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Abstract

European dry thin-soil calcareous grasslands (alvars) are species-rich semi-natural habi-
tats. Cessation of traditional management, such as mowing and grazing, leads to shrub
and tree encroachment and the local extinction of characteristic alvar species. While soil
microbes are known to play a critical role in driving vegetation and ecosystem dynamics,
more information is needed about their composition and function in grasslands of different
dynamic stages. Here we assess the composition of soil fungal, prokaryotic, and plant
communities using soil environmental DNA from restored alvar grasslands in Estonia. The
study areas included grasslands that had experienced different degrees of woody
encroachment prior to restoration (woody plant removal and grazing), as well as unman-
aged open grasslands. We found that, in general, different taxonomic groups exhibited
correlated patterns of between-community variation. Previous forest sites, which had prior
to restoration experienced a high degree of woody encroachment by ectomycorrhizal
Scots pine, were compositionally most distinct from managed open grasslands, which had
little woody vegetation even prior to restoration. The functional structure of plant and fun-
gal communities varied in ways that were consistent with the representation of mycorrhizal
types in the ecosystems prior to restoration. Compositional differences between managed
and unmanaged open grasslands reflecting the implementation of grazing without further
management interventions were clearer among fungal, and to an extent prokaryotic, com-
munities than among plant communities. While previous studies have shown that during
woody encroachment of alvar grassland, plant communities change first and fungal com-
munities follow, our DNA-based results suggest that microbial communities reacted faster
than plant communities during the restoration of grazing management in alvar grassland.
We conclude that while the plant community responds faster to cessation of management,
the fungal community responds faster to restoration of management. This may indicate
hysteresis, where the eventual pathway back to the original state (grazed ecosystem) dif-
fers from the pathway taken towards the alternative state (abandoned semi-natural grass-
land ecosystem).
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Introduction

There is growing interest in applying alternative stable state theory to explain major ecosystem
patterns [1, 2]. For instance, arid ecosystems can have different stable states, including savan-
nah and forest, depending on the co-effects of precipitation, fire, and herbivory [2]. In temper-
ate semi-natural ecosystems, the state of the ecosystem—grassland or forest—depends on the
management regime [3]. However, there are also ecosystems, notably scrub of different densi-
ties, that represents the transition from stable forest to stable grassland or vice versa [4, 5]. In
such a case, scrub ecosystems may themselves represent alternative transitional trajectories
either from forest to grassland (generation of semi-natural grassland due to cutting woody
plants, making hay, and grazing with domestic animals) or from grassland to forest (woody
plant encroachment in abandoned grasslands). Transitional shrubby ecosystems vary in struc-
ture (species composition and diversity) and/or function (total biomass and carbon flux) due
to differences in immigration history, disturbance history, or other stochastic processes [6].

Although nature-based climate strategies worldwide have focused on tree-planting, there is
increasing awareness of the multiple ecosystem services provided by biodiverse grasslands [7,
8]. Significant land use changes since the middle of the last century have resulted in many pro-
ductive European semi-natural grasslands being converted to cultivated grassland and arable
fields [9] and other less productive grasslands being abandoned [10]. Cessation of manage-
ment results in succession towards forest, causing shrub and tree encroachment and the loss of
typical grassland species [11, 12].

Alvars are highly diverse grasslands occurring on thin soil (generally <20 cm) over calcare-
ous bedrock in the Baltic Sea region [13, 14]. Though alvar plant species have been present in
Europe during much of the post-glacial period [15, 16], most current communities are semi-
natural. This means that they are maintained by human activities such as mowing, grazing and
cutting woody vegetation, mainly Scots pine (Pinus sylvestris) [17]. The area of Estonian alvar
grasslands has declined during the last century, either due to abandonment and subsequent
woody plant encroachment or conversion to agricultural land [12]. However, in the last
decade, restoration projects have aimed to remove woody encroachment from Estonian alvars
and re-commence grazing with domestic animals. Recovering species composition in restored
grassland communities usually relies on natural recruitment, either from the seed rain or seed
bank [18].

