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Abstract

When discussing the influence of the built environment on taxi travel demand, few studies

have considered the effect of the modifiable areal unit problem (MAUP) or the influence of

the “5D” dimensions of the built environment (It refers to the consideration of the built envi-

ronment from five dimensions of density, diversity, design, destination accessibility and dis-

tance to transit.) on taxi travel demand. Moreover, discussion of the nonlinear and linear

relationships between taxi demand and environment variables is also lacking. To address

these gaps, we constructed a “5D” dimension index system of built environment variables.

The influence of the MAUP on the model results was discussed using the optimal

parameter-based geographical detector (OPGD) model, and the optimal spatial analysis

unit was selected. The OPGD and multiscale geographically weighted regression (MGWR)

models were used to reveal the influence of different dimensions of the built environment on

taxi travel demand from global and local perspectives, respectively. Finally, the central

urban area of Xi’an was analyzed as an example. The results show the following: (1) Most

built environment variables are sensitive to the influence of MAUP. (2) It is better to divide

the space into regular hexagons than squares, and the optimal spatial analysis unit in this

study is a regular hexagon grid with sides of 900m. (3) From a global perspective, the dis-

tance to the city center, commercial residence POI density, transportation facility POI den-

sity, and population density have the greatest influence on the demand for taxi travel. (4)

From a local perspective, the MGWR model considering spatial heterogeneity and scale dif-

ferences is superior to the GWR model, and the influence of built environment variables

exhibited spatial heterogeneity. The proposed optimal spatial analysis unit can provide a

basis for taxi demand forecasting and scheduling. This study provides a reference for urban

planners and traffic managers to offer optimization strategies related to the built environ-

ment, promote healthy development of the taxi industry, and solve the problems of the

urban transportation system.
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1 Introduction

With increasing urbanization, the urban population, number of motor vehicles, and infra-

structure are also increasing rapidly. This series of changes has led to the reorganization and

transformation of urban spaces, producing large and complex urban systems. As a result of

urban space changes, the built environment is now an important carrier affecting the popula-

tion’s travel behavior. Therefore, many scholars have advocated changing the built environ-

ment through land-use planning and transportation policies to guide travel behaviors,

improve the urban traffic environment, and alleviate traffic congestion [1]. Taxis are one of

the most critical transportation modes for urban residents and play an indispensable role in

travel behavior owing to their flexibility and convenience. The built environment also influ-

ences them. In recent years, scholars have also shifted their research focus to the relationship

between the built environment and taxi travel behavior. These studies have focused on the

mechanism by which the built environment influences behavioral factors, such as the taxi

travel distance, travel intensity, and travel time [2–4]. The results have confirmed that the built

environment influences taxi travel behavior to varying extents.

The demand for taxi travel is an essential behavioral factor in taxi travel behavior that is

coupled with the non-static and varying qualities of built environment elements. As a result,

the uneven and complex distribution of built environment elements in urban spaces directly

affects the spatiotemporal distribution of residents’ taxi travel demand. In addition, drivers

have an inadequate grasp of high-demand areas, which often leads to difficulties in taking taxis

and long wait times, which are not conducive to urban development. Therefore, some scholars

have begun to pay attention to the influence of built environment variables such as population,

land use, and road design on taxi travel demand [5–7]. These studies aim to deeply understand

the connection between the built environment and taxi travel demand. Thus, these studies can

provide a scientific basis for taxi demand prediction and scheduling. In addition, these studies

are important for management services in the taxi industry and for promoting the virtuous

cycle of urban transportation.

However, when constructing a model of the influence of the built environment on taxi

travel demand, few studies have considered (or have considered insufficiently) the differences

in the results caused by the modifiable areal unit problem (MAUP) when aggregating data.

The MAUP refers to a phenomenon in which analysis results will vary depending on the defi-

nition of the primary research units (as first proposed by Openshaw in 1984 [8]). These differ-

ences in definitions mainly involve scale and zoning effects [9, 10]. The scale effect refers to

changes in the statistical results of aggregated spatial data that occur when the size of the

research unit changes. The zoning effect refers to differences in the statistical results caused by

the aggregation of spatial data using different zoning schemes for a fixed research unit size.

Some studies have also shown that the MAUP is an essential fundamental issue in many traffic

problem studies [11]. For example, Zhao et al. [12] studied the impact of the built environment

on online car-hailing travel intensity and found that as the analysis scale increased, the effect

of proximity to public transportation on online car-hailing travel intensity increased; however,

its effect was not significant at the remaining analysis scales. Therefore, the MAUP cannot be

ignored when constructing a model of the influence of built environment on taxi travel

demand, and a suitable spatial analysis unit is a prerequisite for such research.

This paper aims to explore the relationship between the built environment and taxi travel

demand. Based on point of interest (POI), population, and road network data, the built envi-

ronment variables were reasonably quantified. The optimal discretization of built environment

variables under the MAUP effect was determined through the optimal parameters-based

geographical detector (OPGD) model. Then, according to the optimal parameter combination
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results, the relationship between the built environment and taxi travel demand was analyzed

under the MAUP effect, and the optimal spatial analysis unit for the influence of the built envi-

ronment on taxi travel demand was determined. On this basis, while considering the nonlinear

and linear relationships between the built environment and taxi travel demand, the influence

of the built environment on taxi travel demand was explored by cross-using the OPGD and

multiscale geographically weighted regression (MGWR) models.

The potential academic contributions of this paper are as follows. (1) The optimal discrete

parameter combination of the built environment variables is determined based on the OPGD

model. This solves the lack of accurate quantitative evaluations of discretization methods and

classification numbers when discretizing continuous variables in the OPGD model. (2) At the

same time, the optimal scale and zoning scheme for aggregating the built environment and

taxi travel demand data are determined using the OPGD model. The selection of spatial unit

granularity for this type of problem is thus realized. (3) A “5D” dimension index system of the

built environment is constructed to explore its influence on taxi travel demand. This provides

a scientific basis for quantifying each index. (4) The OPGD and the MGWR models are cross-

used. This method can not only reveal the degree of influence of major built environment vari-

ables on taxi travel demand from a global perspective but also reflects the spatial heterogeneity

of the influence of the built environment on taxi travel demand from a local perspective. This

provides a method for studying the influence of the built environment on taxi travel demand.

The reasonable determination of the spatial analysis unit in this study can facilitate a better

understanding of the influence of the built environment on taxi travel demand and improve

the reliability of the results. At the same time, it also provides a meaningful method for reason-

ably integrating environmental and transportation policies to guide taxi travel and alleviate

problems such as taxi-taking difficulties.

The remainder of this paper is organized as follows. Section 2 summarizes the related work.

Section 3 introduces the main research methods used in this paper, including the method for

determining the optimal spatial analysis unit, OPGD model, methods for testing the spatial

autocorrelation and multicollinearity, and the MGWR model. Section 4 outlines the study area

and data, including the study area and division, data sources, and processing. Section 5 pres-

ents an analysis and discussion of the results. Section 6 summarizes the principal conclusions,

limitations, and future work.

