on the northern edge
of the East Asian monsoon region, the purpose of dune morphology recognition is to explore
the soil water carrying capacity [53]. Meanwhile, different dune forms require different
approaches to control desertification. Generally, vegetation cover is essential for controlling
desertification. For these, the paper calculates dune morphology recognition. Based on the
NVDI value, the pixel dichotomy model is employed to estimate vegetation coverage in the
study area [54, 55], as expressed below:

FVC = (NDVI — NDVI

soil

)/(NDVIV — NDVI_,;) (3)

Where FVC denotes vegetation coverage; NDVI,,;; and NDVI, ., are NDVI values of the
completely bare soil cover and dense vegetation cover, respectively.

Combined with the method proposed by scholars [54, 55], and the actual situation of vege-
tation coverage in the study area, a confidence interval of 0.5% was selected to intercept NDVI
with a frequency of 99.5% as the upper threshold, and a frequency of 0.5% as the lower thresh-
old. The upper and lower thresholds represent the values of NDVI,,,, and NDVI,; in the
image, respectively. Here, dune morphology is the classification of mobility on surface material
of hill under wind force, which is divided into bare (mobile) and vegetation cover (fixed, semi-
fixed) according to fixing extent of dune [56]. According to the Technical Code of Practice on
the Sandified Land Monitoring (GB/T 24255-2009) and Wu [56], the sandified land is divided
into three categories: mobile dune (0<FVC<10%), semi-fixed dune (10%<FVC<30%), and
fixed dune (FVC>30%).

Geodetector. The Geodetector model is a new statistical method for detecting spatial
stratified heterogeneity and revealing the driving factors behind it, including four detectors:
risk detector, factor detector, ecological detector, and interaction detector [57]. Factor detector
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and interaction detector are employed in this paper. For more information on the Geodetec-
tor, you can refer to the literature cited by Wang and Xu [57].

The driving factors affecting the greening stability of the study area, are discretized by the
natural breakpoint classification method. However, due to the maximum sample size of the
Geodetector being 32768 lines, a 2 km x 2 km fishnet with 10954 nets was created in the study
area instead of a 1 km x 1 km fishnet used in previous studies with 44231 nets. NDVI is
regarded as Y variable, and 10 driving factors are regarded as X variable (Tmin, Tmax, Tav,
Sunhour, Pre, Wind, DEM, Slope, Pop, GDP) for research.

Therefore, based on the above data and methods, the research ideas of this paper can be
seen in Fig 3.

Greening stability process
Changes in the stability of LULC types

Based on the five images of LULC data, ecological land area has shown a fluctuating increase over
the past 20 years in the MUSL. The dominant land cover type in ecological land area was grass-
land, which made up more than 57% of the total area. Over the first 10 years, grassland grew by
0.86% but then declined by 1.5% from 2010 to 2020. Meanwhile, forest showed a slight increase,
with an overall increase of 0.57%. The non-ecological land cover, such as cultivated land and
unused land, both decreased by 0.72% and 0.45%, respectively. In contrast, construction land area
climbed continuously from 0.47% to 1.73%, and water cover remained relatively stable (Table 1).

Table 1. Area proportion of ecological land in the Mu Us Sandy Land from 2000 to 2020/%.

Ecological land Non-ecological land
Forest Grassland Farmland Construction land Waters Unused land

2000 2.46 57.89 15.32 0.47 1.23 22.63

2005 3.04 57.44 14.55 0.57 1.18 23.22

2010 2.94 58.75 14.81 0.89 1.07 21.53

2015 2.92 58.56 14.83 1.17 1.05 21.46

2020 3.04 57.25 14.60 1.73 1.22 22.17
https://doi.org/10.1371/journal.pone.0292469.t001
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Fig 4 illustrated the distribution of continuous stable ecological land in the study area,
along with its area proportion in each county (banner, district) from 2000 to 2020. The data
showed that the continuous stable ecological land area accounted for a significant portion of
the study area, amounting to 54.94%. The majority of this land was comprised of grassland,
which accounted for 53.04%, while forest was only 1.9%. The distribution pattern displayed
low in the southeast and high in the northwest of the study area. The counties of OtogBanner,
Otog Front Banner, and Ejin Horo Banner had the highest proportions of continuous stable
ecological land, accounting for more than 60%.