In recent years, the significance of soil microbes in driving plant community composition
has been recognised [19]. Mutualistic and antagonistic microbes considerably alter plant per-
formance [20, 21], and some effects of environmental change on plant communities are medi-
ated by plant-microbe interactions [21, 22]. The importance of microbes is also acknowledged
in restoration ecology [23-26], where the absence of specific microbial groups has been
observed to retard the succession of entire communities and introduction of mutualistic
microbes may facilitate restoration [27-30].

The degree to which aboveground plant community dynamics mirror changes in soil
microbial communities is not clearly understood. In general, the diversities of different taxo-
nomic and functional groups tend to be positively correlated [31]. Sepp et al. (2021) [32]
addressed the alternative stable states of forested and open patches in a calcareous wooded
meadow and found generally good coincidence between plant and microbial community com-
positional patterns. Therefore, it might be assumed that aboveground vegetation and soil
microbial communities co-vary in response to changes in management regimes or in natural
conditions such as climate. However, it is also possible that the rates of change vary between
taxonomic groups and that changes in one group regularly precede or follow changes in
another group. It has been hypothesised that earlier changes in certain groups may indicate
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that these groups actively drive changes in other groups [33, 34]. For instance, where commu-
nity turnover among plants precedes that of their symbionts, arbuscular mycorrhizal (AM)
fungi [35], we may hypothesise that plants drive changes in mycorrhizal fungal communities.
To further address these hypotheses, an experimental approach is needed.

As indicated above, alternative transient trajectories may emerge during ecosystem change
between stable states such as natural forest and traditionally managed semi-natural grassland.
The predominant mycorrhizal type of the ecosystem has the potential to be a characteristic
that influences the trajectory between stable states. First, ectomycorrhizal (ECM) fungi repre-
sent an exception to the general pattern that diversity of different taxonomic groups varies in
parallel—ECM diversity correlates negatively with that of plants and arbuscular mycorrhizal
(AM) fungi at local and global scales [32, 36]. Second, while alvar vegetation consists mainly of
AM plant species, cessation of management causes a progressive increase in the dominance of
ECM trees. Because ECM trees strongly influence the rest of the plant community [19] and
often suppress plant [36] and AM fungal diversity [19], it is conceivable that the extent of
ECM dominance influences transitional trajectories among dynamic plants and soil microbial
communities.

Here, we compared four dynamic stages of alvar grassland in western Estonia, representing
restored grasslands that had experienced different successional histories prior to the start of
restoration management. Restoration management took the form of woody vegetation
removal and re-establishment of grazing with domestic animals. The four dynamic stages were
as follows: 1) open treeless semi-natural grassland vegetation with some junipers and occa-
sional pine individuals where restoration management was not implemented, 2) open treeless
semi-natural grassland vegetation where restoration management was implemented, 3) juni-
per scrub encroachment with single pine individuals on formerly open semi-natural grassland
where restoration management was implemented, and 4) young pine forest on formerly open
semi-natural grassland where restoration management was implemented. We extracted envi-
ronmental DNA (eDNA) from the soil and used metabarcoding to characterise fungal (18S
rRNA gene), prokaryotic (16S rRNA gene) and plant (P6 loop of the plastid trnL; UAA) com-
munities. First, we hypothesised that plant, soil fungal and soil prokaryotic communities vary
between stages in approximately the same way, such that compositional turnover between
dynamic stages is similar irrespective of which taxonomic group is addressed. Second, we
hypothesised that the history of ECM tree dominance influences the trajectory of the dynamics
of plant and soil microbial communities in response to changed management regime. Thus,
grasslands with a recent history of ECM dominance should differ most clearly from those with
a recent history of predominantly AM vegetation. Third, we hypothesised that taxonomic vari-
ation between restored grasslands mirrors the variation in functional group composition.

