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Abstract

Learning powerful discriminative features is the key for machine fault diagnosis. Most exist-

ing methods based on convolutional neural network (CNN) have achieved promising results.

However, they primarily focus on global features derived from sample signals and fail to

explicitly mine relationships between signals. In contrast, graph convolutional network

(GCN) is able to efficiently mine data relationships by taking graph data with topological

structure as input, making them highly effective for feature representation in non-Euclidean

space. In this article, to make good use of the advantages of CNN and GCN, we propose a

graph attentional convolutional neural network (GACNN) for effective intelligent fault diagno-

sis, which includes two subnetworks of fully CNN and GCN to extract the multilevel features

information, and uses Efficient Channel Attention (ECA) attention mechanism to reduce

information loss. Extensive experiments on three datasets show that our framework

improves the representation ability of features and fault diagnosis performance, and

achieves competitive accuracy against other approaches. And the results show that

GACNN can achieve superior performance even under a strong background noise

environment.

Introduction

Industries are the basis of the nation’s economy. In modern industries, smart factories employ

smart manufacturing, and the basic building block of any manufacturing process industry is

the machines [1, 2]. Mechanical equipment is often subject to extreme and complex working

conditions, thus significantly increasing the possibility of failure. Once any failure occurs in

machines, it will not only reduce the production efficiency and cause economic losses, but also

threaten the safety of human production and work. In order to avoid these economic and

safety risks, health state monitoring and evaluation systems for types of machinery have been

widely developed and implemented in modern industries [3–7].

Nowadays, with the development of intelligent method, it has been used in the current fault

diagnosis of the machine widely. Different from model-based and traditional data driven

based models which require priori knowledge and expert experience, deep learning (DL)

based on models with better ability to capture features by deep networks has brought new

ideas for machine fault diagnosis [8–11]. Zhou et al. [12] proposed a new improved multi-
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scale edge-labeling graph neural network (MEGNN) to enhance the recognition accuracy of

DL-based TCM under small samples.

Among these studies, convolutional neural network (CNN), as one of the most commonly

used DL methods, has also been widely studied and applied in this field. Focus on the small

sample problem, Dong et al. [13] proposed a new intelligent fault diagnosis framework based

on dynamic model and transfer learning for rolling element bearings race faults. Su et al. [14]

proposed a convolutional neural network based on hierarchical branches for faults diagnosis,

which made three predictions from coarse to precise through three hierarchical branches, and

the model has good diagnostic performance in noisy environments and variable working con-

ditions. Pang et al. [15] have reported a deep coupled based autoencoder neural network

wherein microphone and accelerometer data fusion was implemented to detect the defects in

gear orbit and bearing. As the most commonly used deep learning model, convolutional neural

network (CNN) can better learn feature representations, more and more scholars at home and

abroad introduce it into fault diagnosis of mechanical equipment. For instance, Kumar et al.

[16] proposed a novel convolutional neural network (NCNN) based on small sample data for

bearing defect recognition. Aiming at the low efficiency of CNN, He et al. [17] proposed a new

inverted residual convolutional neural network, which can improve the diagnostic efficiency

while ensuring the accuracy. In the feature mining module, a one-dimensional Convolutional

Neural Network (1-D CNN) is utilized to extract features from raw vibration signals. An et al.

[18] proposed a domain adaptation network based on contrastive learning (DACL) to achieve

the aim of bearing fault diagnosis cross different working conditions and reduce the probabil-

ity of samples being classified near or on the boundary of each class to improve diagnosis accu-

racy. Cao et al. [19] proposed an unsupervised domain-share convolutional neural network for

efficient fault transfer diagnosis of machines from steady speed to time-varying speed. Mao W

et al. [20] proposed a new deep auto-encoder method with fusing discriminant information

about multiple fault types, the proposed method can effectively improve the diagnostic accu-

racy with acceptable time efficiency.