Changes in the functional stability

Vegetation change based on NDVI. Figs 5 and 6 displayed the spatial-temporal distribu-
tion changes of NDVI of continuous stable ecological land in the MULS from 2000 to 2020.
The result showed that vegetation NDVI expressed a fluctuating upward trend as a whole, with
an average increase of 0.035 per year(p<0.01). However, this trend was not consistent and
showed fluctuations during the study period. Vegetation NDVI continued to rise in 2000
2010, but it fell back in 2015 before rapidly increasing again. During this period, the coefficient
of variation (CV) showed fluctuations, with the highest value observed in 2005 (0.38) and the
lowest in 2010 (0.28) Furthermore, the study found that NDVTI displayed high in the southeast
and low in the northwest. OtogBanner, Otog Front Banner, and Yanchi have consistently been
low-value distribution areas, with no significant changes in NDVT in the first two banners. In
contrast, Yuyang, Shenmu, Hengshan, and Jingbian have always been high-value distribution
areas, with a significant increase in NDVI over time.
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Based on the NDVI difference results presented in Figs 7 and 8, it can be concluded that
vegetation has been a general improvement trend in 2000-2010 in the MUSL. The area pro-
portion of vegetation improvement grew from 65.82% to 83.83%, with moderate improvement
being the dominant type. At the same time, vegetation degradation decreased from 34.18% to
16.17%. However, during 2010-2015, vegetation degradation got more severe, and the area
proportion increased to 63.94%, mainly with moderate degradation. But in 2015-2020, vegeta-
tion improvement jumped to 92.06%, with moderate improvement accounting for 52.63% and

o
2005 } ?ﬁ
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Fig 6. Spatial distribution of the NDVI of continuous stable ecological land in the study area in 2000-2020.
https://doi.org/10.1371/journal.pone.0292469.9006
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extreme improvement reaching 20.53%. Regarding spatial distribution, the northwest part of
OtogBanner and Otog Front Banner were mainly affected by vegetation degradation in 2000-
2005, accounting for about 60% of the Banner area respectively, while slight and moderate veg-
etation improvement was observed in the rest of the study area. In 2010, vegetation
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Fig 8. The spatial distribution of different NDVI classes in the study area in 2000-2020.
https://doi.org/10.1371/journal.pone.0292469.9008
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degradation area had been improved in the northwest part of OtogBanner and Otog Front
Banner, while vegetation improvement area had been slightly degraded in Ejin Horo Banner,
and not much had changed in Wushen and Yuyang. By 2015, vegetation had degraded overall,
especially in the northwest of OtogBanner and Otog Front Banner, where was moderate and
slight degradation, and so was the southern MUSL (Yanchi, Dingbian, Jingbian, and Heng-
shan), while Ejin Horo Banner had remained relatively stable. By 2020, vegetation had been
improved comprehensively, except for slight degradation in the central part of Otog Front
Banner, the northwest of Yanchi, and the central part of Wushen Banner. On the whole, the
study suggested that vegetation degradation area has declined, and vegetation improvement
has grown indicating that vegetation conditions were developing towards a virtuous cycle, and
the process of sandification can be somewhat curbed. However, the alternating changes in
NDVTI also indicated that vegetation development remains unstable in the northwestern
MULS.

Dune morphology change based on FVC. In the sandy desert area of the study area, FVC
was calculated based on the NDVI value of the continuous stable ecological land, to investigate
the spatial-temporal variation patterns of different dune types. Fig 9 found that fixed dunes
were the dominant type of dune in the MUSL. However, there were significant internal fluctu-
ations in different dune types from 2000 to 2020. Mobile dunes displayed a decreasing trend
overall, with a rapid decrease in 2000-2005 followed by a slow rise and then a continuous
decline. Semi-fixed dunes also appeared a declining trend, in which its area proportion rapidly
fell from 37.7% to 12.8%, followed by fluctuated and then decreased to 11%. Fixed dunes gen-
erally showed an increasing trend, with a significant rise in proportion from 16.8% to 86.1%,
followed by a decrease, and then a further increase to 89%. One noteworthy phenomenon was
the rapid increase in fixed tunes between 2000 and 2005, which was attributed to human activ-
ities such as the implementation of the “grazing prohibition, rest grazing, and rotating grazing”
policy, the Grain for Green Program, and the Beijing-Tianjin Sand-storm Source Project.
These initiatives were aimed at restoring vegetation coverage in the MUSL within a short time.