2 Literature review

The determination of spatial units is the premise and foundation of spatial analysis. The size

and shape of the spatial analysis units determine the amount of data to be included, resulting

in differences in the data analysis results [13, 14]. Previously, when analyzing the influence of

the built environment on taxi travel demand, the research area was often divided into a single

space type using the crowd sampling method of “people for their use.” For example, the study

area would be divided into a traffic analysis zone (TAZ) [15], census area [16], and grid [17],

neglecting the impact of the MAUP on the data aggregation and modeling results. However,

scholars have recently begun to focus on this issue. For example, Wang et al. [19] divided a

study area into different grid scales and calculated the 90% quantile of built environment vari-

ables under different grids using the OPGD model. The 90% quantiles of the built environ-

ment variables were found to differ at different grid scales. The scale corresponding to the

maximum value was selected as the optimal scale, and the impact of the built environment on

ride-hailing travel demand was discussed. However, this study only considered the scale effect

in the MAUP and ignored the other substantial zoning effect. Moreover, Cheng et al. [18]

divided a study area into two spatial units, TAZ and 1 km × 1 km grids, to study the impact of
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the built environment, population distribution, and road network structure on taxi travel

demand at night. The results showed that the R-squared value of the TAZ-based spatial Durbin

model (SDM) was slightly lower than that of the grid-based SDM model; however, the Log-

likelihood, Akaike information criterion (AIC), and Bayesian information criterion (BIC) of

the former were significantly lower than those of the latter. Finally, the TAZ was selected as the

spatial analysis unit. However, this study considered only the zoning effect and ignored the

scale effect. Of course, some scholars have considered both the scale effect and zoning effect in

the MAUP. Wang et al. [19] divided a study area into TAZ, Thiessen polygons, community

units, and 300-1000m (100m interval) grids to explore the impact of the built environment on

network passenger volume. The results showed that the road density exhibited a significant

spatial clustering distribution in the community units, TAZ, and Thiessen polygons. In con-

trast, the bus station density exhibited a significant spatial clustering distribution under the

400m grid, 1000m grid, and community units. Gao et al. [20] divided the study area into three

partition types: administrative partition, hexagonal grids, and square grids. Spatial units with

basically the same corresponding scale were generated according to the street, community,

and traffic district scales in the administrative partition, resulting in a total of nine partition

schemes. The results showed that the influence of commercial land on taxi commuting

demand decreased with an increase in spatial scale. Other studies that considered both the

scale and zoning effects of the MAUP have explored the relationship between the built envi-

ronment and shared bike travel [21] and the built environment and traffic system state [22].

Therefore, the MAUP should be fully considered when investigating the relationship between

the built environment and taxi travel demand, which will inevitably affect the modeling

results.

Built environment factors that affect taxi travel demand are complex. The built environ-

ment was initially constituted by the “3D” dimensions proposed by Cervero and Kockelman

[23]: density (such as population density and the density of POIs), diversity (such as the mixed

degree of land use), and design (such as the road network density and intersection density).

Subsequently, this framework was expanded to the “5D” dimensions [24], which added the

characteristics of destination accessibility (such as the distance to the city center and distance

to CBD) and distance to transit (such as the distances to bus and subway stations). Currently,

this framework has developed into the “7D” dimensions [25], adding demand management

and demographic characteristics. However, while these two indicators are closely related to the

built environment, they do not directly describe it [26]. The different dimensions of the built

environment have led scholars to adopt different built environment variables in their research.

For example, based on a review of 29 studies on public transportation and the built environ-

ment, Liu et al. [27] found that although many studies were consistent with the ‘5Ds,’ most did

not include comprehensive coverage of all domains of the ‘5Ds;’ moreover, some variables

used in these studies were inconsistent with the ‘5Ds.’ Chen et al. [28] quantified the built envi-

ronment using various land-use variables to investigate the relationship between the built envi-

ronment and taxi travel demand. However, the authors did not divide the dimensions of these

variables. Zhu et al. [29] quantified the built environment in terms of road network density,

bus coverage, subway coverage, and other variables. They did not explicitly propose the

dimension concept of the built environment. Ni and Chen [30] also reported similar situation:

only the variables of the built environment were quantified, and these variables were not

divided into relevant dimensions. In addition, Xie et al. [31] divided built environment vari-

ables into four dimensions: density, design, diversity, and destination accessibility. However,

these were not considered comprehensively. In addition, although Zhu et al. [32] mentioned

the concept of 5Ds, only built environment variables from the four dimensions of density,

design, distance to transit, and diversity were selected. These studies indicate that built
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environment factors are complex and variable. The mechanism by which the built environ-

ment influences taxi travel demand is also complex and needs to be strengthened and further

explored.

When exploring the relationship between the built environment and taxi travel demand,

some scholars have typically assumed a linear relationship between the built environment and

taxi travel demand, and impact models considering spatial correlation and heterogeneity have

been established, such as the SDM [33], spatial error model (SEM) [1], and geographically

weighted regression (GWR) model [34]. Because all of the independent variables in the spa-

tially heterogeneous GWR model have the same bandwidth, and the changes in the relation-

ships between independent and dependent variables at different spatial action scales are

ignored, the MGWR model has been developed. However, studies using this model to explore

the impact of the built environment on taxi travel demand are rare [32]. This type of research

can not only fit the relationship between the built environment and taxi travel demand but

also analyze the spatial heterogeneity of the built environment effect at small scales. However,

owing to the complexity and changeability of travel purposes and the limitations of urban

activity spaces, taxi travel demand sometimes varies linearly with the built environment.

Therefore, some scholars have proposed that nonlinear relationships should also be considered

[35]. This research is generally conducted by introducing machine learning methods (such as

the gradient boosting decision tree (GBDT) [36] and random forest (RF) models [37]). How-

ever, these studies have largely focused on the nonlinear relationship between the built envi-

ronment and shared-bike usage [38–42], bus travel [43, 44], carpool usage [45, 46], and trail

transit travel [47]. Research on the nonlinear relationship between the built environment and

taxi travel demand remains lacking. Simultaneously considering the nonlinear and linear rela-

tionships between the built environment and taxi travel demand can allow for a more accurate

exploration of the correlation between the two and determination of the hidden complex

relationship.

In summary, previous studies have rarely considered the MAUP in the process of data

aggregation and modeling when discussing the mechanism by which the built environment

influences taxi travel demand. When constructing a built environment index system, the influ-

ence of the “5D” dimensions of built environment variables on taxi travel demand has rarely

been considered. Regarding research methods, the nonlinear and linear relationships between

the built environment and taxi travel demand have rarely been recognized. To solve these

problems, this paper considered both the scale and zoning effects in the MAUP and divided

the study area into multiple spatial units. Based on multi-source data and the characteristics of

each dimension of the built environment, a “5D” dimension index system of built environ-

ment variables was constructed. Referring to the method reported by Wang et al. for selecting

the optimal spatial analysis unit using the OPGD model [48], a more reasonable spatial unit

division scheme was determined. The nonlinear and linear relationships between the built

environment and taxi travel demand were thoroughly discussed by cross-using the OPGD and

MGWR models [32]. Based on these existing methods, a more detailed and comprehensive

analysis was realized than in previous studies.

3 Methods

The MAUP and lack of nonlinear and linear relationships were considered to analyze the

influence of the built environment on taxi travel demand. First, optimal discretization of the

built environment variables under each scale and zoning was performed using the OPGD

model. We then calculated the q-value of each built environment variable that affects taxi

travel demand as well as the q-value ranking, 90% quantile of the q-values, and their growth
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rates to select the optimal spatial analysis unit. Furthermore, based on the optimal spatial anal-

ysis unit, the nonlinear relationship between the built environment and taxi travel demand

was characterized using the factor detection module of the OPGD model. Finally, through spa-

tial autocorrelation and multicollinearity tests of the built environment and taxi travel demand

variables, the linear relationship between the built environment and taxi travel demand was

characterized using the MGWR model. The overall research framework of the paper is shown

in Fig 1.