In order to enhance the feature extraction capability of the network, the attention mecha-

nism is also integrated into the neural network applied to machine fault diagnosis, which can

make the network focus on important information and reduce information loss, such as

Debasish Jana et al. [21] proposed a two-step framework based on CNN and convolution auto

encoder (CAE) based on real-time sensor fault detection, localization, and correction, which

effectively improved the generalization ability of the model.

Although the abovementioned iterative neural network model based on the backpropaga-

tion supervised learning method has achieved considerable results, the CNN model still has

considerable limitations. The convolution based on Euclidean data is difficult to grasp the

complex topological structure. Graph convolutional networks (GCNs) taking graph data with

topological structure as input is more efficient for data relationship mining, making GCN to

be powerful for feature representation from graph data in non-Euclidean space. Zhou et al.

[22] constructed a dynamic graph data processing framework for rotating machinery diagno-

sis. Wang et al. [23] proposed a multiple micrographs-based graph convolutional network for

surface defect detection using an image dataset. Li et al. [24] developed a multi-receptive field

GCN-based fault diagnosis model using an imbalanced dataset, which not only features from

different receptive fields, but also fuses learned features as an enhanced feature representation.

Both CNN and GCN are deep learning methods that can capture deep features, whether it

is CNN or GCN, the network constructed by only a single convolutional layer has limited abil-

ity to capture information, which is the limitation of the receptive field. For GCN, the network

learns on a predefined single graph structure, which can only aggregate the information of the

nearest neighbor nodes.

PLOS ONE The combination model of CNN and GCN for machine fault diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0292381 October 5, 2023 2 / 18

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0292381


On the basis of previous work, to further improve the feature representation ability and

fault diagnosis performance, this study proposes a novel GACNN, which combines the aggre-

gation of global and spatial features through CNN and GCN to improve feature representation

capabilities. Specifically, the GCN branch takes the complete graph as input, and the CNN

branch takes the node feature of the complete graph as input. Additionally, and uses ECA

attention mechanism to reduce information loss.

The main contributions of this work are summarized as:

1. A novel fault diagnosis framework based on GACNN is proposed, which integrates the

strengths of CNN and GCN to extract global and spatial features. And a ECA attention

mechanism is introduced to reduce information loss.

2. The relationships between input signals are explicitly measured by converting the raw sig-

nal into a complete graph, which effectively mines the relationship between the structural

features of a sample.

3. The detailed parameter analysis is carried out for GACNN. Three public experimental data-

sets of the bearing system verified the effectiveness of the proposed method and algorithm.

The rest of this paper is organized as follows. Section 2 is mainly about the basic theoretical

model for GCN and CNN. In section 3, the mechanical fault diagnosis pipeline with GACNN

is illustrated in detail. Section 4 presents some comparative experiments and analysis to prove

the excellent performance of the proposed model. In Section 5, it will draw the conclusion and

prospect for the future research.

Theoretical background

Convolutional neural network

CNN aims to learn abstract features by alternating and stacking convolutional layers and pool-

ing layers. In the convolutional layers, multiple local filters convolve with raw input data and

generate translation-invariant local features. The subsequent pooling layers extract features

with a fixed length over sliding windows of the raw input data by following several rules such

as average, max and so on. The general CNN model in fault diagnosis is shown in Fig 1.

In signal processing, 1D-CNN is utilized to calculate delay accumulation of signals with the

same kernel. The forward propagation of the convolution layer is expressed as:

hj ¼ ReLuð
Xc

i¼1

xi∗wij þ bjÞ ð1Þ

Where xi is the i-th channel of the input feature mapping. hj is the j-th channel of the output

feature mapping, wij and bj are the convolution kernel weights and biases, respectively, and *
represents the convolution operation. ReLu(�) is the activation function.

To improve the training process, Batch Normalization (BN), a training optimization

method is utilized to achieve normalization and standardization of batch data during training.

