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Abstract

This paper investigates the pricing problem of quanto options with market liquidity risk using

the Bayesian method. The increasing volatility of global financial markets has made liquidity

risk a significant factor that should be taken into consideration while evaluating option prices.

To address this issue, we first derive the pricing formula for quanto options with liquidity risk.

Next, we construct a likelihood function to conduct posterior inference on model parameters.

We then propose a numerical algorithm to conduct statistical inferences on the option prices

based on the posterior distribution. This proposed method considers the impact of parame-

ter uncertainty on option prices. Finally, we conduct a comparison between the Bayesian

method and traditional estimation methods to examine their validity. Empirical results show

that our proposed method is feasible for pricing and predicting quanto options with liquidity

risk, particularly for parameter estimations with a small sample size.

1 Introduction

Quanto options are increasingly becoming an essential tool for financial investment and risk

management as financial globalization progresses. Quanto option is a multi-asset option

whose value depends on the underlying asset in one currency, but the payoff settled in another

currency, enabling the holder to manage the multinational risks from diverse financial

markets.

With the development of option pricing theory, many extended quanto option pricing

models have been proposed based on the Black-Scholes [1] model. To better capture market

characteristics, such as volatility smile, heavy tails, skewness, and jump, existing literature

incorporates these features into quanto option pricing models, including GARCH models, sto-

chastic volatility models, jump-diffusion models, etc. More related research refers to [2–5].

Moreover, Teng et al. [6] assumed that the correlation between the underlying asset and cur-

rency exchange rate is dynamic, and they found that this dynamic correlation had a significant

impact on the quanto option pricing. Battauz et al. [7] studied the optimal exercise policies of

American quanto options by using a parsimonious diffusive model, which further enriched

the pricing theory of quanto options. Recently, Lee et al. [8] studied partial quanto lookback

options and proposed an approach to evaluating the option. Their pricing formula makes

quanto lookback options cheaper.
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The continuous international trade war and COVID-19 have increased the volatility of

financial markets. As a result of increased market volatility, investors are increasingly con-

cerned with market liquidity when managing their financial assets. Moreover, researchers

have found that the effect of market liquidity should be considered in option pricing. Brunetti

and Caldarera [9] established the liquidity discount factor and liquidity-adjusted asset pricing

model for capturing the characteristics of stocks in an imperfectly liquid market. On the foun-

dation of this model, Li et al. [10] further proposed the quanto option pricing model with

liquidity adjustment. They found that considering stock liquidity in the option pricing model

can better fit market data. Gao et al. [11] studied the exchange option pricing problem with

market liquidity in an incomplete market. Pasricha et al. [12] have reviewed the relevant litera-

ture and classified this type of research into two categories, i.e., stock-specific liquidity and

market-wide liquidity. They developed a theoretical framework to consider liquidity risk in

the pricing of European options based on market-wide liquidity. For the former, some scholars

found that trading in stock could have an influence on its price and studied the effect of stock-

specific liquidity on option pricing, see, for example, [13, 14]. For the latter, some empirical

results demonstrated that the commonality in liquidity affects stock returns and the option

pricing, see, for example, [15–19]. Recently, Pasricha and He [20] employed an Ornstein–

Uhlenbeck process to model market liquidity risk and studied the effect of stochastic liquidity

on exchange options. These studies demonstrate that the impact of market liquidity risk on

option pricing should be considered, which can improve the pricing performance.

There have been many extended studies on the theoretical pricing model for quanto

options. However, there are few studies on parameter estimations of the quanto option pricing

model in existing literature, especially in illiquid markets. The accuracy of parameter estima-

tion directly affects the performance of option pricing models. Due to the lack of market data

on quanto options, traditional estimation methods that rely on a large number of sample data,

such as Maximum Likelihood Estimation and optimization method, may no longer be effective

for quanto option pricing models. However, for complicated models, the Bayesian statistical

method, which can fully consider prior information and parameter uncertainty, performs bet-

ter in parameter inference and prediction. Therefore, some researchers suggest applying the

Bayesian method to estimate model parameters; see, e.g., [21–25]. Karolyi [21] considered the

impact of the randomness of volatility on stock returns and proposed an approach to evaluat-

ing European call options under the Bayesian framework. Rombouts and Stentoft [22] intro-

duced an approach to conducting posterior inference on European option price and

demonstrated that the Bayesian method performs better than traditional methods when sam-

ple data is small. Gao et al. [26] introduced an approach to conducting posterior inference on

the European call option pricing model in an imperfectly liquid market. Recently, Hu et al.

[27] proposed a new semi-parametric nonlinear volatility model to capture stock returns and

they recommended a Bayesian sampling algorithm for estimating the model parameters.