Methods
Study area

Sampling was conducted in 2019 in alvar habitats in western Estonia, including the mainland
and three larger islands in the Baltic Sea—Saaremaa, Hiiumaa, and Muhu (Fig 1, S1 Table).
Alvars are semi-natural grasslands on Silurian or Ordovician calcareous bedrock characterised
by shallow soils (up to 20-30 cm) [13]. We used stratified random selection of study areas, i.e.
selecting 29 sites randomly within one vegetation type, to assure that they were as similar as
possible to each other in terms of vegetation and ecological conditions. We addressed grass-
lands of the type ‘Avenetum alvarense’ described by Pirtel et al. (1999) [13], which is the most
widespread alvar vegetation type. The soil is strongly calcareous, with pH>7, and a humus
layer of <20 cm overlays the weathered limestone bedrock. Characteristic herbaceous plant
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Fig 1. Map of study sites in western Estonia. Each site comprised four dynamic stages reflecting the degree of woody encroachment
experienced prior to restoration: unmanaged open, managed open, managed previous scrub, and managed previous forest (see methods for
details). The map was made using freely available vector and raster map data from Natural Earth (naturalearthdata.com) and the Estonian
Administrative and Settlement Division: Land Board; accessed 01.06.2023.

https://doi.org/10.1371/journal.pone.0292425.9g001

species include—Helictotrichon pratense, Carex tomentosa, Briza media, Festuca ovina, Sesleria
caerulea, and Centaurea jacea (see also Prangel et al. 2023 [12] for details about the environ-
mental conditions at plots). We obtained permission for the study from the Estonian Environ-
mental Board (11.02.2015 nr 17-2.1/15/2415-2).

At each of the 29 study sites, we selected four subsites representing different dynamic stages
of grassland ecosystems on dry calcareous soils, avoiding temporarily wet areas and areas with
limestone outcrops. Specifically, we selected (i) unmanaged open: continuously open grassland
with no management change (no mowing or grazing); (ii) managed open: continuously open
grassland, with grazing reinstated in 2015; (iii) managed previous scrub: scrub removed and
grazing reinstated in 2015; (iv) managed previous forest: forest removed and grazing reinstated
in 2015. All areas where grazing grassland management was reinstated were restored as a part
of the European Commission LIFE+ Programme project LIFE to Alvars [37]. At each subsite,
a total of 116 plots, a 5 g topsoil sample was collected from a randomly-selected small 10x10
cm quadrat near the corner of each plot. After removing plant roots from the soil, samples
were dried for 24 h at 50°C and stored dry prior to molecular analysis.

Molecular analysis

DNA was extracted from 5 g of dried topsoil using the PowerMax Soil DNA Isolation Kit. The
16S rRNA gene was used to identify prokaryotes, the 185 rRNA gene was used to identify
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eukaryotes (with the ultimate goal of identifying fungi), and the short fragment of the trnL
(UAA) intron (the P6 loop, 10-143 bp) was used to identify plants. The DNA metabarcoding
approach follows the methods described by Vasar et al. 2022 [38]. Briefly, for prokaryotes,
primers 515F and 926R were used to amplify the 16S rRNA variable V4 region [39, 40]; for
eukaryotes, primers Euk575F and Euk895R were used to amplify the 18S rRNA region [41,
42]; and for plants primers trnL-g and trnL-h were used to amplify the short fragment of the
trnL (UAA) intron (the P6 loop) [43]. The 16S rRNA, 18S rRNA and trnL amplicons were
sequenced on the Illumina MiSeq platform (using a 2 x 250 bp, 2 x 250 bp and 2 x 150 bp
paired-read sequencing approaches, respectively; Asper Biogene [Tartu, Estonia]).

Bioinformatics

Bioinformatic processing of sequencing data was conducted using the gDAT pipeline [44].
There were 2x9 973 435 raw prokaryotic 16S reads, from which 5 738 429 reads could be
cleaned and combined. Reads were clustered at 97% similarity, yielding 107 335 OTUs, of
which 96 144 were chimera free. Obtained OTUs were subjected to BLAST search [45] against
the SILVA 16S database (v138.1, Pruesse et al., 2007) [46]. For robust assignment of taxonomic
identity, the lowest common ancestor (LCA) approach with multiple best-hits was used to
build a consensus taxonomy where at least 51% of hits should contain the same identity at the
accepted taxonomic rank. FAPROTAX [47] was used to assign taxa to functional guilds, with
the guild classification simplified following Vasar et al., (2022) [38].

There were 2x3 761 473 raw eukaryotic 18S reads, from which 3 176 172 reads could be
cleaned and combined. Reads were clustered with 97% similarity, yielding 32 388 OTUs, of
which 29 105 were chimera free. Obtained OTUs were subjected to BLAST search against the
NCBI non-redundant nucleotide database [48] using LCA with the same criteria as for 16S
reads. Fungal OTUs were distinguished and divided into functional groups using the Fungal-
Traits database [49].

