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Abstract

This paper investigates the pricing problem of quanto options with market liquidity risk using
the Bayesian method. The increasing volatility of global financial markets has made liquidity
risk a significant factor that should be taken into consideration while evaluating option prices.
To address this issue, we first derive the pricing formula for quanto options with liquidity risk.
Next, we construct a likelihood function to conduct posterior inference on model parameters.
We then propose a numerical algorithm to conduct statistical inferences on the option prices
based on the posterior distribution. This proposed method considers the impact of parame-
ter uncertainty on option prices. Finally, we conduct a comparison between the Bayesian
method and traditional estimation methods to examine their validity. Empirical results show
that our proposed method is feasible for pricing and predicting quanto options with liquidity
risk, particularly for parameter estimations with a small sample size.

1 Introduction

Quanto options are increasingly becoming an essential tool for financial investment and risk
management as financial globalization progresses. Quanto option is a multi-asset option
whose value depends on the underlying asset in one currency, but the payoft settled in another
currency, enabling the holder to manage the multinational risks from diverse financial
markets.

With the development of option pricing theory, many extended quanto option pricing
models have been proposed based on the Black-Scholes [1] model. To better capture market
characteristics, such as volatility smile, heavy tails, skewness, and jump, existing literature
incorporates these features into quanto option pricing models, including GARCH models, sto-
chastic volatility models, jump-diffusion models, etc. More related research refers to [2-5].
Moreover, Teng et al. [6] assumed that the correlation between the underlying asset and cur-
rency exchange rate is dynamic, and they found that this dynamic correlation had a significant
impact on the quanto option pricing. Battauz et al. [7] studied the optimal exercise policies of
American quanto options by using a parsimonious diffusive model, which further enriched
the pricing theory of quanto options. Recently, Lee et al. [8] studied partial quanto lookback
options and proposed an approach to evaluating the option. Their pricing formula makes
quanto lookback options cheaper.
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The continuous international trade war and COVID-19 have increased the volatility of
financial markets. As a result of increased market volatility, investors are increasingly con-
cerned with market liquidity when managing their financial assets. Moreover, researchers
have found that the effect of market liquidity should be considered in option pricing. Brunetti
and Caldarera [9] established the liquidity discount factor and liquidity-adjusted asset pricing
model for capturing the characteristics of stocks in an imperfectly liquid market. On the foun-
dation of this model, Li et al. [10] further proposed the quanto option pricing model with
liquidity adjustment. They found that considering stock liquidity in the option pricing model
can better fit market data. Gao et al. [11] studied the exchange option pricing problem with
market liquidity in an incomplete market. Pasricha et al. [12] have reviewed the relevant litera-
ture and classified this type of research into two categories, i.e., stock-specific liquidity and
market-wide liquidity. They developed a theoretical framework to consider liquidity risk in
the pricing of European options based on market-wide liquidity. For the former, some scholars
found that trading in stock could have an influence on its price and studied the effect of stock-
specific liquidity on option pricing, see, for example, [13, 14]. For the latter, some empirical
results demonstrated that the commonality in liquidity affects stock returns and the option
pricing, see, for example, [15-19]. Recently, Pasricha and He [20] employed an Ornstein—
Uhlenbeck process to model market liquidity risk and studied the effect of stochastic liquidity
on exchange options. These studies demonstrate that the impact of market liquidity risk on
option pricing should be considered, which can improve the pricing performance.

There have been many extended studies on the theoretical pricing model for quanto
options. However, there are few studies on parameter estimations of the quanto option pricing
model in existing literature, especially in illiquid markets. The accuracy of parameter estima-
tion directly affects the performance of option pricing models. Due to the lack of market data
on quanto options, traditional estimation methods that rely on a large number of sample data,
such as Maximum Likelihood Estimation and optimization method, may no longer be effective
for quanto option pricing models. However, for complicated models, the Bayesian statistical
method, which can fully consider prior information and parameter uncertainty, performs bet-
ter in parameter inference and prediction. Therefore, some researchers suggest applying the
Bayesian method to estimate model parameters; see, e.g., [21-25]. Karolyi [21] considered the
impact of the randomness of volatility on stock returns and proposed an approach to evaluat-
ing European call options under the Bayesian framework. Rombouts and Stentoft [22] intro-
duced an approach to conducting posterior inference on European option price and
demonstrated that the Bayesian method performs better than traditional methods when sam-
ple data is small. Gao et al. [26] introduced an approach to conducting posterior inference on
the European call option pricing model in an imperfectly liquid market. Recently, Hu et al.
[27] proposed a new semi-parametric nonlinear volatility model to capture stock returns and
they recommended a Bayesian sampling algorithm for estimating the model parameters.

However, research on the quanto option pricing model with market liquidity using the
Bayesian method is rare. Considering the advantages of Bayesian statistics in parameter esti-
mations for small samples, we propose an alternative approach to evaluating quanto options
with liquidity risk under the Bayesian framework. Based on posterior distributions, we per-
form statistical inferences on model parameters and the option price by the Markov chain
Monte Carlo (MCMC) numerical algorithm. In the numerical experiment, the liquidity is
defined as the ability of an asset to trade any amount of securities quickly at the market price
without additional transaction cost. We adopt the commonly used liquidity measure to cap-
ture the liquidity risk. The liquidity measure is defined as stock return divided by dollar trad-
ing volume (hereafter RDV). The RDV measure can be used to describe a sudden down or up
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in a stock price. This measure is negative when the price is down and positive when it is up.
The RDV measure is zero when the market is perfectly liquid; refer to [15] for more details.