However, research on the quanto option pricing model with market liquidity using the

Bayesian method is rare. Considering the advantages of Bayesian statistics in parameter esti-

mations for small samples, we propose an alternative approach to evaluating quanto options

with liquidity risk under the Bayesian framework. Based on posterior distributions, we per-

form statistical inferences on model parameters and the option price by the Markov chain

Monte Carlo (MCMC) numerical algorithm. In the numerical experiment, the liquidity is

defined as the ability of an asset to trade any amount of securities quickly at the market price

without additional transaction cost. We adopt the commonly used liquidity measure to cap-

ture the liquidity risk. The liquidity measure is defined as stock return divided by dollar trad-

ing volume (hereafter RDV). The RDV measure can be used to describe a sudden down or up
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in a stock price. This measure is negative when the price is down and positive when it is up.

The RDV measure is zero when the market is perfectly liquid; refer to [15] for more details.

The main work of this paper is as follows. The pricing problem of the quanto option is stud-

ied using the Bayesian method in an incomplete market. This paper provides an alternative

approach to evaluating quanto options with liquidity risk. First, an explicit expression of the

quanto option price with liquidity risk is derived from a mathematical perspective. Second,

under the Bayesian framework, an estimation approach is proposed to conduct statistical infer-

ences on model parameters and the quanto option price. We account for the randomness of

model parameters as well as the randomness of the correlation coefficient between the under-

lying stock and the exchange rate. Moreover, the quanto option price can be predicted by the

posterior density. A comparison between the proposed method and the traditional estimation

method is conducted to examine the validity.

This paper is different from the existing literature in the following aspects. First, we derive

the closed-form pricing formula of the quanto option with liquidity risk in an alternative way.

Second, we propose a Bayesian approach to estimate model parameters. We consider the

effects of parameter uncertainty and the correlation coefficient randomness on the quanto

option price. Moreover, we investigate the statistical properties of the quanto option prices

based on posterior distributions by an MCMC numerical algorithm. Unlike traditional meth-

ods that usually provide only a point estimate, we offer more statistical characteristics about

option prices from a probabilistic perspective. These statistical characteristics can provide

investors with more information to make better decisions.

The remainder of this article is as follows. Section 2 describes the stock price process in an

imperfectly liquid market and deduces the pricing formula for the quanto option with different

payoffs. Section 3 introduces the posterior inferences on parameters and the quanto option

price. Section 4 conducts an empirical analysis. Section 5 is the conclusion.

2 Quanto option pricing model with liquidity risk

In this article, we investigate the pricing problem of a European quanto option in an incom-

plete market, where the underlying asset is an imperfectly liquid foreign stock. With the

quanto option as an example, we provide an approach to studying the pricing of multi-asset

options with market liquidity risk.

2.1 Dynamics of the foreign stock price with liquidity risk

To investigate the effect of stock liquidity risk on quanto options, we adopt the liquidity-

adjusted asset pricing model proposed by [9] to model the foreign stock price dynamics

dSðtÞ
SðtÞ

¼ ðmþ xoðtÞ þ
1

2
x

2
o2ðtÞÞdt þ xoðtÞdWP

L ðtÞ þ ldW
P
I ðtÞ; ð1Þ

where ω(t) denotes the liquidity level at time t 2 [0, T], ω(t)> 0 (ω(t) < 0) shows that the mar-

ket is in shortage (surplus), ω(t) = 0 indicates a perfectly liquid market. ξ> 0 denotes the sensi-

tivity of stock price S(t) to liquidity level ω(t), and λ is a part of volatility. L(t) and I(t)
respectively, represent the processes of the liquidity discount factor and the information fol-

lowing

dLðtÞ
LðtÞ

¼ ð
1

2
x

2
o2ðtÞ � xoðtÞÞdt � xoðtÞdWP

L ðtÞ;
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and

dIðtÞ
IðtÞ

¼ mIdt þ sIdW
P
I ðtÞ;

where WP
L ðtÞ and WP

I ðtÞ are independent Brownian motions under physical measure P. Simi-

larly to [10, 12, 20], we employ the liquidity discount factor L(t) to capture the effect of the

liquidity risk. L(t) is a function of the liquidity level ω(t) and a parameter ξ representing the

sensitivity of the stock price to the liquidity level.