3.1 Determination of the optimal spatial analysis unit

Based on the geographical detector (GD) model proposed by Wang and Xu [49] in 2017, the

OPGD model is improved to solve problems such as the lack of an accurate quantitative evalu-

ation of the discretization method and number of classification levels when discretizing con-

tinuous variables. The basic principle is the same as that of the GD model, which assumes that

the study area is divided into several sub-regions; if the sum of the variances of the sub-regions

is less than the total variance of the region, there is spatial heterogeneity. Moreover, if the spa-

tial distribution of two variables tends to be consistent, there is a statistical correlation between

the two variables. This model includes four detectors: factor detection, interaction detection,

Fig 1. Research framework.

https://doi.org/10.1371/journal.pone.0292363.g001
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risk detection, and ecological detection. This is a nonlinear statistical method for detecting spatial

heterogeneity and revealing its underlying driving forces. The model does not require linear

assumptions, it can more reliably explain the relationship between independent and dependent

variables, and it is not affected by the multicollinearity of the independent variables. In addition,

related studies have shown that this model can solve the MAUP, output model results based on

optimal parameters, and detect the impact of individual variables [48, 50]. Therefore, the OPGD

model was selected in this paper to determine the optimal spatial analysis unit for the built envi-

ronment and taxi travel demand. The specific methods are described in the following sections.

3.1.1 Optimal parameter selection method. The numerical independent variable must

be discretized into a type-value variable when using the OPGD model. Therefore, the R Pro-

gramming Language was used in this paper to select the optimal discretization method and

classification level number for the built environment variables during discretization. Common

discretization methods mainly include equal breaks, natural breaks, quantile breaks, geometric

breaks, and standard deviation (SD) breaks. The number of classification levels can be set inde-

pendently. Finally, by comparing the results of each parameter combination, the parameter

combination with the highest q-value for each built environment variable at each scale and

zoning was selected as the optimal parameter for geographic detector analysis. The larger the

q-value, the better the discretization effect will be [51].

3.1.2 Q-value calculation method. Based on the selection of the optimal parameters, fac-

tor detection in the GD model was used to determine the q-value of each built environment

variable affecting taxi travel demand at different scales and zones. The calculation is performed

as follows:

q ¼ 1 �
1

ns2

XL

h¼1
nhs

2

h ¼ 1 �
SSW
SST

ð1Þ

SSW
SST

¼
XL

h¼1
nhs

2

h ð2Þ

SST ¼ Ns2 ð3Þ

where q is the explanatory power of the built environment variables, 0<q<1. The closer q is to

1, the greater the explanatory power of the built environment variable on taxi travel demand

will be. In addition, n represents the total number of research units, h is the stratification of

taxi travel demand or built environment variables, nh is the number of units in layer h, σ2 and

s2
h represent the overall variance and variance of layer h, respectively, SSW is the sum of the

intra-layer variances, and SST is the total variance.

3.1.3 Determination method of the optimal spatial analysis unit. Based on the q-values

obtained for each built environment variable affecting taxi travel demand at different scales

and zones, the scale effect was evaluated by calculating the ranking of the q-values of the built

environment variables at different scales, the 90% quantile of the q-values, and the growth rate.

It is generally believed that the more stable the ranking of the q-value [21] or the greater the

90% quantile of the q-values [52], the better the corresponding scale will be. The zoning effect

was evaluated by comparing the built environment variable q-values for each zone. Finally, an

optimal spatial analysis unit was selected based on the evaluation results.

3.2 Factor detection

Based on the optimal spatial analysis unit, the nonlinear relationship between the built envi-

ronment and taxi travel demand was determined through factor detection in the OPGD model
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using the q-value to reveal the degree to which the built environment variables explain taxi

travel demand. The specific methods have been introduced in optimal parameter selection

method and q-value calculation method, so they are not repeated here.

3.3 Spatial autocorrelation and multicollinearity tests

3.3.1 Spatial autocorrelation test. Before exploring the linear and spatial heterogeneity

relationships between the built environment and taxi travel demand, it is necessary to measure

their spatial autocorrelation to determine whether the spatial distribution differences are sig-

nificant. This paper used global Moran’s I to test the spatial autocorrelation between the built

environment and taxi travel demand variables. The calculation is performed as follows:

I ¼
n
Xn

i¼1

Xn

j¼1
wijðxi � �xÞðxj � �xÞ

Xn

i¼1

Xn

j¼1
wij

Xn

i¼1
ðxi � �xÞ2

ð4Þ

where I is the global Moran’s I for taxi travel demand, -1<I<1; n is the total number of

research units; xi and xj are the total taxi travel demand of research units i and j, respectively; �x
is the mean value of the total taxi travel demand of all research units; and wij is the space weight

matrix. When -1<I<0, there is a negative spatial correlation between taxi travel demand in

each research unit. When 0<I<1, there is a positive spatial correlation between taxi travel

demand in each research unit. When I = 0, no spatial correlation exists.

3.3.2 Multicollinearity test. When many independent variables are selected, different var-

iables may contain the same information. In this case, there may be multicollinearity between

the independent variables. It is necessary to eliminate this multicollinearity before modeling to

prevent errors in the model results [53]. Therefore, the variance inflation factor (VIF) test was

used to evaluate the multicollinearity of the built environment variables. The calculation for-

mula is:

VIF ¼
1

1 � r2
i

ð5Þ

where VIF is the variance inflation factor of the built environment variable, VIF>1; ri is the

negative correlation coefficient of built environment variable xi for regression analysis of the

remaining built environment variables. When VIF<10, no multicollinearity exists between the

built environment variables. When VIF�10, it is multicollinearity exists between built envi-

ronment variables, and appropriate methods should be adopted to adjust it. In this paper, a

stepwise regression method was used to screen the built environment variables. This stepwise

regression method gradually inputs the built environment variables into the model. If the

resulting model is statistically significant, the corresponding variable will be included in the

regression model; at the same time, the variables that are not statistically significant are

removed from the model. Finally, the built environment variables that meet all conditions are

obtained.

3.4 Multiscale geographically weighted regression (MGWR) model

The MGWR model was proposed by Fotheringham et al. [54] in 2017. Based on the GWR

model, the MGWR model considers the changes in the relationship between independent and

dependent variables at different spatial scales (it should be noted that the scale here does not

refer to the spatial scale but to the response of the coordinates of different geographical loca-

tions to the bandwidth). The advantage of this model is that it overcomes the drawbacks of

bandwidth selection, allowing different variables to choose their independent optimal
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bandwidth to better identify spatial heterogeneity and spatial scales. Furthermore, it improves

the goodness-of-fit of the regression model, thus making the regression results faster and more

stable, the coefficients more reliable, and the geographical interpretation of the constant terms

more meaningful. The basic equation is given as follows:

yi ¼ bi0ðmi; niÞ þ
Xm

k¼1
bhik
ðmi; niÞxik þ εi i ¼ 1; 2; 3; . . . ; n ð6Þ

where yi is the variable for taxi travel demand, xik is a built environment variable, m is the

number of built environment variables, (μi,νi) represents the geographical coordinates of the

centroid of the ith grid, βi0(μi,νi) is the intercept of the ith grid, bhik
ðmi; niÞ is the local regression

coefficient of the kth built environment variable in the ith grid, hik is the optimal bandwidth of

the kth built environment variable in the ith grid, and εi is a random error in an ith grid. More-

over, it follows a normal distribution with a mean of zero and a variance of δ2.

For the parameter estimation of the MGWR model, this study adopted a back-fitting algo-

rithm and selected the estimated values of the GWR model for the initialization settings. SOCf

was used to determine whether the differences in the parameter estimation converged. To

determine the spatial weight matrix, the type of spatial distance was calculated using the

Euclidean distance. The type of space weight function was an adaptive bi-square kernel func-

tion. The bandwidth selection criteria were the AIC and modified Akaike information crite-

rion (AICc). A detailed description of the relevant parameter estimation and space weight

matrix determination, as well as the reasons for selecting the above method, are presented in

the Supporting information.