The main work of this paper is as follows. The pricing problem of the quanto option is stud-
ied using the Bayesian method in an incomplete market. This paper provides an alternative
approach to evaluating quanto options with liquidity risk. First, an explicit expression of the
quanto option price with liquidity risk is derived from a mathematical perspective. Second,
under the Bayesian framework, an estimation approach is proposed to conduct statistical infer-
ences on model parameters and the quanto option price. We account for the randomness of
model parameters as well as the randomness of the correlation coefficient between the under-
lying stock and the exchange rate. Moreover, the quanto option price can be predicted by the
posterior density. A comparison between the proposed method and the traditional estimation
method is conducted to examine the validity.

This paper is different from the existing literature in the following aspects. First, we derive
the closed-form pricing formula of the quanto option with liquidity risk in an alternative way.
Second, we propose a Bayesian approach to estimate model parameters. We consider the
effects of parameter uncertainty and the correlation coefficient randomness on the quanto
option price. Moreover, we investigate the statistical properties of the quanto option prices
based on posterior distributions by an MCMC numerical algorithm. Unlike traditional meth-
ods that usually provide only a point estimate, we offer more statistical characteristics about
option prices from a probabilistic perspective. These statistical characteristics can provide
investors with more information to make better decisions.

The remainder of this article is as follows. Section 2 describes the stock price process in an
imperfectly liquid market and deduces the pricing formula for the quanto option with different
payoffs. Section 3 introduces the posterior inferences on parameters and the quanto option
price. Section 4 conducts an empirical analysis. Section 5 is the conclusion.

2 Quanto option pricing model with liquidity risk

In this article, we investigate the pricing problem of a European quanto option in an incom-
plete market, where the underlying asset is an imperfectly liquid foreign stock. With the
quanto option as an example, we provide an approach to studying the pricing of multi-asset
options with market liquidity risk.

2.1 Dynamics of the foreign stock price with liquidity risk

To investigate the effect of stock liquidity risk on quanto options, we adopt the liquidity-
adjusted asset pricing model proposed by [9] to model the foreign stock price dynamics

ds(t) 1 2 2 P P

W =(u+lo(t) + 55 w*(t))dt + Eo(t)dW, () + AdW, (1), (1)
where w(t) denotes the liquidity level at time ¢ € [0, T], w() > 0 (w(f) < 0) shows that the mar-
ket is in shortage (surplus), w(t) = 0 indicates a perfectly liquid market. £ > 0 denotes the sensi-
tivity of stock price S(¢) to liquidity level w(#), and A is a part of volatility. L(¢) and I(#)
respectively, represent the processes of the liquidity discount factor and the information fol-
lowing

T — G &0r(0) — col)dr - colnaw; (o),
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and

dI(t)

m = ,uIdt + GIdWIP(t),
where W7 (t) and W7 (t) are independent Brownian motions under physical measure P. Simi-
larly to [10, 12, 20], we employ the liquidity discount factor L(f) to capture the effect of the
liquidity risk. L(#) is a function of the liquidity level w(f) and a parameter & representing the
sensitivity of the stock price to the liquidity level.

2.2 Quanto option model with liquidity risk

In the paper, we consider a quanto option on an imperfectly liquid stock whose price dynamics
are given by Eq (1). Supposing that the price processes of the foreign stock and exchange rate
are followed by

ds(t) = (u+ Co(t) + % E*(1)S(t)dt + Eo()S(t)AWTE () + AS(t)dWE (1),

dF(t) = peF(t)dt + o, F(t)dWE(t),

(2)

where p denotes the correlation coefficient between S(t) and F(t), i.e., dWF (£)dW7 () = p, and

dW; (t)dW7 (t) = 0. Therefore, the Brownian motion W (t) can be represented by

WE(t) = pWE(t) + /1 — p?WF(t), where W (¢) and WE(t) are independent of WF (¢).
Then, the dynamics of the foreign stock price can be rewritten by

18(_(5) = (u+Co(t) + %@uﬂ(t))dt + Eo(H)AWE (1) + Apd WE(E) + Ay/1 — p2dWE(E).
Denote

\/52w2(t) + A (1 — p2)dWE (1) = Ew(t)dW? (1) + A1 — p2dWF (1),
thus, we have

dSS(—(tt)) = (n+éo(t) +%§2w2(t))dt T/ Ear(t) + 21— p)AWE (1) + pAAWE(r).

For evaluating the quanto option by martingale pricing theory, we need to find the equiva-
lent martingale measure. Similarly to [10], by multidimensional Girsanov theorem, we deduce
the equivalent martingale measure QQ defined by the Radon-Nikodym derivative

j% = exp{Z[/O —y,(w)dW; (u) —%/Oty?(u)du]},

i1
where W7 (t) = WF(t), WE(t) = WE(t), and
1
o+ ot Coo(t) + 5 8 (1) + phay — 1y = (o3 + pL)s(t)

VE@ () +22(1 - p?)