Fig 1. CNN for fault diagnosis.

https://doi.org/10.1371/journal.pone.0292381.g001
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BN can stabilize the distribution of the input data, prevent overfitting, and accelerate the train-

ing process. Therefore, by integrating pooling and BN layers, CNN can effectively extract dis-

criminative features from the input data.

Graph convolutional network

Graph convolutional network-based method can effectively mine relationship between nodes in

the graph by feature aggregation and transformation. For the undirected graphs G = (V,ξ,A)

[25], where V = n represents the finite nodes. The ξ is a set of edges and A2Rn×n denotes the adja-

cency matrix of graph G. For two nodes<vi,vj> in a graph, the value of Aijcan be denoted as:

Aij ¼
1; while the node < vi; vj > is connected

0; while the node < vi; vj > is not connected
ð2Þ

(

As a kind of data in the non-Euclidean domain, graphs are represented by adjacency matri-

ces. Usually, the symmetric normalized graph Laplacian will be used, which is defined as:

L ¼ D� 1=2LD� 1=2 ¼ IN � D
� 1=2AD� 1=2 ð3Þ

Where L2Rn×n denotes the Laplacian matrix, LN2Rn×n is the identity matrix. D2Rn×n is the

diagonal degree matrix of the graph with Dii =∑jAij.
The spectral graph convolution of the node v with the node features can be defined as:

h ¼ ðx∗Gf Þy ¼ UðU
TxUTf Þ ð4Þ

Where x is the node feature, h represents the feature maps after graph convolution. f is the

eigenfunction of Λ, i.e. f(Λ), θ is the learnable parameter, *G stands for graph convolution.

Consider fθ = UTf as the learnable graph convolution filter, then the above formula is sim-

plified to:

h ¼ ðx∗Gf Þy ¼ UðU
TxðUTf ÞÞ ¼ UfyU

Tx ð5Þ

Where UTx represents the graph Fourier transform of the node feature x. The standard

two-layer GCN model shown in Fig 2.

The computational complexity of graph convolution shown in Eq (5) is very large, and it is

not localized in space. In GCN, the filter fθ is approximated by a polynomial, and it is suggested

in [26] that the truncated expansion of the Chebyshev polynomials can approximate fθ very

well, and the Kth order approximation is:

fy0 ¼
XK� 1

k¼0

ykL
k
¼
XK� 1

k¼0

y
0

kTkð~LÞ ð6Þ

Where K is the maximum order of Chebyshev polynomials, ~L ¼ 2L=lmax � IN is the

rescaled eigenvalues, λmax denotes the largest eigenvalues of L. θ is a vector of polynomial coef-

ficients, y
0

k 2 R
K is the vector of Chebyshev coefficients. Tkð~LÞ is the Chebyshev polynomial of

order k, and it can be determined by the following recurrence relation:

TkðxÞ ¼ 2xTk� 1ðxÞ � Tk� 2ðxÞ

T0ðxÞ ¼ 1;T1ðxÞ ¼ x
ð7Þ

(
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After approximating the filter by Chebyshev polynomials, the graph convolution of a node

feature x with a filter fθ in spectral domain can be mathematically defined as follows:

h ¼
XK� 1

k¼0

y
0

kTkð~LÞx ð8Þ

Where ~L ¼ 2L=lmax � IN is the rescaled Laplacian matrix. A parameterized weight matrix

W2RS×M is adopted to perform matrix transformation and achieve feature transformation.

The output of GCN layer X02RN×M is:

X0 ¼ ChebðX;WÞ ¼Wh ð9Þ

Where Cheb(�) is the Chebyshev graph convolution.