4 Study area and data

4.1 Study area and division

As the most populous megacity in northwest China, Xi’an has a longitude range of [107.4,

109.49] and a latitude range of [33.42, 34.45] [55]. At the end of 2022, Xi’an covered an area of

10,108 square kilometers [55] and had a permanent population of 12.9959 million [56]. The city

is well-equipped with public transport, and residents’ taxi travel demand is mainly concentrated

in the central urban area of Xi’an. Therefore, this study considered the central urban area of

Xi’an as the study area (Fig 2(A)), including the districts of Weiyang, Lianhu, Xincheng, Beilin,

Yanta, and Baqiao (Fig 2(B)). The study area is approximately 831.87 square kilometers [57].

ArcGIS software was used to divide the study area into grids according to its scope. This

classification method was selected because it has strong operability, a wide range of applica-

tions, and is suitable for intensive data research. To explore the scale effect of the MAUP, it

was necessary to choose the side length of the grid. Considering the scope of the study area

and spatial resolution of the multisource data, 100m was chosen as the minimum side length

of the grid. A review of the literature on the influence of the built environment on taxi travel

demand revealed that most previous studies used 500m or 1000m as the side length of the grid

[28, 29, 58, 59]. Therefore, 1000m was selected as the maximum side length, with a side length

interval of 100m. To explore the zoning effect of the MAUP, two common grid types were

used: regular hexagonal grids and square grids.

The specific operation method created regular hexagonal grids with ten scales and side

lengths ranging from 100m to 1000m (with an interval of 100m). The areas of the regular hex-

agonal grids were then fixed at each scale, and corresponding square grids were generated (a

total of 10). Ultimately, 20 types of research units were generated. Here, only the 300m, 600m,

and 900m scales are taken as examples, and the study area is divided into regular hexagonal

and square grids, as shown in Fig 3.
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4.2 Data sources and processing

4.2.1 Taxi travel demand data. The taxi travel demand data used in this paper were

obtained from taxi GPS trajectory data provided by the taxi management office of Xi’an city.

The selected time range was 30 days, from March 1, 2019 to March 30, 2019. Owing to the

Fig 2. Study area. (a) Study area location; (b) overview of the study area.

https://doi.org/10.1371/journal.pone.0292363.g002

Fig 3. Study area division. (a) 300m regular hexagonal grid; (b) 600m regular hexagonal grid; (c) 900m regular hexagonal grid; (d) 300m square grid;

(e) 600m square grid; (f) 900m square grid.

https://doi.org/10.1371/journal.pone.0292363.g003
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extensive period of the selected data, the data volume was also large. Moreover, there were no

special holidays during this period; therefore, the data was assumed to be objective and repre-

sentative. The original trajectory data included the Vehicle ID, Intime, Time, Longitude, and

Latitude. An example of the taxi trajectory data structure is presented in Table 1.

The total original trajectory data obtained in this paper was approximately 11.6 million.

Python software was then used to remove the driving records with outliers and those occurring

outside the central urban area of Xi’an. Data corresponding to pick-up points (the points at

which the vehicle state changed from “4” to “5”) and drop-off points (the points at which the

vehicle state changed from “5” to “4”) were then extracted as the taxi travel demand data for

the central urban area of Xi’an. Finally, a total of 10.3 million effective taxi trajectory data were

obtained. In other words, 88.79% of the valid data was obtained. It was considered that display-

ing all of the taxi pick-up and drop-off points for 30 days was prone to data being tightly dis-

tributed and unattractive. Therefore, the simple random sampling method was adopted to

display the density distribution based on 5% of the taxi pick-up and drop-off points in the cen-

tral urban area of Xi’an after cleaning and treatment (Fig 4).

4.2.2 Built environment data. Based on the “5D” dimensions of built environment char-

acteristics, this paper selected built environment variables from the five dimensions of density,

design, diversity, destination accessibility, and distance to transit. There were three primary

sources of data. First, population data were obtained from the Seventh National Population

Census of Xi’an City, China (http://tjj.xa.gov.cn). Data were collected at the street scale. Then,

it was processed on a grid scale as the built environment variable for the density dimension

Table 1. An instance of taxi trajectory data structure.

Name Sample Type Meaning

Vehicle ID AT3607 Char The issuance of vehicle license plates

Intime 2019/3/1 07:15:35 Char Storage time

Time 2019/3/1 07:15:34 Char GPS_time

Longitude 108.784927 Float Location information

Latitude 34.746352 Float Location information

Height 0 Short elevation

Speed 35 Short level speed

Direction 90 Short Front direction

EFF 1 Char Vehicle state bit; 1 means valid, 0 means invalid

State 5 Char Vehicle state; 4 means empty, 5 means someone in the vehicle

https://doi.org/10.1371/journal.pone.0292363.t001

Fig 4. Density of taxi pick-up and drop-off points. (a) Pick-up points; (b) drop-off points.

https://doi.org/10.1371/journal.pone.0292363.g004
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according to the research scope. Second, POI data representing various facilities were obtained

from the 2019 Xi’an data on the Amap open platform (https://lbs.amap.com/). Reptiles were

collected to obtain 13 first-level POI categories, including shopping service POI, catering ser-

vice POI, accommodation services POI, etc., which were used to quantify the built environ-

ment variables of the density dimension. Based on the POI data, the mixed degree of urban

functions was calculated as the built environment variable for the diversity dimension. In addi-

tion, bus stop POI and subway station POI were extracted to quantify the built environment

variables in the distance-to-transit dimension. In addition, road data was obtained from Xi’an

in 2019 on OpenStreetMap (the OSM data download address in China is https://download.

geofabrik.de/). According to the study area and classification of the road grade, roads were

quantified into four levels: primary roads, secondary roads, tertiary roads, and urban express

roads, which were used to represent the built environment variables of the design dimension.

Finally, the Euclidean distance from each grid centroid to the city center was used to quantify

the built environment variables in the destination accessibility dimension. The main variables

for each dimension and their calculation methods are shown in Table 2.

5 Results and discussion

5.1 Determination result of the optimal spatial analysis unit

According to the above description of the OPGD model, this paper discretized the built envi-

ronment variables at different scales and zones using five methods: equal breaks, natural

breaks, quantile breaks, geometric breaks, and SD breaks, and the classification levels were

divided into 3–10 categories. The optimal discretization of built environment variables was

obtained using R Programming Language (see Supporting information for the results of the

optimal discretization of the built environment variables).

Furthermore, the q-values of the built environment variables were calculated according to

the optimal discretization results for the built environment variables at different scales and

zones. The q-values of each built environment variable were then ranked at different scales

and zones to represent the influence stability of each variable (the results are shown in Figs 5

and 6). A smaller fluctuation in the ranking of the q-values for each variable with the change in

scale indicates that the influence is more stable, and the scale of the corresponding spatial anal-

ysis unit is more appropriate.

As shown in Figs 5 and 6, regardless of whether the regular hexagonal grid or square grid,

the influence of most built environment variables increased with an increase in scale. This phe-

nomenon was particularly evident when the scale was less than 900m. In addition, regardless

of the regular hexagonal or square grid used, the influence of the ranking of built environment

variables differed at different scales. This indicates that different scales had different effects on

taxi travel demand. For instance, the rankings of the public facility POI density (Pf_d), urban

express road network density (Uern_d), distance to the city center (Dcc), and subway station

POI density (Ss_d) were relatively stable across all scales, indicating that they had low scale

sensitivity for the influence of taxi travel demand. However, the q-values of the other built

environment variables and their rankings were sensitive to scale. Urban planners and manag-

ers should thus pay attention to the spatial scale when considering the influence of these built

environment variables. When the scale was greater than 900m, the fluctuations in most of the

built environment variables decreased. Based on this analysis, the 900m scale was selected as

the initial candidate for the optimal spatial unit for the regular hexagonal and square grids.