() =

)

ety

) t 7,
/2( ) 7,

F, denotes the filtration. Then, we deduce the corresponding Brownian motions under
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measure Q following
dWe(r) = dWE(t) + 7, (t)dt,
AW (1) = dWE (1) + 7, (t)dt,

where dW2(t)dW2(t) = 0.
Therefore, the price processes of the foreign stock and exchange rate are followed by

dss(—(t? = (r; — phop)dt + \/ész(t) +5(1 = p?)dWE(t) + pAdW (1), 5
C;F(—(t? = (r, — r;)dt + o, dWE(2),

under domestic risk neutral measure Q.
By Ito formula, we have

dInS(t) = (1, — pho, — % Eot(t) - %Kz)dt T /Er() +22(1 - p2)awe(s)
£ W20, (4)

dInF(t) = (r, — 1, — %ai)dt + o, dW2(2). (5)

Next, we deduce the theoretical pricing model of the quanto option in an imperfectly liquid
market.

2.3 Theoretical pricing model of quanto options with liquidity risk

Similarly to [10], we consider four different types of payofts for the quanto option on an
imperfectly liquid stock. Assuming that the dynamics of the underlying asset are followed by
Eq (2).

According to the martingale pricing theory, we deduce the pricing formulas of quanto
options with four different payoffs under the domestic martingale measure Q.

Theorem 1. Suppose the underlying foreign asset is an imperfectly liquid stock S(t) defined by
Eq (1), then the time-t price of the floating exchange rate foreign stock quanto call option struck
in foreign currency at maturity T with payoff F(T) max{S(T) — K 0} is

V(S(8), F(t), o(t), 2, &) = F(O)[S()0(d)) — K (dL))] (6)
where T =T — t, w(?) is liquidity level, A, £ are defined as previously, and
S() Leile [Mp
K, + [(rf+27» )‘c+2f [ o’ (u)du]

1 = 9

\/7\.2‘5 + & ftT ®*(u)du

d) = dP —\[ir+ & [ o (u)du .

In

Proof. By the martingale pricing theory, the price of the floating exchange rate foreign stock
quanto call option struck in foreign currency can be given by

Vi(S(1), E(t), o0(t), 1, &) = e " E°[F(T) max{S(T) — K;, 0}|F ], (7)

where E2[] is the expectation operator under domestic risk-neutral martingale measure Q.
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From Eq (5), we have
1 .
F(t) = F(0) exp{(r, — r; = 5 0)t + o W (1)},

and denote the equivalent martingale measure by Q, defined by

dQ,
dQ

= expl— o3t + o, WE (D))

Then, formula (7) can be rewritten as
Vl(S(t)J F<t)7 (,U(t)7 >\'7 é)
_ —rdrEQFt (ra—r)(T—t) dQl S(T K..0MF
=e [F(t)e @max{ (T) — Ky, 0} F ], (8)

= F(t)efrfTEQl [S(T)I{Kf<s(r)}|fr] - F(t)eﬁf‘(Tft)KfEQl [I{KI<S(T)}‘ft]7

where I;; denotes the indicator function.
Under equivalent martingale measure Q,, we obtain

dins(t) = (r, - % Eot(t) — %Xz)dt /() 221 = p2)dW (1) + phdWE (1),

where W (t) and WS (t) are independent standard Brownian motions under measure Q,
satisfying
AW (t) = dW2(r), dW (1) = dWE(t) — o,dt.

Thus, we get

S(T) = S(t) exp { / (r, — %f2w2(u) - %XQ)du —|—/t \/ﬁzg)?(u) + 231 = p2)dW (u)
+J! pxdw%(u)}.

Therefore, the second expectation expression on the right side of Eq (8) can be given by

E% [y oy | F) = PO(K, < S(T)|F)

S(t 1., 1, [T,
» lnI(<—f)+[(rf—§7u)‘E—§§/tw(u)du]
\/Xz‘c +& [T 0 (u)du

Next, we derive the first expectation in Eq (8). By Girsanov theorem, we obtain an equiva-
lent martingale measure QQ, defined by

jgj = exp{ - %/Ot(ézwz(u) + A7) du + /Ot \/ Ew?(u) + XQdW?‘(u)}.

where |/ E02(t) + 1AW (1) 2 \/E02(0) + 21— p?)dW (1) + pAdWE (1),
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Based on Girsanov theorem, we obtain the standard Brownian motions W2 (t) under mea-

sure Q, satisfying
dWi2(t) = AW (1) + 1/ Ew?(t) + \7dt,

Based on Ito formula, under measure Q,, we derive

1 . 1
dlnS(t) = (r; +5 Ew?(t) + 3 At 4/ Ew?(t) + M AW () 9)
Thus, the first expectation is given by

dQ
dTQ?I{de(T)} |‘7:J

E® [S(T)I{Kf<S(T)}|‘7:f] — E& [e’ffs(t)
= 7" S(t)E® I i 5oy 1 F4)
= e S(t)Pr% (K, < S(T)|F,)
= e S(1)D(d),

5 ; T
In %)H(rf#r%kz)vr% Ezft @ (u)du]

T
Wope? 2 (u)d
\/ +¢ j: ?(u)du

Therefore, the price of the quanto call option with liquidity risk is

where dil) =

VL(8(8), E(1), (1), 1, &) = F()[S()D(d;) — Kye 7 d(dy)].