Combining the distribution (Fig 10) and gravity center transfer (Fig 11) of different dune
types, the paper was to comprehensively research its spatial distribution. Mobile dunes were
dispersed in the study area in 2000, concentrated in the western part of the sandy area in 2005,
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Fig 9. The proportion of the different dune types in the study area in 2000-2020.
https://doi.org/10.1371/journal.pone.0292469.g009
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and the northwest edge of OtogBanner in 2010, after that nearly disappeared. As for semi-
fixed dunes, they gradually dispersed to sporadic distribution in the western part of the sandy
area in 2000-2010, and then expanded in 2015, with obvious distribution in OtogBanner and
Otog Front Banner, after that gradually shrank to the northwest edge of OtogBanner and the
center part of Otog Front Banner. Fixed dunes had always been widely distributed in the cen-
tral part of the sandy area. In accordance with gravity center transfer, different dune types
migrated westward on the whole, but the differences were that mobile dunes shifted the fur-
thest, and moved southward after 2005; Followed by semi-fixed dunes, which only moved to
the southwest during 2010-2015, and moved to the northwest in other years; The final was
tixed dunes, which presented a more complicated shift process of southwest-southeast-north-
west-southeast.

Soil moisture change

Soil moisture is the main source of water uptake by plants in arid and semi-arid regions [58].
Due to the problem of data acquisition, the data used in the paper had a relatively coarse spatial
resolution, which can only provide a rough estimate of the overall soil moisture in the MULS,
but cannot distinguish its changes in different dune types. On the whole, the data showed that
soil moisture at the underground depths of 0-200cm has had an increasing trend in the past 20
years (Fig 12), indicating that vegetation restoration has played a positive impact on the local
environment to a certain extent. Viewed from different underground depths, soil moisture
tended to increase roughly with the underground depths, that is to say, the deep soil moisture
was higher than that of the shallow (Fig 12). Additionally, there exerted spatial distribution dif-
ferences in shallow and deep soil moisture. The spatial distribution pattern of soil moisture
was high in the southeast and low in the northwest at 0-10 cm underground depth (S1(A)
Fig), which was consistent with the distribution of precipitation (Fig 1) and NDVI (Fig 6) in
the MULS. Meanwhile, Zhang and Wu. [22] concluded that NDVI had a strong positive corre-
lation with shallow soil moisture, and Chen et al. [58] believed that the shallow soil moisture
got closely related to precipitation. What’s more, compared with the surrounding areas, soil
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Fig 12. Mean soil moisture at different depths in the Mu Us Sandy Land from 2000 to 2020.
https://doi.org/10.1371/journal.pone.0292469.g012
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Fig 13. The factor detection results of NDVI in the study area in 2000-2020.
https://doi.org/10.1371/journal.pone.0292469.9013

moisture was always less than that in the southern part of the MULS (southeastern Yanchi,
most areas of Dingbian and southern Wushen) and most areas of Ejin Horo Banner at 10-200
cm underground depth (S1(B)-S1(D) Fig), the reason why differences in soil moisture distri-
bution were that dune geomorphology [59], sand-fixing vegetation evolution [60], and the
evolution of different dune types [61].

The analysis of influencing factors

Through factor detector, the influence of driving factors on the NDVI of continuous stable
ecological land was explored from natural factors (topography and climate) and social factors
(population and economy) (Fig 13). The results exhibited that, except for social factors, natural
factors exerted a significant impact on NDVI (p<0.01), and its explanatory power has
increased over time. Precipitation, sunhour, and wind were found to have the strongest
explanatory effects on greening stability (p>0.08), with precipitation being particularly promi-
nent. Additionally, DEM and Tmin also increased significantly.