Furthermore, the 90% quantiles of the q-values and their growth rates were calculated for

the built environment variables at different scales and zones. The results are shown in Fig 7.
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Fig 7 shows that for both the regular hexagonal grid and the square grid, the 90% quantile

of the q-values of the built environment variables gradually increased with increasing scale.

However, when the scale exceeded 900m, the 90% quantile of q-values decreases. That is, when

the scale was 900m, the 90% quantile of the q-values of the built environment variables reached

its maximum value. The growth rate of the 90% quantile of the q-values showed a trend of

decreasing, followed by a slight increase and then a further decrease. The growth rate of the

90% quantile of the q-values of built environment variables was relatively large before the

900m scale. When the scale exceeded 900m, the growth rate decreased. Therefore, it is possible

to select the 900m scale as the optimal spatial analysis unit for regular hexagonal and square

grids. Finally, the q-values of each built environment variable corresponding to the regular

Table 2. The “5D” dimension of built environment variables.

“5D” dimension Variables

title

Description Calculation method

Density P_d Population density Intersecting street-scale population data with the grid. Calculate the proportion of street

area corresponding to each grid after intersection. Then multiply the population data with

the corresponding street area ratio of the grid as the population data at the grid scale.

Population density is the ratio of population to total area within each scale and zoning

Cs_d Catering service POI density The ratio of the number of catering services to the total area within each scale and zoning

Ta_d Tourist attraction POI density The ratio of the number of tourist attractions to the total area within each scale and zoning

Pa_d Public facility POI density The ratio of the number of public facilities to the total area within each scale and zoning

Ss_d Shopping service POI density The ratio of the number of shopping services to the total area within each scale and zoning

Tf_d Transportation facility POI density The ratio of the number of transportation facilities to the total area within each scale and

zoning

Et_d Education and training POI density The ratio of the amount of education and training to the total area within each scale and

zoning

Fis_d Financial and insurance service POI

density

The ratio of the number of financial and insurance services to the total area within each

scale and zoning

Cr_d Commercial residence POI density The ratio of the number of commercial residences to the total area within each scale and

zoning

Ls_d Life service POI density The ratio of the number of life services to the total area within each scale and zoning

Sls_d Sports and leisure service POI density The ratio of the number of sports and leisure services to the total area within each scale and

zoning

Ms_d Medical service POI density The ratio of the number of medical services to the total area within each scale and zoning

Gaso_d Government agency and social

organization POI density

The ratio of the number of government agencies and social organizations to the total area

within each scale and zoning

As_d Accommodation services POI density The ratio of the number of accommodation services to the total area within each scale and

zoning

Diversity Mduf Mixed degree of urban functions The spatial information entropy of mixed degree of urban functions:

Hsij
¼ �

Xm

i

Xn

j
pij log pij

Where Hsij
is the spatial information entropy of mixed degree of urban functions. pij is in

the grid of row i and column j, the ratio of the number of certain POI types in the total

number.
X

i

X

j
pij ¼ 1.

Design Prn_d Primary road network density The ratio of the length of primary roads to the total area within each scale and zoning

Srn_d Secondary road network density The ratio of the length of secondary roads to the total area within each scale and zoning

Trn_d Tertiary road network density The ratio of the length of tertiary roads to the total area within each scale and zoning

Uern_d Urban express road network density The ratio of the length of urban express roads to the total area within each scale and zoning

Destination

accessibility

Dcc Distance to the city center The straight-line distance from the centroid to the city center within each scale and zoning

Distance to

transit

Bs_d Bus stop POI density The ratio of the number of bus stops to the total area within each scale and zoning

Ss_d Subway station POI density The ratio of the number of subway stations to the total area within each scale and zoning

https://doi.org/10.1371/journal.pone.0292363.t002
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hexagonal grid and square grid at the 900m scale were compared. The results are presented in

Table 3.

As indicated in Table 3, at the 900m scale, the q-values of each built environment variable

based on the regular hexagonal grid were generally larger than those based on the square grid.

This indicates that the model performance of the regular hexagonal grid division scheme was

slightly better than that of the square grid division scheme. Correlation analysis has also shown

Fig 5. q-values of built environment variables at different scales and their ranking (regular hexagonal grid).

https://doi.org/10.1371/journal.pone.0292363.g005

Fig 6. q-values of built environment variables at different scales and their ranking (square grid).

https://doi.org/10.1371/journal.pone.0292363.g006
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that using a regular hexagonal grid as the spatial analysis unit can reduce the visual field devia-

tion compared with a square grid [60].

In summary, based on the scope of the study area, the optimal spatial analysis unit was

selected as a regular hexagonal grid with a side length of 900m.

5.2 Result of factor detection

This paper analyzed the influence of the built environment on the total demand for taxi pick-

up and drop-off on weekdays and weekends and obtained results for the difference between

weekdays and weekends. Prior to the analysis, an optimal discrete selection of built environ-

ment variables corresponding to taxi travel demand variables was performed. The results are

summarized in Table 4.

Fig 7. The 90% quantile of the q-values of built environment variables and their growth rates at each scale. (a)

Regular hexagonal grid; (b) square grid.

https://doi.org/10.1371/journal.pone.0292363.g007

Table 3. q-values of each built environment variable at 900m scale.

Built environment variable q-value (regular hexagonal grid) q-value (square grid)

Population density (P_d) 0.4124 0.4000

Catering service POI density (Cs_d) 0.4162 0.4128

Tourist attraction POI density (Ta_d) 0.1719 0.1381

Public facility POI density (Pf_d) 0.3230 0.2839

Shopping service POI density (Ss_d) 0.3576 0.3384

Transportation facility POI density (Tf_d) 0.4503 0.4345

Education and training POI density (Et_d) 0.3733 0.3896

Financial and insurance service POI density (Fis_d) 0.4061 0.3871

Commercial residence POI density (Cr_d) 0.4454 0.4267

Life service POI density (Ls_d) 0.4116 0.4072

Sports and leisure service POI density (Sls_d) 0.3425 0.3322

Medical service POI density (Ms_d) 0.3763 0.3851

Government agency and social organization POI density (Gaso_d) 0.3158 0.3386

Accommodation services POI density (As_d) 0.3389 0.3198

Mixed degree of urban functions (Mduf) 0.2463 0.2410

Primary road network density (Prn_d) 0.1214 0.0608

Secondary road network density (Srn_d) 0.1247 0.1229

Tertiary road network density (Trn_d) 0.0747 0.0734

Urban express road network density (Uern_d) 0.0138 0.0160

Distance to the city center (Dcc) 0.4882 0.4869

Bus stop POI density (Bs_d) 0.1940 0.1908

Subway station POI density (Ss_d) 0.0651 0.0465

https://doi.org/10.1371/journal.pone.0292363.t003
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Furthermore, according to the optimal discretization results for the built environment vari-

ables, the factor detector was used to explore the independent influence of the built environ-

ment variables on the total demand for taxi pick-up and drop-off on weekdays and weekends.

The results are provided in Table 5.

Table 5 indicates that on both weekdays and weekends, only the Uern_d variable in the

design dimension did not pass the significance test, i.e., the P-value was more significant than

5%. All of the other built environment variables passed the significance test and thus had statis-

tical significance. In general, the built environment variables were ranked as destination

accessibility > density > diversity > distance to transit> design according to the “5D” dimen-

sions and influence. Specifically, the top variables of the built environment in terms of influ-

ence were Dcc, Commercial residence POI density (Cr_d), Transportation facility POI density

(Tf_d), Population density (P_d), Catering service POI density (Cs_d), Life service POI density

(Ls_d), and Financial and insurance service POI density (Fis_d). At the bottom of the rankings

were Uern_d and Ss_d. Moreover, the influence of built environment variables was generally

higher on weekdays than on weekends. Only the Tourist attraction POI density (Ta_d), Gov-

ernment agency and social organization POI density (Gaso_d), Dcc, and Ss_d had a lower

influence on weekdays than on weekends. In particular, the influence of Ta_d on weekdays

was lower than that on weekends compared with the other variables. In contrast, the influence

of the Public facility POI density (Pf_d) and Dcc was similar on weekdays and weekends.