Theorem 2. Suppose the underlying foreign asset is an imperfectly liquid stock S(t) defined by
Eq (1), then the time-t price of the quanto call option struck in domestic currency at maturity T
with payoff max{F(T)S(T) — K, O} is

Vo (S(t), F(t), (), M, &, p, 0,) = F(t)S(£)D(d?) — K,e v d(dy), (10)
where T =T — t, w(2) is liquidity level, A, € are defined as previously, and

F(t)S(t)
Kd

1 1 1 ’
In +[(r, + 57\.2 + pho, + 50’,2:)‘5 + 552/ o’ (u)du]
t

d? =

)

\/(k2 +2pha; + 02)t + & [ w?(u)du

T
P =d4» — \/(7»2 + 2phoy, + 02)T + éz/ o*(u)du .

Proof. By martingale pricing theory, we have

Vy(S(t), F(t), (1), 1, &, p) - = e “E*[max {F(T)S(T) — K,,0}|F]

—rtEQ[Q —rtRQ (11)
= e "B [S(T) i, 0| F ] — € B2 Ky, o400y | F
where §(T) = F(T)S(T).
According to Girsanov theorem, from Eq (13), we derive
Q 1 2 2 1 2 1 2
dlnS(t) = (r, —55 w*(t) —57» ~ 50~ phay)dt
(12)

/02 (1) + 121~ p)AWRA(1) + (0, + p)AWE (D).
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Then, we have

S(T) = 8(t) exp { /t (r, —% *0*(u) — %XZ - %ai — pho,)du
(13)

+ /T \/fza)?(u) +22(1 — p2)dW(u) + /T(GF + p?»)dW?(t)}.

Denote the equivalent martingale measure by QQ, defined by the following Radon-Nikodym
derivative

dQ,
dQ

1 /7 )
= exp{ — 5/ (E0*(u) + X + 02 + 2pho,)du
’ (14)

T
+ / \/ Ew*(u) +1° + ot + 2phod WP (u) }

where

VEO W) +37 + 02+ 20ho dWEW)2 (/S0P (u) +23(1 - p?)dWe(w)
+/ (0p + pA)dWR(2).

Substituting Eqs (13) and (14) into Eq (11), then we obtain

Vo (S(8), F(£), o(t), 1, &, p)

= efrdTEQ[S(T)I{KKS(T)}|fr] - eirdTEQ[Kdl{Kd<§(T)}|ft]7
i,
= §(HE™ Lk <semp | F ) — eﬂdrKdE@[I{K%s(T)}|ft]v
= §(t)Pr% (K, < S(T)|F,) — e wK,PrK, < S(T)|F,)

= e EC[eS(1) <y F o — o [Kal i <s0my 1F ]

Based on Girsanov theorem and probability theory, we derive
Pro (K, < S(T)|F,) = ®(d”), Pr(K, < $(T)|F,) = &(dy”),
where

F(#)S(t)
Kd

1 2 1 2 ! 2
§ap)r —1—56 / ®*(u)du]

\/(7»2 +2pha; + 62)t + & [ w?(u)du

In

1
+ [(r+ 52" + phop +

)

d? =

T
dY =d? — \/(7»2 +2pko, + o)t + 62/ o’ (u)du .
Therefore, the price of the quanto call option with liquidity risk is
Vo(S(8), (1), (1), 1, €, p, o) = F(O)S()D(d)”) = Ke " (d).

Theorem 3. Suppose the underlying foreign asset is an imperfectly liquid stock S(t) defined by
Eq (1), then the time-t price of the fixed exchange rate foreign equity call at maturity T with
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payoff Fo max{S(T) — K 0} is

V,(S(t), F(t), o(t), h, &, p, ;) = Fye " [S(t)el " d(d¥) — Kfcp(dm (15)

where Fy is the predetermined fixed exchange rate, T = T — t, and w(t) is the liquidity level, A, £
are defined as previously, and

S(t) 1., 1, ('
In 7f+ |:<rf+27\' .D)"O-F)T+26 /[ a)Q(L{)dl/l

\/7»21 +& ﬁT w*(u)du

d) = dP — [+ & [ o (udu

(3 _
dy’ =

b

Proof. By martingale pricing theory and Girsanov theorem, we have
Vi (S(2), E(8), (1), 1, &, p, 0)
= e wEY[F, max {S(T) — K, 0}|F ]
= eirdrFOE@[S(T)I{K,-<S(T)}‘ft] - efrdTFoKfEQ [I{Kf<s(r)}|-7:t] (16)
= e CES(1)e BN Ly gy | F] — € CEKE I oy | F]

= e w[S(0)er 7 0(d) — K o(d)]
where

1 1.
Lt [+ 50— phop)t + 28 [ 0 (u)du]
, 2 PR
df =— :