Methods

This section details how to apply the proposed GACNN for mechanical fault diagnosis, the

process involves CNN-based branch, GCN-based branch and Efficient Channel Attention

with GACNN. The overall flowchart of the proposed method for mechanical fault diagnosis is

shown in Fig 3, and it summarizes as the following algorithm.
Algorithm: GACNN for mechanical fault diagnosis
A. The complete graph construction
Input: the raw signal X with length L, select the normalize methods,
set the sub-sample length d, set the number of nodes q in complete
graph.
Output: the complete graph dataset Htrain,Htest;
1. Obtain the normalized signal: Xnor ¼ ðxnor

1
; xnor

2
; � � � ; xnorm Þ;

2. Obtain the spectrum amplitude features: Ynor = FFT(Xnor);
3. Data split: M, n = floor(L/d) Ynor;
4. Constructing a complete graph:
for subset X in M
for i = 1,2,� � �,q do
for j = 1,2,� � �,q and j6¼i do

wij ¼ exp � kðxi ;xjÞk
2

2z2

� �
; xj 2 NeðxiÞ

end for

Fig 2. Typical graph convolution network architecture.

https://doi.org/10.1371/journal.pone.0292381.g002
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end for
end for

5. Obtain complete graph set: Gtrain,Gtest
6. Obtain training set and test set: Htrain,Htest.

B. Fault diagnosis with GACNN
Input: Htrain,Htest.
Output: the fault category Z
1. Model training:
2. for X in Htrain do

Z GACNN(X)

CE �
Xc

i¼1

yilogðpcÞ

Update with back propagation
end for

3. Fault diagnosis and classification: Z GACNN(Htest)

CNN-based branch

The CNN-based branch network is modified from the simple and effective CNN model. The

convolutional layers are assembled within three convolution blocks, each convolutional block

includes a convolutional layer, a normalization layer, a pooling layer, and an activation layer.

The max pooling layer retains the maximum value of the region and preserves the features

with high recognition, which can reduce the error caused by the convolutional layer parame-

ters. The size of feature output of convolution block is defined as h×w×d, where h and w are

spatial dimensions and d is the number of channels.

The CNN-based branch is firstly leveraged to capture features from input data, and the

extract feature maps can be denoted as:

h1 ¼ CNNðXinputÞ ð10Þ

GCN-based branch

In our work, GCN is a novel neural network that learns feature by gradually aggregating infor-

mation in the neighborhood. GCN directly operates on a graph, and outputs the embedding

vector of nodes according to the nature of the neighborhood of the node. First, the signal sam-

ple can be modeled by graphs, the nodes of which stand for the detected objects and the edges

of which represent distance between the nodes. Then, we use three-layer Chebyshev graph

Fig 3. Structure of the GACNN.

https://doi.org/10.1371/journal.pone.0292381.g003
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convolution operation to capture the dependencies among sample graphs. Finally, a dropout

layer is added to prevent the network model from overfitting.

As the input to GCN, we need to build the vibration signal into a graph structure. There-

fore, a complete graph is developed. As shown in Fig 4, a complete graph means that any two

nodes have an edge connected between them, that is, the nodes are connected by pairs. In a

complete graph, each pair of different vertices is connected by exactly one edge. The edge

weight between each node of the complete graph can be estimated by a Gaussian kernel weight

function, which is defined as:

wij ¼ exp �
kðxi; xjÞk

2

2z
2

 !

; xj 2 NeðxiÞ ð11Þ

Where k(xi,xj)k2 represents the calculation of the Euclidean distance between nodes. wij
denotes the edge weight between node xi and node xj. z is the bandwidth of the Gaussian ker-

nel, z = 0.01.

The GCN-based branch is leveraged to capture features from input graph data, and the

extract feature can be denoted as:

h2 ¼ GCNðXinputÞ ð12Þ

Fig 4. Example of graph construction using complete graph.

https://doi.org/10.1371/journal.pone.0292381.g004
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Efficient channel attention

ECA attention module can enhance the channel features of input features, and avoids the impact of

dimensionality reduction on data by means of one-dimensional convolution, and does not change

the size of input features. Despite CNN-based branch and GCN-based branch can extract global

and spatial features, in these multi-scale features, there are important features with obvious differ-

ences, as well as noncorrelated features that are difficult to distinguish. In order to improve the con-

tribution of relevant features and reduce the interference of invalid features on fault diagnosis

results, the 1D-signal Efficient Channel Attention (ECA) attention mechanism module is designed

to reduce information loss and increases anti-noisy ability, as shown in Fig 5 [27]. After the ECA

module uses global average pooling (GAP) aggregation convolution features without dimensionality

reduction, then performs one-dimensional convolution and performs sigmoid function learning.