In summary, the influence of built environment variables on the total demand for taxi pick-

up and drop-off on weekdays and weekends reveals the following: (1) In the density dimen-

sion, the influence of Ta_d on weekends was higher than that on weekdays, which confirms

the weekend effect of tourism. (2) In the diversity dimension, the influence of the Mixed

Table 4. The optimal discretization results of built environment variables on weekdays and weekends.

“5D” dimension Built environment variable Weekdays Weekends

Discretization method Classification number Discretization method Classification number

Density P_d natural 10 natural 10

Cs_d quantile 7 quantile 7

Ta_d sd 7 sd 7

Pa_d sd 10 sd 10

Ss_d quantile 10 quantile 10

Tf_d natural 9 natural 9

Et_d natural 9 quantile 10

Fis_d sd 10 sd 10

Cr_d natural 10 natural 10

Ls_d quantile 10 quantile 10

Sls_d sd 10 natural 10

Ms_d quantile 9 quantile 9

Gaso_d natural 10 natural 10

As_d quantile 10 quantile 10

Diversity Mduf quantile 9 quantile 9

Design Prn_d quantile 8 natural 10

Srn_d sd 10 sd 10

Trn_d sd 10 sd 10

Uern_d natural 10 natural 10

Destination accessibility Dcc sd 9 geometric 10

Distance to transit Bs_d sd 5 sd 5

Ss_d quantile 3 equal 3

https://doi.org/10.1371/journal.pone.0292363.t004
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degree of urban functions (Mduf) was moderate in the overall built environment variable. (3)

In the design dimension, the influence of the Secondary road network density (Srn_d) was

stronger than those of the Primary road network density (Prn_d), Tertiary road network den-

sity (Trn_d), and Uern_d. This indicates that Srn_d in road design is the main reason for the

difference in the distribution of the total demand for taxi pick-up and drop-off. In addition,

the influence of Uern_d was the lowest among all of the built environment variables. (4) In the

destination accessibility dimension, Dcc had the greatest influence on the overall built envi-

ronment variables. This shows that different urban locations can lead to large differences in

the total demand for taxi pick-up and drop-off. (5) In the distance to transit dimension, the

influence of the Bus stop POI density (Bs_d) was much higher than that of Subway station POI

density (Ss_d). This indicates that the Bs_d distribution is the most important transportation

factor affecting the total demand for taxi pick-up and drop-off.

5.3 Results of spatial autocorrelation and multicollinearity test

5.3.1 Results of the spatial autocorrelation test. Moran’s I was used to measure the

global spatial autocorrelation of all taxi travel demand and built environment variables, as

listed in Table 6.

As presented in Table 6, the global Moran’s I of all taxi travel demand variables and built

environment variables were greater than zero, and the P-value was less than 0.05. This indi-

cates a significant positive spatial correlation at the 95% confidence level. In addition, the Z-

scores were all greater than 1.96, indicating that all variables had spatial agglomeration charac-

teristics. These are consistent with the preconditions for the MGWR.

Table 5. The independent effect of built environment variables on the total demand for taxi pick-up and drop-off.

“5D” dimension Built environment variable Weekdays Weekends

q value P-value q value P-value

Density P_d 0.4158 0.0000 0.4111 0.0000

Cs_d 0.4137 0.0000 0.4054 0.0000

Ta_d 0.1349 0.0000 0.1447 0.0000

Pa_d 0.2831 0.0000 0.2827 0.0000

Ss_d 0.3387 0.0000 0.3334 0.0000

Tf_d 0.4451 0.0000 0.4365 0.0000

Et_d 0.3791 0.0000 0.3686 0.0000

Fis_d 0.4081 0.0000 0.3963 0.0000

Cr_d 0.4460 0.0000 0.4318 0.0000

Ls_d 0.4082 0.0000 0.3996 0.0000

Sls_d 0.3314 0.0000 0.3221 0.0000

Ms_d 0.3758 0.0000 0.3729 0.0000

Gaso_d 0.3204 0.0000 0.3260 0.0000

As_d 0.3201 0.0000 0.3152 0.0000

Diversity Mduf 0.2485 0.0000 0.2377 0.0000

Design Prn_d 0.0654 0.0000 0.0614 0.0000

Srn_d 0.1241 0.0000 0.1183 0.0000

Trn_d 0.0743 0.0000 0.0704 0.0000

Uern_d 0.0139 0.0525 0.0128 0.0763

Destination accessibility Dcc 0.4857 0.0000 0.4858 0.0000

Distance to transit Bs_d 0.1927 0.0000 0.1834 0.0000

Ss_d 0.0646 0.0000 0.0654 0.0000

https://doi.org/10.1371/journal.pone.0292363.t005
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5.3.2 Results of the multicollinearity test. The VIF was used to conduct a multicollinear-

ity test on the built environment variables; the results are provided in Table 7.

Table 7 reveals that only the VIF of Cs_d was greater than 10. This indicates that there is

multicollinearity among the built environment variables. Furthermore, we used SPSS software

to screen the important variables with a significant influence using a stepwise regression

method. The variable screening results are shown in Table 8.

The results in Table 8 demonstrate that after stepwise regression, the selected built environ-

ment variables did not have multicollinearity and were all significant. Thus, these variables

could be used as the input variables for the MGWR model.

5.4 Results of spatial heterogeneity analysis

5.4.1 Results of model evaluation. We established MGWR models based on the selected

built environment and taxi travel demand variables; GWR Models were simultaneously con-

structed as controls. A comparison of the results is presented in Table 9.

Table 9 reveals that the R2 values and �R2 values of the MGWR model were higher than

those of the GWR model for both weekdays and weekends. Moreover, the values of AIC, AICc,
and RSS were also lower than those of the GWR model. Thus, it can be concluded that the

MGWR model has a better fitting effect and explanatory power than the GWR model. In addi-

tion, the difference between the AICc values in the MGWR model and the GWR model was

greater than three, indicating that the MGWR model is superior to the GWR model. A band-

width comparison between the GWR and MGWR models is presented in Table 10.

Table 6. The global Moran’s I of taxi travel demand variable and built environment variable.

Variable Moran’s I Expected index Variance Z-score P-value

Taxi travel demand variable Total demand for taxi pick-up and drop-off on weekdays 0.6704 -0.0006 0.0002 46.1017 0.0000

Total demand for taxi pick-up and drop-off on weekends 0.6613 -0.0006 0.0002 45.5086 0.0000