\/7\2‘5 + & ftT ®?(u)du

T
dy =d? — \/ N+ & / o*(u)du .
t

Theorem 4. Suppose the underlying foreign asset is an imperfectly liquid stock S(t) defined by
Eq (1), then the time-t price of the equity-linked foreign exchange call option at maturity T with

payoff S(T) max{F(T) — K, 0} is
V(S(8), F(£), 1, p,0,) = S[F(6)®(d}) — Kyer o ()], (17)

where F, is the predetermined fixed exchange rate, 1= T — t, and w(t) is the liquidity level, A, &
are defined as previously, and

1
n 20, [(ry = 1y + 5 0% + phog)1]
d(4) _ KF 2
1 )
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Proof. By martingale pricing theory, we obtain

Vi(S(t), F(t), %, p,0;) = e “EX[S(T) max {F(T) — K;, 0}|F]

(r—phop)T @
dQ

= e "EY[S(t)e max {F(T) — K, 0}|F ]

— S(t)elr PED (T ey | (18)

— S(t)elrra-rhorrES (Kl g, <rery | )

Under measure QQ, defined by

d L[, 2 ' 2 7
G el [ (@t [ fEe 1 - pave)
+ / PdWR(1)},
we derive

1
dInF(t) = (r, — 1, — 502 + phoy)dt + o, dW2 (1)

Denote the equivalent martingale measure by Q, defined by

sz _ 1 2 Q
dQl - exp{ 20-Ft+o-FWF (t)}

According to the Girsanov theorem and probability theory, the first term on the right side
of Eq (18) is rewritten by

rf—rg—phop)T dQ
S(t)er 1A [F(T) L,y | F,] - = S(t)F(H)E™ [—dQ2 Lo criry | 7]
1

(OF()E* (I, iy | 7]
(NE(t)o(d),

S
S
where

o g+ (e —ny 4300 4 phay)]
TVT .

Similarly, the second term on the right side of Eq (18) is rewritten by

S(t)e(V*rd*PXJF)TEQl [KFI{KF<F(T)} |“7:t] e S(t)e(fff‘fdfphrp)rKF(D(d(;))’
where d\") = d\" — g,\/7.
Therefore, the price of the equity-linked foreign exchange call option is

Vi(S(1), (1), 1, p, o) = S[F()D(d)) — Kpelr 0 (dy))].

Theorems (1)-(4) provide the theoretical pricing models to study the impact of stock
liquidity on quanto options in an imperfectly liquid market. For better applying these theoreti-
cal models in practice, the precise estimation of unknown parameters is still required. As
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mentioned before, the main focus of this paper is to propose an approach to estimating model
parameters and performing posterior inference on the quanto option price.

3 Posterior inference on the quanto option pricing model

Due to the lack of market data on quanto options, it is difficult to estimate the parameters of
the quanto option pricing model. The accuracy of parameter estimation directly affects the
performance of option pricing models. In this section, we propose a posterior inferential
method to conduct statistical inferences on unknown parameters and the quanto option price.

3.1 Posterior inference on unknown parameters

S(t) F(1)
S(t—1) F(t-1)

ity, we let w(t) = w,. Under the risk-neutral measure Q, from Eqs (4) and (5), we derive the
joint probability density

Denote x, = In

andy, = In as the continuously compounded returns. For simplic-

P(xn)’tp% ¢, p,0p, wt—l)
1

216,/ Ew? , + W1 — p?

1, 1.\ 1.,)
(xt — 1, + pho + iéza)il + 573) <yt — g+ §o§>
+

1
X ex —
P { 2(1 — p?) S + N o}
1

1 1
2p<xt — 1.+ phoy —1—56260;{1 +§7u2) (yt — 1,41 —&—Eoi) 1 }
op\/ R, + 1

Denote the return observations by X = (xy, x5, - - -, x7)’ and Y = (y1, y5, - - -, y7)’, then the
likelihood function is given by

L(X7 th fa P, 0k, Cl))

11 :
=1 210,/ Ew? | + AT — p?

Loy 41 1,
X ex — 1 {(Xt _rf+pkaF+§§2wffl +§7‘2)2+()’t—1’d+1’f—|—50;)2 (19)
Pl Fa, +2 o2

1 1 1
2p(x, =1+ phop +5 &0l +50) (yt gt —Gi) } }

2
O/ éQw?_l +22

where liquidity levels w = (wp, Wy, - - -, wr_;)" are described by the liquidity measure RDV
defined before.

The prior distribution represents the beliefs or assumptions about the parameters before we
observe any data. The choice of prior distribution can have a significant impact on the results
of Bayesian estimation. It can be chosen based on prior knowledge or empirical evidence.
Common choices include uniform, normal, and exponential distributions. Based on the
empirical evidence from existing literature, we consider truncated normal distribution as the
prior distribution for parameters A, £, and take uniform distribution U € (-1, 1) as the prior
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distribution for correlation coefficient p. In addition, we take the noninformative prior for
parameter o, i.e., p(0;) (}F Supposing they are independent of each other. Thus, the joint

prior probability density is represented by
po‘” 67 O, P) :fN(X>I{7\>0} 'fN(é)I{bO} : p(o-b) ’ U—1<p<1’ (20)

where fi(-) denotes the probability density for standard normal distribution.
Based on Bayesian theorem, the kernel of the joint posterior probability density is given by