There were 2x18 765 961 raw trnL reads, from which 13 052 012 reads could be cleaned and
combined. Reads were clustered at 97% similarity, yielding 54 232 OTUs, of which 48 809
were chimera free. Obtained OTUs were subjected to BLAST search against the NCBI non-
redundant nucleotide database using LCA with the same criteria as for 16S reads. Plants were
classified into forbs, graminoid, woody and legumes.

For all datasets, sequences were assigned to taxonomic levels with BLAST using 80% align-
ment thresholds and the following criteria for different taxonomic ranks: families at >90%,
genera at >95%, and species at >97% sequence similarity. Raw reads from this Targeted Locus
Study have been deposited in the NCBI SRA (BioProject PRINA957953).

Statistical analysis

Data cleaning. Each data set was cleaned to remove samples with < 1000 reads and sin-
gleton OTUs. This left 101 samples for prokaryotes, 58 samples for fungi and 106 samples for
plants (SI Table). The cleaned data matrices were normalised using variance stabilising trans-
formation (VST) (using the R package DESeq2 version 1.38.3: Love et al. 2014) [50], as sug-
gested by McMurdie and Holmes (2014) [51]. The method uses fitted dispersion-mean
relationships to normalise data with respect to sample size (sequencing depth of individual
samples) and variance.

Alpha diversity. The alpha diversity of soil communities was assessed by calculating rich-
ness in VST-transformed data. Differences in richness between different dynamic stages were
assessed using linear mixed-effects models, with a random intercept associated with the site (R
package Ime4 version 1.1-32). Asymptotic richness (Chao index), asymptotic Shannon
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diversity index and asymptotic Simpson diversity were also calculated from cleaned raw
sequencing data (i.e. prior to VST transformation) using the iNEXT R package (version 3.0.0;
Chao et al. 2016) [52] and modelled in the same manner.

Beta diversity. The effects of dynamic stages on the community structure (beta-diversity)
of plants and different soil organisms were assessed with distance-based redundancy analysis
(dbRDA) using Bray-Curtis distance and VST-transformed data (dbRDA from R package
vegan; Oksanen et al. 2022) [53]. Hypotheses were tested using within-site permutations (999
permutations). Non-Metric Multidimensional Scaling (NMDS) of the VST-transformed data
was also used for visualisation. Pairwise correlations between different communities of organ-
isms were estimated using Procrustes rotation. The rotation was carried out using the principal
coordinates of Bray-Curtis distance matrices (VST-transformed data) containing common
samples (with the number of retained axes equal to the minimum number of positive eigenval-
ues derived from the matrices being compared). Differences between dynamic stages in the
magnitude of Procrustes residuals were tested using linear mixed models with the structure
described above.

Taxonomic and functional groups. The relative abundances of different phyla and func-
tional guilds of organisms were estimated from transformed read counts and OTU counts in
the VST-transformed data. For prokaryotes, the abundance of organisms assigned to multiple
functional groups was duplicated for each category. dbRDA was used to assess differences in
the functional and taxonomic composition of different dynamic stages using the restricted per-
mutation procedure described above. Differences between habitats in the relative abundance
and richness of individual guilds were estimated using linear mixed models with the structure
described above. dbRDA was also used to assess the effect of the dynamic stage on the commu-
nity structure of individual guilds.

Results

The alpha diversity of prokaryotes and fungi did not differ significantly between dynamic
stages (Fig 2). The alpha diversity of plants (as measured from eDNA samples) was higher in
the unmanaged open habitat than in all other stages (Fig 2). Very similar results were produced
by the asymptotic alpha diversity estimates, though significantly lower asymptotic Shannon
diversity was recorded in managed previous forest for prokaryotes (S1 Fig).

Dynamic stage had a significant effect on the community composition of all organism
groups (Fig 3, S2 Fig). In all cases, the managed open and managed previous forest stages
were most distinct, with managed previous scrub and unmanaged open stages intermediate
(Fig 3).