Built environment variable P_d 0.9362 -0.0006 0.0002 64.2191 0.0000

Cs_d 0.5926 -0.0006 0.0002 40.8822 0.0000

Ta_d 0.3290 -0.0006 0.0003 25.2202 0.0000

Pa_d 0.5503 -0.0006 0.0002 38.2850 0.0000

Ss_d 0.5021 -0.0006 0.0002 34.5760 0.0000

Tf_d 0.7470 -0.0006 0.0002 51.3145 0.0000

Et_d 0.6202 -0.0006 0.0002 43.0679 0.0000

Fis_d 0.5251 -0.0006 0.0002 36.7713 0.0000

Cr_d 0.7727 -0.0006 0.0002 53.0827 0.0000

Ls_d 0.6059 -0.0006 0.0002 41.7116 0.0000

Sls_d 0.5773 -0.0006 0.0002 39.9151 0.0000

Ms_d 0.5954 -0.0006 0.0002 41.0438 0.0000

Gaso_d 0.6025 -0.0006 0.0002 41.6919 0.0000

As_d 0.395856 -0.0006 0.0002 27.8000 0.0000

Mduf 0.6327 -0.0006 0.0002 43.3647 0.0000

Prn_d 0.1949 -0.0006 0.0002 14.5026 0.0000

Srn_d 0.3985 -0.0006 0.0002 27.3793 0.0000

Trn_d 0.2464 -0.0006 0.0002 19.3892 0.0000

Uern_d 0.3191 -0.0006 0.0002 22.1648 0.0000

Dcc 0.9943 -0.0006 0.0002 68.1434 0.0000

Bs_d 0.3563 -0.0006 0.0002 24.4971 0.0000

Ss_d 0.0649 -0.0006 0.0002 4.5056 0.0000

https://doi.org/10.1371/journal.pone.0292363.t006
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Table 10 indicates that the GWR model and MGWR model have vastly different results in

terms of bandwidth. The bandwidths of each variable in the GWR model are fixed, whereas

those in the MGWR model vary significantly. In other words, the action scales of different

built environment variables are quite different. The P_d, Srn_d, Medical service POI density

(Ms_d), and Cs_d variables have the same action scales of 1700, 51, 838, and 1661, respectively,

accounting for 99.94%, 3.00%, 49.27%, and 97.65% of the total samples, respectively, for both

weekdays and weekends. The results show that P_d, Ms_d, and Cs_d have small spatial hetero-

geneity. In contrast, Srn_d has large spatial heterogeneity, and the effects of these variables are

the same on weekdays and weekends. In addition, the action scales of Tf_d on weekdays and

Table 7. Results of multicollinearity test of built environment variables on weekdays and weekends.

“5D” dimension Built environment variable VIF (weekdays) VIF (weekends)

Density P_d 2.7433 2.7433

Cs_d 10.5986 10.5986

Ta_d 1.2091 1.2091

Pa_d 2.5405 2.5405

Ss_d 2.8073 2.8073

Tf_d 6.7096 6.7096

Et_d 2.3768 2.3768

Fis_d 3.6789 3.6789

Cr_d 5.2999 5.2999

Ls_d 9.3920 9.3920

Sls_d 4.7389 4.7389

Ms_d 3.1731 3.1731

Gaso_d 2.4264 2.4264

As_d 2.7100 2.7100

Diversity Mduf 2.2083 2.2083

Design Prn_d 1.1283 1.1283

Srn_d 1.1719 1.1719

Trn_d 1.0328 1.0328

Uern_d —— ——

Destination accessibility Dcc 3.0820 3.0820

Distance to transit Bs_d 1.7548 1.7548

Ss_d 1.2106 1.2106

https://doi.org/10.1371/journal.pone.0292363.t007

Table 8. Stepwise regression screening results for significant variables on weekdays and weekends.

Built environment variable Weekdays Weekends

Coef. t P-value VIF Coef. t P-value VIF

Intercept 0 5.52 0.000*** —— 0 5.316 0.000*** ——

P_d 0.212 8.165 0.000*** 2.368 0.21 7.986 0.000*** 2.368

Cs_d 0.082 2.696 0.007*** 3.253 0.099 3.227 0.001*** 3.253

Tf_d 0.247 8.609 0.000*** 2.881 0.223 7.709 0.000*** 2.881

Ms_d 0.094 3.421 0.001*** 2.648 0.103 5.654 0.000*** 1.134

Srn_d 0.107 5.977 0.000*** 1.134 0.102 3.679 0.000*** 2.648

Dcc -0.164 -6.652 0.000*** 2.131 -0.161 -6.458 0.000*** 2.131

Note

***, ** and * represent the significance level of 1%, 5% and 10% respectively.

https://doi.org/10.1371/journal.pone.0292363.t008
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weekends are 1309 and 1700, respectively, accounting for 76.95% and 99.94% of the total sam-

ples, respectively. The results show little spatial heterogeneity and a certain difference between

weekdays and weekends. The action scales of Dcc on weekdays and weekends are 896 and

1179, respectively, accounting for 52.67% and 69.31% of the total samples, respectively, similar

to the results for Tf_d.

In summary, the MGWR model was superior to the GWR model in terms of fit. Moreover,

the spatial scale of the relationship between different built environment variables was consid-

ered. The MGWR model could fit the taxi travel demand well and further reveal the spatial dif-

ferences in the influence of the built environment on taxi travel demand. Therefore, the

MGWR model was used to elaborate the spatial heterogeneity of the degree of impact of the

built environment on taxi travel demand.

5.4.2 Spatial heterogeneity analysis of regression coefficients. The local regression coef-

ficients were visualized to demonstrate the influence of built environment variables on taxi

travel demand in different spatial positions on weekdays and weekends (Figs 8 and 9). Positive

and negative symbols indicate a positive or negative influence of each built environment vari-

able on taxi travel demand. The absolute values indicate the degree of influence.

Density dimension. The regression coefficients for P_d on weekdays and weekends are both

negative (Figs 8(A) and 9(A)), indicating that P_d has a negative inhibitory effect on the total

demand for taxi pick-up and drop-off. The overall negative inhibitory effect gradually

increases from the southwest to the northeast. The areas where P_d has a large negative inhibi-

tory effect on the total demand for taxi pick-up and drop-off on weekdays and weekends are

located in the northeast and east of the Baqiao District. Because of the low level of economic

development and resident income in these areas, and because most of the area is under devel-

opment and construction, residents are more willing to choose buses and subways as their

main means of transportation. Therefore, compared with the less strongly negative inhibitory

effect in the southeast of Yanta District, which is relatively developed and has a high resident

income, P_d has a greater influence on taxi travel demand.

The regression coefficients of Cs_d on weekdays and weekends are both positive and nega-

tive (Figs 8(B) and 9(B)). This indicates that in some regions, Cs_d has a positive promoting

Table 9. Comparison results of the GWR and the MGWR models on weekdays and weekends.

Model R2 �R2� AIC AICc RSS

Weekdays GWR 0.6367 0.6186 3159.2876 3194.0361 539.7600

MGWR 0.7330 0.7020 2933.9270 2974.6880 454.5340

Weekends GWR 0.6289 0.6104 3176.2938 3228.1504 557.4190

MGWR 0.7260 0.6950 2975.8360 3016.4890 465.9920

https://doi.org/10.1371/journal.pone.0292363.t009

Table 10. Comparison of bandwidth between the GWR and MGWR models on weekdays and weekdays.

Built environment variable weekdays weekends

GWR bandwidth MGWR bandwidth GWR bandwidth MGWR bandwidth

Intercept 1003 51 1016 51

P_d 1003 1700 1016 1700

Cs_d 1003 1661 1016 1661

Tf_d 1003 1309 1016 1700

Ms_d 1003 838 1016 838

Srn_d 1003 51 1016 51

Dcc 1003 896 1016 1179

https://doi.org/10.1371/journal.pone.0292363.t010
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effect on the total demand for taxi pick-up and drop-off. In contrast, in some regions, Cs_d

has a negative inhibitory effect on the total demand for taxi pick-up and drop-off. The areas

where Cs_d has a significant negative inhibitory effect on the total demand for taxi pick-up

and drop-off on weekdays and weekends are all located in the east of the Baqiao District. Cs_d

on weekdays has a significant positive influence on the total demand for taxi pick-up and

drop-off, particularly in most areas of the Lianhu District and at the junction of the Lianhu

District, Xincheng District, and Beilin District. The areas with a significant positive promotion

Fig 8. Spatial distribution of local regression coefficients of built environment variables on weekdays. (a) P_d; (b) Cs_d; (c) Tf_d;

(d) Ms_d; (e) Srn_d; (f) Dcc.

https://doi.org/10.1371/journal.pone.0292363.g008

Fig 9. Spatial distribution of local regression coefficients of built environment variables on weekends. (a) P_d; (b) Cs_d; (c) Tf_d; (d)

Ms_d; (e) Srn_d; (f) Dcc.

https://doi.org/10.1371/journal.pone.0292363.g009
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effect on weekends include most areas of the Xincheng District and the southeast of the

Weiyang District. This change indicates a difference between weekdays and weekends in areas

where Cs_d has a greater positive influence on the total demand for taxi pick-up and drop-off.