PN E o plX, Y, 0) x p(h, & ap p)L(IX, YN, E 07y p, 00)

1 -emt en? 1
x—e " Iy x—e "L x—
0, o; - O
3 f[{ !
2 oo /Eor 422 T=p2
(21)
( 7\‘ 162 2 1)\‘2 2 1 212
« 1 [xt_rf"’_p O-F+§ a)z71+§ ) +(yt_rd+rf+§o-lf>
ex — ‘ 5
Pl 20— Fop, + 1 72

1. 1 1
2p(x = rp+ phop + 5 0L + 1) 0 =ty +—ai>} }}

2
O/ .fzcof[1 +22

where y, 03, g, and oy are hyperparameters of prior distributions for A and &, respectively. We
typically determine the values of hyperparameters through two steps. Step 1: We consider the
noninformative prior for parameters A, and &. By Bayesian formula, we obtain the posterior
distributions for A, and & based on the sample information. Step 2: Based on the posterior dis-
tributions obtained in Step 1, we perform statistical inference on A, and &, including the mean,
standard deviation, kernel density, etc. These estimation results are further treated as the prior
information for choosing the values of the hyperparameters.

By conditional probability formula, the kernels of the fully conditional posterior probability
densities are given by

P(}\‘|é7 Op, p7X7 Y7 CO)
7(7»*#1)2 1

20

2
X O_—e % I{bo} X H72 -
g R VAL

1 1.,

1 r [ (% =1+ phop + 55260:271 + 573)2 (22)

X exp{q — 5 e 5
2(1_p)t:1 Cop  +Ah

DN | =

1 1
2p(x, — 1, + phoy + éQw;“_l+5%2)(yt—rd+rf+§ai)]}

Or\/ o, +1
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We are noting that the fully conditional posterior probability densities are more complex.
Thus, we propose a random walk chain Metropolis-Hastings algorithm to generate samples
from the fully conditional posterior densities. Then, by Monte Carlo method, we perform
statistical inference on parameters on the foundation of posterior samples ¥, £/, ¢’ and p/,
j=1,2,---, N. The inferential results consider the market data of stock prices and the
exchange rate simultaneously, which is helpful for the parameter calibration of the quanto
option pricing model.
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3.2 Posterior inference on the quanto option price

In this section, we further perform statistical inference on the quanto option price based on
the posterior estimations of the model parameters. From Theorems (1)-(4), we notice that the
quanto option price is adjusted depending on the liquidity level w(¢), the sensitivity &, the cor-
relation coefficient p, the volatility A, and 0.

Given the values of S(t), F(t), w(t) and 7 at time ¢, the quanto option price with liquidity risk
V(S(¥), F(1), w(t), N, &, p, op) is the function of parameters A, &, p, and o5 from a mathematical
perspective. Based on posterior samples ¥, &, p/ and a7, VI(S(t), E(t), w(t),N, &, p/, o)) evalu-
ated by Theorems (1)-(4) can be treated as the posterior samples of the quanto option price;
refer to [23] for more details.

By Monte Carlo integration, the posterior expectation of quanto option price is

E[V(S(t), F(t), o(t),\, &, p,0,)|X, Y]
N 1_ " Z VI(S(t), F(t), (1), ¥, &, o', a}).

j=n+1

~

Furthermore, we can conduct statistical inference on any posterior moment we need. Unlike
traditional methods which usually provide only a point estimate, the proposed method pro-
vides more statistical characteristics about quanto option prices from a probabilistic perspec-
tive. These statistical characteristics can provide more information for investors with different
risk preferences to make better decisions.

4 Numerical analysis

In this section, we conduct the numerical analysis of the quanto option pricing model with
liquidity risk under the Bayesian framework. Li et al. [10] studied the effect of stock liquidity
on the quanto option price. They demonstrated that the quanto option pricing model with
liquidity adjustment can better fit the market price. However, the existing literature pays little
attention to the parameter estimation for the quanto option model. This paper proposes a
numerical algorithm to estimate the model parameters.

4.1 Metropolis-Hastings algorithm for posterior simulation

From the fully conditional posterior densities (22)-(25), we notice that the posterior densities
are not standard forms. The MCMC algorithm is required to generate posterior samples for
further statistical inferences on model parameters and the quanto option price. Gibbs sam-
pling and Metropolis-Hastings (M-H) sampling are two commonly used MCMC algorithms.
When posterior densities are standard, Gibbs sampling is often used to draw samples. Similarly
to [28], we apply the random walk chain Metropolis-Hastings algorithm to generate samples
from the posterior densities which are nonstandard. Let 6 = (A, &, oF, p) be the vector of
unknown parameters, and 07 denotes the sample of the ith element in vector 6 at iteration j
generated by following algorithm:

1. Draw a proposal 0; from normal distribution N (05"71), o} ) with mean 95"71) and variance
;-
2. Draw an observation u from uniform distribution UJ0, 1].

071097V X.¥.0) }

3. Compute the acceptance probability &(0Y™",0) = min { T
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4. I(07,07) < u, then 0V = 07, otherwise 07 = 0"

Where 09" is the sample generated in the last step for elements in vector 6 excluding the
ith one.