The paper suggested that NDVT is affected by multiple factors and that there exert interac-
tive relationships among the influencing factors. The interaction detector showed nonlinear or
double-factor enhancement (Fig 14), both of which can help to strengthen the interpretation
of NDVI changes. Furthermore, due to precipitation having a strong persuasive power to
NDVI, the interaction with other factors displayed a strong explanatory power, which was sig-
nificantly higher than other interaction variable combinations.

Discussion
The importance of grassland restoration to the local ecological
environment

Adopted the first-level classification system of LULC established by Liu [62], the paper classi-
fied grassland and forest with ecological service functions into ecological land to explore the
overall ecological environment of the study area. However, to understand the distribution of
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Fig 14. The interaction detection results of NDVI in the study area in 2000-2020.
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vegetation types more accurately, the paper employed land cover and vegetation data based on
a fine vegetation classification system. According to the vegetation map of China (1:1000000),
the study area was dominated by herbaceous vegetation, accounting for 70% of the area, which
included grassland, meadow, and herbaceous swamp vegetation type groups. Shrub vegetation,
which included shrub and desert vegetation type groups, accounted for 7.4% of the study area
(S2 Fig). In light of vegetation types distribution and NPP data in 2020 (S3 Fig), the average
NPP value is 184.04 gC/m” in the MUSL, with low net primary productivity. There were signif-
icant differences in NPP among different vegetation types. (1) Grassland and sparse vegetation
were the dominant vegetation types, accounting for 41.43% and 24.50% of the study area, with
NPP value of 189.82 gC/m* and 172.81 gC/m?, respectively; (2) Herbaceous cover, which occu-
pied 1.27%, NPP value was 235.83 gC/m?; (3) Other vegetation types, including forest,
accounted for less than 1%. However, forest had the highest NPP value, with needle-leaved for-
est and broadleaves forest having NPP value of 252.16 gC/m” and 276.73 gC/m? respectively,
while wetland had the lowest NPP value of 137.06 gC/m”. At the same time, the distribution
pattern of NPP was generally high in the surrounding area and low in the middle. To be spe-
cific, the NPP values were low in the eastern part of OtogBanner, most areas of Wushen, and
the western part of Yuyang, while high in Dingbian and Southern Jingbian. Studies have mani-
fested that the woody plant cover was positively correlated with the average annual precipita-
tion in China [63]. The MUSL, lying in arid and semi-arid areas, has experienced an increase
in precipitation in the past 40 years [64]. However, the aridity has not changed much, resulting
in a small area of forest. Therefore, the paper suggested that although forests have the highest
NPP, compared with the large area of grassland, which made less contribution to local green-
ing and ecological restoration [65, 66].

The vulnerabilities in greening stability process

The paper discussed the conversion of ecological land to non-ecological land from 2000 to
2020 (Table 2). Green addition and green reduction areas in each period accounted for no
more than 4% of the study area, which was lower than that of the continuous greening stability
(54.94%). Meanwhile, the net change of greening areas grew positively from 1.08x10* ha to
10.53x10* ha before 2010, while after 2010, it decreased negatively from 1.84x10* ha to
10.39x10* ha, showing a reverse greening phenomenon. The above data indicated that there
has exerted vulnerability and instability in the greening stability process of the MUSL, and the
impact has deepened. The conversion of ecological land and non-ecological land, of which
were cultivated land and unused land, got the most frequent; What’s more, ecological land
encroachment by construction land cannot be ignored, all of which were the direct cause of
the vulnerability in greening stability process. Due to special geographical location, fragile and
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Table 2. The conversion area between ecological land and non-ecological land from 2000 to 2020/ha.