Feature fusion and classification

After completing the two-stage convolution through CNN-based branch and GCN-based

branch, we splice the features, h1 and h2, obtained by the two branches in the channel dimen-

sion for further fusion in subsequent modules.

Hout ¼ ECAðh1 � h2Þ ð13Þ

Where� denotes the concatenation operation. h1 and h2 represents the information

extracted by CNN-based branch and GCN-based branch, respectively. ECA(�) represents ECA

attention mechanism module.

Finally, the fusion of features extracted from the two branches is delivered to the classifier to

make the final prediction, node classification is processed by fully connected network as follows:

Z ¼ softmaxðFCðHoutÞÞ ð14Þ

Where Z is the predicted label.

Usually the cross-entropy (CE) loss would be used for classification, and the CE loss over all

labeled nodes can mathematically denoted as:

CE ¼ �
Xc

i¼1

yilogðpcÞ ð15Þ

Fig 5. The architecture of the attention block.

https://doi.org/10.1371/journal.pone.0292381.g005
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Where c is the number of categories. The yi2(y1,y2,� � �,yc) is the set of node labels, and yi is
the indicator variable (0 or 1). The pc is the predicted probability that the observation sample

belongs to category c. The weight parameters of GACNN layer can be updated, through back

propagation algorithm.

Data enhancement

In this study, the original vibration signal will be transformed into 1-D spectrogram. Data nor-

malization is operated on the monitoring signal X = (x1,x2,� � �,xm) and the normalized signal

Xnor ¼ ðxnor
1
; xnor

2
; � � � ; xnorm Þ can be calculated as:

xnori ¼
xi � xmin

xmax � xmin
; i ¼ 1; 2; � � � ;m ð16Þ

Then, fast Fourier transform (FFT) is performed on the normalized signal Xnor to obtain

the spectrum amplitude as the features, which can be denoted as:

Ynor ¼ FFTðXnorÞ; i ¼ 1; 2; � � � ;m ð17Þ

Where FFT(�) is the Fast Fourier transform, Ynor = (y1,y2,� � �,ym) is the spectrum amplitude

of Xnor, and the half of result are taken as the node features f = (y1,y2,� � �,ym/2).

Experimental validation and discussion

Experiments were conducted on three public datasets, to verify the effectiveness of the pro-

posed method. In addition, parameter selection of the experiments was performed to obtain

the optimal model parameter. In order to verify the anti-noise performance of this method in

mechanical fault diagnosis, we tested the anti-noise performance on the basis of case 2 dataset.

All the models trained with 100 epochs, an initial learning rate of 0.001, and the Adam opti-

mizer. The accuracy of test samples in the table represents the average value of five experimen-

tal results, and serves as the final experimental result. The main framework was developed

using Python.

In order to demonstrate the efficiency and superiority of the proposed method, comparison

with other DL methods is essential. Methods for comparison contain CNN [28], Chebyshev

graph convolution network [29], and multi-receptive field GCN (MRF-GCN) [30]. Details of

above these methods is shown in Table 1.

Case1: CWRU bearing dataset

Data description. In this study, the public dataset is provided by Case Western Reserve

University (CWRU) is utilized to evaluate the diagnostic validity and generalization capability

of the proposed approach [31]. The test rig of CWRU comprises a 1492-W test motor, a torque

transducer/encoder, a dynamometer, and a load motor, as depicted in Fig 6. The bearing

Table 1. Setting of the models of the bearing dataset.