Meanwhile, to evaluate the efficiency of the proposed method, we employed the nonlinear
optimization (NOP) method introduced in [10, 15] to estimate the model parameters for
quanto option pricing. The objective function of the NOP method is to minimize the sum of
the squared price differences between the model and market prices of all available options. The
parameter estimations can be obtained by the following procedure:

Z

SSE(f) = min [Vk

e market

2
(t,‘C,K) - anodel(taT7K7>\7€7pvaF)] )

k=1
where V¥ . (t,7,K) represents the market price of the quanto option, and
VE (T K A E p, o) is the model price evaluated by theoretical models. A, &, p, and oy are

the unknown parameters to be estimated.

4.2 Application to market data

We consider such a quanto option contract in which an investor in Canada invests in the
European call option written on the Facebook In. (FB) stock traded in America. The investor
is exposed to the market risk of FB stock price and the exchange rate between US dollars and
Canadian dollars (USD/CAD).

After COVID-19 in 2020, the panic selling of the market caused a sharp drop in the stock
market. In addition, the liquidity change caused by the tightening of monetary policy is also an
important reason for the withdrawal of the stock market. Therefore, we obtained the market
data of FB stock prices and USD/CAD exchange rate from the Yahoo finance website from 6
January 2020 to 17 September 2021. During the period, we found that the stock market suf-
fered from the disturbance of COVID-19 and the global liquidity crunch. The risk-free interest
rate is obtained by the LIBOR rate, and the FB stock has zero dividend during the sample
period. Stock liquidity level is measured by RDV proxy defined before. Fig 1 shows the returns
and the liquidity levels of FB stock under the liquidity measure RDV. From Fig 1, we notice
that stock returns and liquidity have changed significantly during the sample period indicating
that there is indeed a correlation between asset prices and market liquidity.

Firstly, we perform statistical inference on unknown parameters based on the posterior dis-
tributions (22)-(25) by the MCMC numerical algorithm. The random walk chain Metropolis-
Hastings algorithm described in Section 4.1 is conducted 50000 times and discards the initial
25000 samples to remove the impact of initial values on estimations. The convergence of the
Markov chain is received according to Geweke’s convergence diagnostic [29].

Furthermore, we investigate the out-of-sample pricing performance of the proposed model
by comparing the model price with the market price. Although the market price data of the
quanto option is unavailable, we adopt a similar method in [10] to construct the quanto option
price as the benchmark by the market price of the European call option written on FB stock
and the USD/CAD exchange rate. Denote by Qcall(t, K, T) the market price of the quanto
option, then we have

Qcall(t,K, T) = F(t)Call(t,K, T),

where F(t) is the USD/CAD exchange rate and Call(t, K, T) is the market price of the European
call option written on FB stock.

PLOS ONE | https://doi.org/10.1371/journal.pone.0292324 September 28, 2023 15/21


https://doi.org/10.1371/journal.pone.0292324

PLOS ONE Pricing quanto options with market liquidity risk

Return

01 T T T T T T T T T
0.05 |- i
O -
-0.05 i
-0.1 F s
-0.15 =

_020 0I 0I 0I QI 0I \I | )\I )\I

N Ng or Qv NA Qv ot g NN

5@(\,@ » e o 7 o Oeofb " 7 o7 o7 %GQIL
6’ \%, (Lg,@ \0;?‘ %0’ %\’ \6¢ @6,® 6,?‘ 6’
Liquidit
04 T T T T q yI T T T

02+ i
of f
0.2 s
0% o o o o o 3 A A A
or g N or N o0 oo or or or

yo© NG NG Y o o NG NG e ce®

© A ,Lg' AQ” rLQ’ g\ N2 rLQ)' © N2

Fig 1. The returns and the liquidity levels of FB stock.
https://doi.org/10.1371/journal.pone.0292324.g001

Table 1 shows the posterior estimations of model parameters, including the posterior mean
(Mean), posterior standard deviation (Std.Dev.), and MCMC convergence diagnostics. Denote
the numerical standard errors by ‘NSE’ which shows the estimation accuracy. The column
marked ‘CD’ introduced by [29] is used to judge the convergence of the Markov chain. A com-
mon rule is to conclude that convergence of the MCMC algorithm has been achieved if ‘CD’ is
less than 1.96 in absolute value for all parameters. Table 1 indicates that convergence of the
MCMC algorithm has been achieved. The last column is the 99% highest posterior probability
density interval (HPDI) for parameters. Fig 2 shows the posterior probability histogram and
kernel density for parameters under the liquidity measure RDV.

We can see that the Bayesian method can provide more estimation results for model param-
eters. However, the traditional NOP method, which relies on a large number of market data of
the quanto option price, only provides a point estimation. We can not obtain the estimation
results of parameters or and p by using the NOP method. Moreover, under the Bayesian
framework, parameter uncertainty and the randomness of the correlation coefficient p are
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Table 1. Posterior results using Bayesian method and NOP estimates for quanto option model.