Green addition

(Non-ecological land convert into ecological land)

Green reduction

(Ecological land convert into non-ecological land)

Increase(+)decrease(-)

https://doi.org/10.1371/journal.pone.0292469.t1002

2000-2005 2005-2010 2010-2015 2015-2020
cropland-ecological land 95239.44 59724.9 12539.79 62707.50
water-ecological land 3102.93 14699.07 2382.66 2388.51
Construction land-ecological land 90.81 3560.58 423.72 17583.03
unused land-ecological land 38632.14 156844.17 28343.61 85865.49
Total area 137065.32 234828.72 43689.78 168544.53
ecological land- cropland 29211.84 76252.59 14800.5 45655.11
ecological land-water 1739.88 2157.57 721.71 17727.84
ecological land- construction land 5905.71 19303.38 18610.83 45108.00
ecological land- unused land 89413.02 31835.97 27984.60 163973.61
Total area 126270.45 129549.51 62117.64 272464.56
10794.87 105279.21 -18427.86 -103920.03

harsh ecological environment, relatively slow economic development, backward production
mode, the coexistence of large-scale industry and small-scale agriculture, weak awareness of
environmental protection among residents, and other reasons, all these led to the contradic-
tion between ecological construction and economic development, and tense human-land rela-
tionships, which were the root cause of the vulnerability in greening stability process [34, 36].
Despite the fragility of greening stability, the MULS displayed a trend of humidification
(4.4772 mm/yr) in the past 20 years (54 Fig), which contributed to the overall greening of con-
tinuous ecological land (Fig 5), stable green in the eastern MUSL, and expansion of greening
stability area in the western MUSL (Fig 6). The paper suggested that this trend, coupled with
the strengthening or continuous intensification of the Westerlies and the East Asian monsoon
[67, 68], may promote stable greening in ecological land conversion areas in the MUSL in the
future.

The importance of precipitation on greening stability

Based on the information provided, it appeared that precipitation significantly affected vegeta-
tion greening stability in the MUSL (Fig 13). S5 Fig provided data on the distribution of the
green stability addition and reduction areas in the study area over the past 20 years. The data
in S5 Fig found that green stability addition area was 26.11x10* ha, accounting for 3.01% of
the study area; Green stability reduction area was 29.37x10*ha, accounting for 3.38%, which
showed that green stability reduction area was slightly higher than green stability addition area
in the past 20 years. Furthermore, the distribution of green stability addition and reduction
areas in arid and humid zones suggested that in arid and semi-arid areas, green stability reduc-
tion area was larger than green stability addition, while in semi-arid areas, green stability
reduction area was less than green stability addition. Specifically, green stability addition,
nearly 49.48% were distributed in semi-arid areas (annual precipitation is 200-400mm),
50.48% in semi-humid areas (annual precipitation is 400-800mm), only 0.04% in arid areas;
Green stability reduction accounted for 51.85% in semi-arid areas, 46.42% in semi-humid
areas, and 1.73% in arid areas. The results indicated that precipitation plays an important posi-
tive role in vegetation restoration to a certain extent, which is consistent with previous studies
[34].

Precipitation is the only supply source of soil water in the MUSL [69]. The soil water carry-
ing capacity of vegetation is an important basis to measure whether sand-fixing vegetation can
be successfully reintroduced to the area, which can be defined as the maximum coverage that
limited soil moisture can bear sand-fixing vegetation [59, 70]. Li et al. [71] proposed the eco-
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hydrological threshold for arid and semi-arid climate zone (annual precipitation is 250-500
mm), the average herbaceous coverage rate was 55% ([34, 63]), woody vegetation coverage rate
was 17% ([10, 34]), and soil water carrying capacity was 8% ([4.3-14.1]). At the same time, Liu
etal. [72] concluded that water resource carrying capacity (ecology/living/production) has
generally shown a downward trend since 2000 in the MUSL (Inner Mongolia), and predicted
that if the current development remains unchanged, it will be deteriorated by 2030. Based on
the summary of previous research and the actual situation of the study area, we found that the
eco-hydrological threshold should be considered to serve as a guide for managing the artificial
sand-fixing vegetation ecosystem; What’s more, appropriate vegetation density and drought-
tolerant vegetation types should be taken into account to avoid excessive planting damaging to
soil water carrying capacity in arid and semi-arid areas. Only in this way can the ultimate goals
of ecological restoration and regional sustainable development be realized.