Procrustes rotation indicated a strong correlation in the compositional variation of differ-
ent organism groups: strongest correlation was observed between prokaryotes and fungi, while
relationships involving plants were weaker (Table 1). No significant differences between
dynamic stages were observed in the magnitude of Procrustes residuals (Table 1).

No clear differences between dynamic stages were observed in the functional composition
of prokaryotes (dbRDA R = 0.021, P = 0.575; Fig 4). The abundance of different fungal guilds
differed between habitats (dbRDA R* = 0.166, P = 0.001; Fig 4), with AM fungi more abundant
in managed open grassland habitat and ECM fungi more abundant in the managed previous
forest and unmanaged open sites. There were also differences between stages in the abundance
of plant groups (dbRDA R* = 0.079, P = 0.014; Fig 4) with more woody plants in the managed
previous forested and unmanaged open sites, and more forbs and legumes in the managed
open site. The broad taxonomic composition of the different communities in different
dynamic stages is shown in S3 Fig.
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There were no differences between dynamic stages in the richness of any prokaryotic guild
(54 Fig). Among fungi, AM fungi were significantly richer in the managed open than in the
managed previous forest stage (S5 Fig). Woody plants were significantly less rich in the man-
aged open stage compared with all other stages (56 Fig). Richness of forbs was lowest in the
managed previous forest stage, highest in the unmanaged open stage, and intermediate in the
other stages (S6 Fig). Legume richness was lower in managed previous forest than in all other
stages (56 Fig). Within-guild composition varied between stages for all guilds (57-S9 Figs). In
general, compositional differences were analogous to those seen for entire groups (Fig 3).
However, in the managed and unmanaged open habitats, AM fungal, fungal parasite and gra-
minoid communities were notably similar (S8 and S9 Figs).

Discussion

In recent years, eDNA has been used in the description of communities, as it allows the parallel
study of different taxonomic groups [38]. We recorded strong correlations in the composition
of plant, soil fungal, and soil prokaryotic communities among transient dynamic stages of
alvar grassland in habitats that had reached varying degrees of woody encroachment prior to
restoration management. Nonetheless, between-stage differences in fungal community com-
position were larger than the corresponding differences in plant and prokaryotic communities;
and while the alpha diversity of plants varied between stages, those of fungi and prokaryotes
did not. Community composition in managed previous forest was most distinct from that in
managed open grassland for all organism groups, with managed previous scrub and unman-
aged grassland intermediate.

The synchronised pattern of changes in plant, fungal and prokaryote communities gener-
ally supports our first hypothesis and suggests that different groups of interacting organisms
all track changes in management regime and accompanied ecological conditions, as predicted
by the habitat hypothesis by Zobel & Opik (2014) [34]. To a certain extent, the similarity
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between different dynamic stages might reflect the fact that DNA persists in the soil for several
years and eDNA based community descriptions incorporate both present and past community
composition [32, 54]. However, a direct comparison of managed and unmanaged open grass-
land areas revealed a slightly different picture. Specifically, the unmanaged open areas repre-
sent the starting state of the managed open area before restoration management was initiated.
Although the alpha diversity of managed and unmanaged open ecosystems did not differ,
there were differences in community composition, and the different taxonomic groups varied
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Table 1. Procrustes correlation between the composition of prokaryotic, fungal and plant communities, and analysis of Procrustes residuals.

Group Intersect samples

Prokaryotes and between each other

Fungi (k=53)

Fungi and Plants between each other
(k=58)

Prokaryotes and between each other

Plants (k=103)

https://doi.org/10.1371/journal.pone.0292425.t001

Protest ANOVA on residuals

Procrustes Sum of Squares (m12 | Correlation in a symmetric Significance | F Df |Dfres |Pr

squared) Procrustes rotation (>F)
0.1223 0.9368 0.001 0.522 |3 |39.906 | 0.670
0.2330 0.8758 0.001 1.651 |3 |46.158 | 0.191
0.3408 0.8119 0.001 2.181 /3 | 77.066 | 0.097

in the degree of divergence, with relatively clearer differences in fungal, and to a degree, pro-
karyotic composition, compared with plant composition. This might suggest that microbial
communities respond more quickly than plants to active restoration management. When
changes in certain microbial communities, such as arbuscular mycorrhizal fungi, precede
those of plants, it may indicate that the quicker responders, i.e. microbes, act as ‘drivers’ while
plants are ‘passengers’ [33]. However, a more comprehensive understanding of which is driver
and which is passenger in the case of a change in the biotic community can only be obtained
experimentally.