Method Parameter Mean Std.Dev. NSE CD 99%HPDI
Bayesian A 0.0792 0.0493 0.0005 -1.2136 [0.0017, 0.1892]
13 1.5142 1.0169 0.0101 -0.8077 [0.0379, 4.8681]
of 0.1645 0.1425 0.0015 0.3871 [0.0059, 0.7079]
P 0.9607 0.0386 0.0004 -0.7408 [0.8230, 0.9987]
NOP 0.3034 - - - -
& 3.2755 - - - -
of - - - - -
P R R R R R

https://doi.org/10.1371/journal.pone.0292324.t001

considered in the option pricing model. From posterior probability densities (22)-(25), we
note that the inferential results consider the market data of stock prices and the exchange rate
simultaneously, which is helpful for the parameter calibration of the quanto option pricing
model.

a
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Fig 2. Posterior histogram and posterior kernel density for parameters under liquidity measure RDV.

https://doi.org/10.1371/journal.pone.0292324.9002
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Similarly to [10], we take the floating exchange rate foreign equity quanto call option stuck
in foreign currency as an example. We illustrate how to conduct posterior inference on the
quanto option pricing model using the Bayesian method combined with Monte Carlo numeri-
cal algorithm.

Now we evaluate the quanto option with time to maturity 7 = 28, 42, 63, 120 days, respec-
tively. Due to the limitation of the paper space, we only present the pricing results for the
quanto option with a maturity of 28 days. Based on the posterior samples of parameters A, &, ox
and p, we conduct posterior inference on the quanto option price combining V1(S(#), F(t), w
(t), A, &) defined by Eq (6). Under the Bayesian framework, we can get the posterior mean,
standard deviation, quantiles, the 99%HPDI, and the posterior kernel density for the option
price. These posterior results provide more statistical characteristics about the option price
from a probabilistic perspective for investors with different risk preferences to make better
decisions. The proposed method considers the effect of parameter uncertainty and correlation
coefficient randomness on the option price.

To assess the pricing performance, we adopt the absolute percentage pricing errors as the
evaluation criteria. The absolute percentage pricing errors are defined by the absolute differ-
ence between the market price and the model price over the market price. Under liquidity mea-
sure RDV, Table 2 shows the posterior estimations of the quanto option price evaluated by the
Bayesian method and the corresponding model price evaluated by Eq (6) where the parameters
are estimated by the NOP method. It reports the mean and standard deviation of the pricing
errors for different moneyness categories, where moneyness is the stock price divided by the
strike price. OTM, NTM, and ITM denote out-of-the-money, near-the-money, and in-the-
money options, respectively. Table 2 shows that the standard deviation of pricing errors using
the Bayesian method is 0.0304 and the standard deviation is 0.4414 using the NOP method.
This indicates that the pricing performance of the Bayesian method is more stable than that of
the NOP method for OTM options. Additionally, the means are 0.9790, 0.6312, and 0.0623 for
different moneyness categories, indicating the pricing error using the proposed method is
lower for in-the-money options. Fig 3 shows the market price of the quanto option and the cor-
responding model price evaluated by the Bayesian method and the NOP method, respectively.

We notice that the model price can fit the market price well, indicating that the proposed
method is feasible in pricing the quanto option with liquidity risk. The pricing performance
for OTM options and ITM options is better than that for NTM options. For NTM options, the
model price evaluated by the NOP method is bigger than the market price. However, the
model price evaluated by the Bayesian method is smaller than the market price. This paper
provides an approach to estimating the model parameters and performing posterior inference
on the quanto option with liquidity risk.

5 Conclusion

Existing literature pays little attention to the parameter estimation for the quanto option pric-
ing model with liquidity risk. Due to the lack of market data on quanto options, traditional

Table 2. Out-of-sample pricing performance across different moneyness groups.

Moneyness Bayesian method NOP method

Mean Std.Dev. Mean Std.Dev.
OTM 0.9790 0.0304 0.9427 0.4414
NTM 0.6312 0.2099 0.2773 0.1686
IT™M 0.0623 0.0699 0.0151 0.0125

https://doi.org/10.1371/journal.pone.0292324.t1002
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Fig 3. Quanto option price with liquidity adjustment by Bayesian method and NOP method.
https://doi.org/10.1371/journal.pone.0292324.9003

estimation methods may not be applicable to the quanto option pricing model. Therefore, this
paper proposes an approach to estimating the model parameters and performing posterior
inference on the quanto option price under the Bayesian framework. First, we derive the theo-
retical pricing formula of the quanto option with liquidity risk. Second, based on the dynamics
of the underlying stock price and the exchange rate process, we construct a likelihood function
for performing posterior inference on model parameters. We provide a different perspective
to estimate the correlation coefficient. Furthermore, we illustrate how to evaluate the quanto
option with liquidity risk based on posterior densities by a random walk chain Metropolis-
Hastings sampling algorithm. Finally, an empirical analysis is conducted to examine the pric-
ing performance. The empirical results demonstrate the proposed method is feasible in pricing
the quanto option with liquidity risk.

This paper provides an alternative approach to estimating the model parameters and per-
forms posterior inference on the quanto option with liquidity risk. The proposed method also
applies to other multi-asset option pricing models. For instance, the extensions on how to
incorporate stock market liquidity and option market liquidity into option pricing models
remain open in future studies.
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