Model Parameter configuration

GACNN Input size:320*1024, structure of GCN:1024—512—output_dim.

MRF_GCN Input size:320*1024, structure of GCN:1024–1200–300.

K = 1,2,3. fc: 300—output_dim.

ChebyNet_3 Input size:320*1024, structure of GCN:1024—512—300—output_dim, K = 3.

CNN Input size:320*1*1024, structure of CNN:320*1*1024–320*8*512–320*16*255–32*126. fc: 512—

output_dim

https://doi.org/10.1371/journal.pone.0292381.t001
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conditions include a healthy condition (H) and three fault conditions, namely inner race fault

(IF), outer race fault (OF), and ball fault (BF). The fault diameter for each fault condition is 7

mils, 14 mils, and 21 mils, respectively.

To construct the experimental dataset, we selected the bearing vibration signal under the

condition of an acceleration sensor sampling frequency of 48 kHz, motor load of 0 hp, 1 hp, 2

hp, and 3 hp. The resulting dataset contained 800 samples, each comprising four different sen-

sor signals with a sample length of 1024 data points. To divide the dataset into training and

testing sets, 60% of the samples in each health state were randomly selected as the training set,

and the remaining 40% were considered as the testing set. Table 2 shows the results of the data-

set production.

Parameter selection. The parameter K is a crucial parameter in determining the perfor-

mance of GCN, as it determines the order of the Chebyshev polynomial and, consequently, the

number of hops of the neighboring nodes that are aggregated during graph convolution. By

selecting an optimal value of K, the GCN can effectively aggregate information from similar

nodes during the convolution process. Therefore, in this study, we conducted experiments to

Fig 6. Experimental platform used by CWRU.

https://doi.org/10.1371/journal.pone.0292381.g006

Table 2. The description of class labels of CWRU.

Load Condition Fault size (mils) Label

0/1/2/3 NA 0 0

IF 7 1

IF 4 2

IF 21 3

OF 7 4

OF 4 5

OF 21 6

BF 7 7

BF 4 8

BF 21 9

https://doi.org/10.1371/journal.pone.0292381.t002
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investigate the effect of varying K on classification accuracy. Specifically, we evaluated the clas-

sification accuracy for K values ranging from 1 to 5 and obtained the average results of five

experiments, as shown in Fig 7.

From the results presented in Fig 7, it can be show that the classification accuracy increased

when K increased from 1 to 3, but decreased when K increased from 3 to 5. The optimal value

of K was found to be 3, resulting in a classification accuracy of 99.81%. Consequently, K = 3

was selected as the optimal parameter for our subsequent experiments.

Discussion. The results of the comparison are presented in Table 3. It can be observed

from those results that the proposed GACNN has the highest fault diagnosis accuracy, and the

stability of GACNN is better than other methods. The accuracies of GACNN in each trial are

98.12%, 100%, 99.06%, 100%, 100%, respectively, with a standard deviation of 0.84%, which

demonstrating that GACNN can provide more greater accuracy. The reason for this superior

performance is that GACNN can aggregate global and spatial features and enhance the feature

learning ability.

Fig 7. Experiment result for selection of parameter K.

https://doi.org/10.1371/journal.pone.0292381.g007

Table 3. The diagnostic result of CWRU.

Models Max-acc (%) Min-acc (%) Avg_acc (%)

GACNN 100 98.12 99.44±0.84

MRF_GCN 97.50 93.75 95.25±1.92

ChebyNet_3 96.88 93.12 94.56±1.43

CNN 99.69 95.31 97.31±1.83

https://doi.org/10.1371/journal.pone.0292381.t003
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Case2: MFPT bearing dataset

Data description. The Society for Machinery Failure Prevention Technology (MFPT)

dataset is composed of four sets of bearing vibration signals, including a baseline dataset, seven

outer race fault datasets, seven inner race fault datasets, and some other datasets [32]. In this

study, the former three datasets are used, therefore, it can be considered as a 15-class classifica-

tion task. And the results of the dataset production are shown in the Table 4.