The pattern indicated by the results of this study—that fungi respond quicker than plants—
is the opposite of Neuenkamp et al. (2018)’s [35] finding that plants preceded AM fungi during
woody plant encroachment succession in alvar grassland. In principle, the difference might
reflect hysteresis. Thus, changes in one direction towards a certain ecosystem state differ sub-
stantially from changes in the reverse direction. Work in other ecosystems has also shown that
the movement of the ecosystem away from a certain state proceeds differently than the move-
ment back to the original state [55, 56]. However, this had not previously been investigated for
systems including microbes. In alvar ecosystems, it may thus be hypothesised that during
woody plant encroachment, plants drive the changes, while in the case of management-
induced changes in the opposite direction, microbes drive the changes. On the other hand, the
slower response of plants might simply reflect more efficient dispersal of some microbes com-
pared with plants [57, 58] or a better ability of some plants to persist belowground during
unsuitable periods [59]. The current data are insufficient to distinguish these possibilities and
draw general conclusions, but they reveal relationships that deserve attention in further
studies.

We also hypothesised that the history of ECM trees in the ecosystem influences current
plant and soil microbial communities. This legacy was observed in all measured community
types. The communities in managed previous forested (with ECM pines) and managed open
grasslands were always most distinct from each other. Communities in previous scrub and
unmanaged open grassland, where a historical or contemporary absence of management
allowed some pine individuals to establish, were intermediate between the previously forested
and managed open stages. ECM vegetation can have a profound influence on multiple biotic
and abiotic ecosystem properties. For instance, ECM may diminish the negative effect of com-
petition with AM plants on ECM plants when ECM fungal mycelia lock up a substantial pro-
portion of soil nutrients, particularly starving saprotrophic fungi and co-occurring AM plants
of nutrients [60]. ECM fungi also form efficient mycorrhizal networks to enhance seedling
establishment of ECM plants [61] and form a physical sheath around the young feeder roots of
trees, offering protection from herbivores and pathogens [62, 63]. Plant communities with
ECM trees exhibit lower species richness than predominantly AM plants-dominated
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vegetation [36]. Thus, woody plant dominance generally has an effect on the entire biota, and
some of this effect is most likely specific to ECM trees.

In general support of our third hypothesis, we found that compositional changes among
plants and fungi in different dynamic stages reflected shifts in functional composition, while
the function of prokaryotic communities did not change measurably. It is unclear whether the
latter result reflects genuine functional homogeneity or, rather, the resolution of the
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prokaryotic functional classification [47]. However, the functional changes in plant and fungal
communities were logical and consistent with the hypothesised dynamics of different mycor-
rhizal types. Notably, woody plants were markedly less abundant in the managed open grass-
lands, and, albeit variably, ECM fungi showed the same overall pattern. Conversely, AM fungi
were most abundant in the managed open stage. This variation is consistent with the notion
that transitions towards a stable habitat state may take different functional trajectories depend-
ing on the starting point.

At the coarse scale, we conclude that different taxonomic groups exhibited similar patterns
of variation between dynamic habitat stages. However, at the finer scale, subtle differences
between groups and dynamic stages were apparent. One of the differentiators was the occur-
rence of woody vegetation in general and of ECM plants and fungi in particular. Analogous
differences were found in a previous study by Neuenkamp et al. (2018) [35] who showed that
in the case of woody encroachment into the alvar grassland ecosystem, plant communities
change with fungal communities responding later. In this study, however, we found that fungal
communities seemed to react more rapidly, while the response of the plant communities was
slower. We suggest that unequal speed of change among different functional groups might
indicate that the rapidly changing group is driving change in the slower group. Moreover, this
kind of dynamics, where the pathway from one stable state, managed alvar grassland, to
another, alvar forest, differs from the pathway taken in the opposite direction (from the alvar
forest towards the ‘original’ stable state of alvar grassland) may indicate hysteresis [56]. How-
ever, experimental study is needed to definitively understand these relationships.
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