Reasonable control of human factors to prevent secondary sandification

Given data availability and other reasons, only population and economic indicators were
selected for human activities in the paper, both of which displayed an insignificant impact on
vegetation greening in the MUSL (Fig 13). However, a large number of studies have shown
that human activities exerted a significant influence on vegetation [34, 36, 73, 74]. The MUSL
is located in the transition zone of farming and grazing, and the number of livestock (cattle
and sheep) has increased in the past 20 years [73], but vegetation cover has still turned green,
the phenomenon presented was closely related to the policy of “grazing prohibition, rest graz-
ing, and rotating grazing” promulgated since 2000 73]. At the same time, with the implementa-
tion of a massive number of national key projects since 2000, such as soil and water
conservation ecological project, the Grain for Green Program, natural forest protection proj-
ect, key counties of ecological constriction, vegetation improvement areas have gradually
taken a dominant position in the MUSL, and the extreme improvement area has grown signifi-
cantly (Fig 7). In addition, vegetation improvement areas showed an overall increasing trend
in the western pastoral areas (Fig 8). All these indicated that the positive effects of environmen-
tal protection policies and projects on vegetation restoration. Furthermore, due to the differ-
ences in site conditions, in the middle and northern parts of the sandy land devoted to

grazing, a supporting structure of grass breeding and livestock species, and an efficient breed-
ing and animal husbandry structure focusing on grass and dairy industries should be estab-
lished; In the eastern and southern regions dominated by agriculture, a grain-saving animal
husbandry structure focusing on feed grain and meat production should be built, and feeding
sheds should be constructed vigorously. Coupled with the increasing number of livestock,
increased vegetation carrying capacity. Animals not only have shrubs and herbs, such as Agrio-
phyllum squarrosum (Linn.) Moq., Achnatherum splendens (Trin.) Nevski, Avena fatua L., Les-
pedeza bicolor Turcz., Helianthus tuberosus L., Pugionium cornutum (L.) Gaertn., Hippophae
rhamnoides L., Caragana kors hinskii Kom., Artemisia desertorum Spreng., but can be pro-
cessed into feed by silage and microstorage technology. On one hand, it promoted the rejuve-
nation and renewal of adult vegetation; On the other hand, it solved the problem of
insufficient feed, reduced the cost of breeding, and improved the enthusiasm of the farmers to
return farmland to forest and grass [75].

Conclusion

From 2000 to 2020, the proportion of continuous stable ecological land area in MUSL
remained over 50%, accounting for a relatively high proportion. NDVI showed a significant
increasing trend of 0.035/a, and a decreasing spatial distribution pattern from southeast to
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northwest. Although vegetation change was unstable, it was mainly vegetation improvement,
distributed in the eastern part of the sandy land, while the vegetation change in the western
region is extremely unstable. At the same time, the mobile dunes almost disappeared, the pro-
portion of semi-fixed dunes decreased to 11%, gradually shrinking to the western part of the
sandy area, while the fixed dunes soared to 89%, concentrated in the middle of the sandy area.
In addition, the overall soil moisture showed an increasing trend. Based on land types and
functional stability, and soil moisture change, the results show that the greening process of
MUSL keep stable in the past 20 years, and the ecological environment is developing a good
and orderly direction. What’s more, according to the results of factors affecting the continuous
stable ecological land, natural factors, especially precipitation, exerted a significant impact on
the stable greening, but the impact of human activities cannot be ignored. Finally, the research
time scale is 20 years. Based on the actual situation, the research results are obtained from
multi-source remote sensing data rather than field research, but the study results are still scien-
tific to a certain extent. We will refine field research in the future studies.

Supporting information

S1 Fig. The average soil moisture at the underground depth of 0-10cm (a), 10-40cm(b), 40-
100cm(c), and 100-200cm(d) in the study area in 2000-2020.
(Z1P)

S2 Fig. The distribution of natural vegetation of the study area in 1:100,0000 vegetation
distribution maps of China.
(TIF)

S3 Fig. The spatial distribution of vegetation types and their NPP value in the study area
in 2020.
(Z1P)

$4 Fig. Annual precipitation characteristics in the Mu Us Sandy from 2000 to 2020.
(PDF)

S5 Fig. The spatial distribution of green stability addition/reduction in arid and humid
areas.
(TIF)
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