In this experiment, the number of data point in a sample is set to 1024. There are 50 samples

for each load, resulting in a total of 750 samples in the bearing dataset. To divide the dataset

into training and testing sets, 60% of the samples in each health state were randomly selected

as the training set, and the remaining 40% were used for testing. Time domain diagrams of

fault samples with all states are given in Fig 8.

Discussion. The experimental results are shown in Table 5. It can be observed from those

results that the diagnosis accuracies are quite similar between the four kinds of mothed, how-

ever, the proposed GACNN has the highest fault diagnosis average accuracy. The accuracies of

GACNN in each trail are 97.41%, 97.78%, 96.67%, 97.04%, 96.67%, respectively, confirming

the effectiveness of the proposed method. Furthermore, it is shown in Table 5 that the avg-acc

of GACNN is 97.11%, and the standard deviation is 0.48%. The standard deviation of GACNN

is the smallest one among four methods, which verifies its superior stability.

Case3: SEU bearing dataset

Data description. Southeast University (SEU) gearbox datasets were provided by South-

east University. The dataset contains a gear dataset and a bearing dataset, which were both

acquired by Drivetrain Dynamic Simulator (DDS) [33]. In this study, the bearing dataset is

selected for the test, each state is considered as a type, so it becomes a 10-class classification

task. And the results of the dataset production are shown in the Table 6.

In this experiment, the number of data point in a sample is set to 1024. There are 50 samples

for each fault condition, thus a total of 500 samples were contained in the bearing dataset. 60%

of the samples in each health state were randomly selected as the training set, and the other

40% were regarded as the testing set.

Table 4. The description of class labels of MFPT.

Fault location Condition Label

baseline dataset Baseline_1 0

outer race fault datasets Outer Race Fault_vload_1 1

Outer Race Fault_vload_2 2

Outer Race Fault_vload_3 3

Outer Race Fault_vload_4 4

Outer Race Fault_vload_5 5

Outer Race Fault_vload_6 6

Outer Race Fault_vload_7 7

inner race fault datasets Inner Race Fault_vload_1 8

Inner Race Fault_vload_2 9

Inner Race Fault_vload_3 10

Inner Race Fault_vload_4 11

Inner Race Fault_vload_5 12

Inner Race Fault_vload_6 13

Inner Race Fault_vload_7 14

https://doi.org/10.1371/journal.pone.0292381.t004
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Discussion. Average accuracy of five trials is used to analyze, and the results are shown in

the Table 7. Compared to CNN and GACNN, GACNN obtains the highest classification accu-

racy, reaching 95.00%, the avg-acc of GACNN is 92.80%, and the standard deviation is 1.60%,

verifying effectiveness of the proposed method. GCNs taking graph data with topological

structure as input is more efficient for data relationship mining, enriching the feature learning

ability of the GACNN. Therefore, GACNN can obtain highest classification accuracy among

these methods.

Fig 8. Time domain output of fault samples in MFPT dataset.

https://doi.org/10.1371/journal.pone.0292381.g008

Table 5. The diagnostic result of MFPT.

Models Max-acc (%) Min-acc (%) Avg_acc (%)

GACNN 97.78 96.67 97.11±0.48

MRF_GCN 97.67 96.00 96.80±0.65

ChebyNet_3 97.33 96.33 96.80±0.38

CNN 92.00 90.67 91.27±0.49

https://doi.org/10.1371/journal.pone.0292381.t005
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Robustness of the GACNN

Machinery equipment are often exposed to a noisy working environment in the real world. In

order to verify the robustness of the proposed method under a strong background noise envi-

ronment, Gaussian white noise was performed on the original vibration signal from the MFPT

dataset of case 2 to simulate the real environment. The Signal-to-Noise Ratio (SNR) was used

to measure the noise intensity, and its expression is as follows:

SNR ¼ 10log
Psignal
Pnoise

� �

ð18Þ

Where Psignal and Pnoise are signal energy and noise energy, respectively. SNR represent the

noise intensity in dB.