The regression coefficients of Tf_d on weekdays and weekends are both positive and nega-

tive (Figs 8(C) and 9(C)), and the overall spatial distribution of the regression coefficients is

not significantly different. The overall trend is from east to west; in this direction, the negative

inhibitory effect gradually weakens and the positive promoting effect gradually increases. The

negative inhibitory effect of Tf_d on the total demand for taxi pick-up and drop-off on week-

days and weekends is strongest in the east of the Baqiao District. The positive promoting effect

is strongest in the northwest of the Weiyang District. Closer to the central urban area, from

south to north, both the negative inhibitory and positive promotion effects are weakened.

Because many transportation facilities such as subway stations and bus stops are available for

residents to travel along this section, the increase or decrease in transportation facilities has

less influence on the total demand for taxi pick-up and drop-off compared with other areas.

The regression coefficients of Ms_d on weekdays and weekends are both positive and nega-

tive (Figs 8(D) and 9(D)), and the overall spatial distribution of the regression coefficients is

not significantly different. The areas with a significant negative inhibitory effect of Ms_d on

the total demand for taxi pick-up and drop-off on weekdays and weekends are located in the

east, northeast, and southeast of the Baqiao District. Residents in these areas have relatively

low incomes and relatively few medical service resources, and they usually choose buses, sub-

ways, or other modes of travel. Therefore, increased medical resources have reduced the

demand for taxi pick-up and drop-off among nearby residents. Residents who are further

away usually choose to seek medical treatment nearby, and thus will not take taxis. In addition,

the positive promotion effect is greater in central Weiyang District. Owing to the relatively

abundant medical resources in the region, people often choose convenient and cost-effective

transportation such as taxis and private cars when going to buy medicine or see a doctor; a rea-

sonable addition of medical services in this region can increase the total demand for taxi pick-

up and drop-off.

Design dimension. The regression coefficients of Srn_d on weekdays and weekends are both

positive and negative (Figs 8(E) and 9(E)). The overall spatial distributions of the regression

coefficients do not differ significantly. Srn_d on weekdays and weekends has a significant posi-

tive impact on the total demand for taxi pick-up and drop-off in south-central of Yanta Dis-

trict, most areas of the Beilin District, most areas of the Xincheng District, and south-central

and north-central of Weiyang District. These areas have a high population density, and a mod-

erate increase in secondary roads will increase residents’ demand for taxi pick-up and drop-

off. The negative inhibitory effect is greater along the West Third Ring Road, Taibai Inter-

change, and Jinhua South Road. These roads are mostly connected to urban elevated express-

ways, and subway stations have less radiation; thus, residents are more inclined to travel by

private cars.

Destination accessibility dimension. The regression coefficients of Dcc on both weekdays

and weekends are negative (Figs 8(F) and 9(F)). This shows that with an increase in Dcc, the

total demand for taxi pick-up and drop-off decreases. Overall, the magnitude of this decrease

gradually increases from east to west and north to south. This is because the southwest part

of the central urban area (southwest of Yanta District) has better economic development than

the eastern region (northeast, east, and southeast of Baqiao District) and has more shopping

centers and office spaces. Residents living in the southwest can choose nearby areas to meet

their daily living and work needs. Therefore, Dcc has a greater impact on the choice of taxi

travel.
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6 Conclusions

It is important to investigate the influence of the built environment on taxi travel demand. Pre-

viously, little attention has been paid to the MAUP in data aggregation, and the impact of the

“5D” dimensions of built environment variables on taxi travel demand was considered less

commonly. At the same time, there was a lack of consideration for the nonlinear and linear

relationships between the two. This study analyzed the central urban area of Xi’an as an exam-

ple. A “5D” dimension index system of built environment variables was constructed using

multi-source data, which provided a scientific basis for quantifying each index. Based on the

OPGD model, an optimal spatial analysis unit was selected to study the effects of the built envi-

ronment on taxi travel demand, which enriched the quantitative basis for selecting the research

units. The OPGD and MGWR models were then cross-used to reveal the influence of the built

environment on taxi travel demand from global and local perspectives, thereby providing a

method for studying this problem. The main conclusions are summarized as follows:

1. It is necessary to consider the MAUP when discussing the impact of the built environment

on taxi travel demand. It is preferable to divide the space units into regular hexagonal grids

rather than into square grids. A regular hexagonal grid with a side length of 900m yielded

the best effect and was selected as the optimal spatial analysis unit.

2. The factor detection results show that on weekdays or weekends, Dcc, Cr_d, Tf_d, P_d,

Cs_d, Ls_d, and Fis_d have a greater influence on the taxi travel demand.

3. Comparing the results of the GWR and MGWR models, the MGWR model considering the

spatial heterogeneity scale difference has a better fitting effect. On both weekdays and week-

ends, the spatial action scale of the Srn_d variable is small. This shows that taxi travel is sus-

ceptible to spatial location, and the influence of spatial location on taxi travel should be

prioritized in urban construction.

4. The spatial heterogeneity of the regression coefficient shows that Srn_d, Dcc, and Ms_d

have a significant influence on local taxi travel demand. Cs_d is significantly influenced by

weekdays and weekends, and there is an apparent spatial difference.

These results provide an important reference for urban planners and traffic managers. For

urban planners, the optimal spatial analysis unit for taxi travel demand is determined in com-

bination with the built environment, and a demand forecast is conducted on this basis. Cen-

tralized passenger carrying points can be set in areas with high demand forecasts. When

adjusting the demand for taxis in the entire region, urban planners and traffic managers can

prioritize updating and adjusting the built environment variables with greater influence, such

as Cr_d, Tf_d, P_d, and Dcc. When making local adjustments to taxi demand, priority can be

given to optimizing Srn_d, Dcc, and Ms_d. Improvement strategies can be proposed according

to local conditions, optimizing the urban layout, guiding taxi travel behavior, and promoting

the virtuous cycle of urban traffic development. For taxi industry management, an optimal

spatial analysis unit can provide a reference for traffic zoning in taxi demand forecasting. At

the same time, it can guide drivers to areas with a high demand for transportation and pro-

mote the scheduling and coordinated development of taxi vehicles.

7 Limitations and future work

The above conclusions are expected to help decision-makers formulate targeted urban plan-

ning and traffic management strategies. Nevertheless, there are some limitations of this study,

and the next steps need to be improved and studied.
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1. The variables of an urban built environment are complex and changeable. Although the

main elements of the “5D” dimensions are included in the selection of built environment

variables, common indicators such as employment density and number of intersections

have not been taken into account. In the future, we plan to incorporate these indicators to

reveal their relationship with taxi travel demand.

2. The conclusion of this study regarding the selection of an optimal spatial analysis unit is

based only on the optimal solution for a specific research area and data set. When changing

the study area and data set, the spatial analysis unit must be redefined. However, the deter-

mination method is equally applicable to other areas. In the future, we will focus on the cal-

culation of new data in a new study area under various partition schemes, and the effect of

the MAUP also needs to be further researched.

3. Although this study discussed the influence of the built environment on taxi travel demand,

it did not provide specific suggestions for vehicle scheduling. In the future, a taxi travel

demand prediction model will be constructed to provide a reasonable scheme for the

dynamic spatial scheduling of taxis.
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