In this paper, Gaussian noise was performed on the original vibration signal with noise

intensity ranging from −5dB to 10dB. The vibration signals containing noise were used as

training datasets and test datasets to simulate the real strong background noise environment.

The training datasets and test datasets were generated randomly each time to reduce the ran-

domness of the experimental results.

To ensure the accuracy and consistency of the experimental results, the five trials were con-

ducted in this study to eliminate the effects of randomness. The experimental result under dif-

ferent noise level is shown in Table 8 and Fig 9. It can be observed that the performance of

GACNN decreases with the increase of noise, and increases with the decrease of noise. Specifi-

cally, under a strong background noise environment, the proposed GACNN exhibited the

highest fault diagnosis accuracy among all methods. These findings suggest that the GACNN

is capable of accurately diagnosing faults even in challenging real-world conditions, making it

a promising approach for practical applications in fault diagnosis.

Table 6. The description of class labels of SEU.

Component Condition Label

Bearing Fault Health_20_0 1

Healthl_30_2 2

Ball_20_0 3

Ball_30_2 4

Inner_20_0 5

Inner_30_2 6

Outer_20_0 7

Outer_30_2 8

Comb_20_0 9

Comb_30_2 10

https://doi.org/10.1371/journal.pone.0292381.t006

Table 7. The diagnostic result of SEU.

Models Max-acc (%) Min-acc (%) Avg_acc (%)

GACNN 95.00 91.50 92.80±1.60

MRF_GCN 95.00 90.00 91.90±1.95

ChebyNet_3 93.00 89.50 90.80±1.44

CNN 90.50 86.00 88.70±2.25

https://doi.org/10.1371/journal.pone.0292381.t007
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Conclusions

In this paper, a novel fault diagnosis framework was proposed that utilizes the strengths of

both CNNs and GCNs to extract both global and spatial features. To ensure the intelligence

and improve the diagnosis efficiency and accuracy, the vibration signals in frequency domain

are used to form samples without manual feature extraction, and the frequency domain signal

and the fully connected diagram are used as the input of the fault diagnosis framework. The

performance of our proposed method in the fault diagnosis of rotating machinery is compre-

hensively evaluated through three experimental cases. The conclusions can be summarized as

follows:

(1) A novel fault diagnosis framework based on GACNN is proposed, which integrates the

strengths of CNN and GCN to extract global and spatial features.

(2) Comprehensive experiments are conducted on three open-source datasets to evaluate

the performance of proposed method. The diagnostic accuracy on the three datasets was

Table 8. Experiment results of MFPT datasets under different noise level.

SNR

Models

10 5 0 -5

GACNN 95.33 93.27 87.80 69.07

MRF_GCN 94.33 92.87 87.47 66.67

ChebyNet_3 93.73 93.19 87.46 67.53

CNN 90.33 86.73 73.33 50.00

https://doi.org/10.1371/journal.pone.0292381.t008

Fig 9. The experimental results of anti-noise performance.

https://doi.org/10.1371/journal.pone.0292381.g009
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99.44%, 97.11% and 92.80%, respectively, which achieved highest classification accuracy com-

pared with the comparison model

(3) In the MFPT dataset, the anti-noise performance experiment is carried out, which veri-

fies the robust performance of the proposed method under strong background noise

environments.

In addition, while the framework represents a significant improvement over existing tech-

nologies, there are the following limitations and opportunities for future research that should

be addressed: (1) The actual industrial field data can be noisier and more complex, it was only

simulated by adding noise. Therefore, further validation of the real industrial data is still

needed; (2) The category distribution of real industrial data was often unbalanced, namely, the

number of normal data was far more than the amount of faulty data, but it is assumed that the

number of categories samples are equal.
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