2.2 Quanto option model with liquidity risk

In the paper, we consider a quanto option on an imperfectly liquid stock whose price dynamics

are given by Eq (1). Supposing that the price processes of the foreign stock and exchange rate

are followed by

dSðtÞ ¼ ðmþ xoðtÞ þ
1

2
x

2
o2ðtÞÞSðtÞdt þ xoðtÞSðtÞdWP

L ðtÞ þ lSðtÞdW
P
I ðtÞ;

dFðtÞ ¼ mFFðtÞdt þ sFFðtÞdWP
F ðtÞ;

8
<

:
ð2Þ

where ρ denotes the correlation coefficient between S(t) and F(t), i.e., dWP
F ðtÞdW

P
I ðtÞ ¼ r, and

dWP
F ðtÞdW

P
L ðtÞ ¼ 0. Therefore, the Brownian motion WP

I ðtÞ can be represented by

WP
I ðtÞ ¼ rW

P
F ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

WPðtÞ, where WP
L ðtÞ and WP

F ðtÞ are independent of WPðtÞ.
Then, the dynamics of the foreign stock price can be rewritten by

dSðtÞ
SðtÞ

¼ ðmþ xoðtÞ þ
1

2
x

2
o2ðtÞÞdt þ xoðtÞdWP

L ðtÞ þ lrdW
P
F ðtÞ þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
dWPðtÞ:

Denote

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

ð1 � r2Þ

q

d ~WPðtÞ ¼ xoðtÞdWP
L ðtÞ þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
dWPðtÞ;

thus, we have

dSðtÞ
SðtÞ

¼ ðmþ xoðtÞ þ
1

2
x

2
o2ðtÞÞdt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

ð1 � r2Þ

q

d ~WPðtÞ þ rldWP
F ðtÞ:

For evaluating the quanto option by martingale pricing theory, we need to find the equiva-

lent martingale measure. Similarly to [10], by multidimensional Girsanov theorem, we deduce

the equivalent martingale measureQ defined by the Radon-Nikodym derivative

dQ
dP
¼ exp

(
X2

i¼1

½

Z t

0

� giðuÞdW
P
i ðuÞ �

1

2

Z t

0

g2

i ðuÞdu�

)

;

where WP
1
ðtÞ ¼ ~WPðtÞ, WP

2
ðtÞ ¼WP

F ðtÞ, and

g1ðtÞ ¼
mF þ mþ xoðtÞ þ

1

2
x

2
o2ðtÞ þ rlsF � rd � ðsF þ rlÞg2ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

ð1 � r2Þ

q ;

g2ðtÞ ¼
mF þ rf � rd

sF
;

8
>>>>>><

>>>>>>:

F t denotes the filtration. Then, we deduce the corresponding Brownian motions under
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measureQ following

d ~WQðtÞ ¼ d ~WPðtÞ þ g1ðtÞdt;

dWQ
F ðtÞ ¼ dWP

F ðtÞ þ g2ðtÞdt;

where d ~WQðtÞdWQ
F ðtÞ ¼ 0.

Therefore, the price processes of the foreign stock and exchange rate are followed by

dSðtÞ
SðtÞ

¼ ðrf � rlsFÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

ð1 � r2Þ

q

d ~WQðtÞ þ rldWQ
F ðtÞ;

dFðtÞ
FðtÞ

¼ ðrd � rf Þdt þ sFdW
Q
F ðtÞ;

8
>>><

>>>:

ð3Þ

under domestic risk neutral measureQ.

By Ito formula, we have

d ln SðtÞ ¼ ðrf � rlsF �
1

2
x

2
o2ðtÞ �

1

2
l

2
Þdt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

ð1 � r2Þ

q

d ~WQðtÞ

þ rldWQ
F ðtÞ; ð4Þ

d ln FðtÞ ¼ ðrd � rf �
1

2
s2

FÞdt þ sFdW
Q
F ðtÞ: ð5Þ

Next, we deduce the theoretical pricing model of the quanto option in an imperfectly liquid

market.

2.3 Theoretical pricing model of quanto options with liquidity risk

Similarly to [10], we consider four different types of payoffs for the quanto option on an

imperfectly liquid stock. Assuming that the dynamics of the underlying asset are followed by

Eq (2).

According to the martingale pricing theory, we deduce the pricing formulas of quanto

options with four different payoffs under the domestic martingale measureQ.

Theorem 1. Suppose the underlying foreign asset is an imperfectly liquid stock S(t) defined by
Eq (1), then the time-t price of the floating exchange rate foreign stock quanto call option struck
in foreign currency at maturity T with payoff F(T) max{S(T) − Kf, 0} is

V1ðSðtÞ; FðtÞ;oðtÞ; l; xÞ ¼ FðtÞ½SðtÞFðdð1Þ1 Þ � Kf e� rf tFðd
ð1Þ

2 Þ�; ð6Þ

where τ = T − t, ω(t) is liquidity level, λ, ξ are defined as previously, and

dð1Þ1 ¼

ln
SðtÞ
Kf
þ ½ðrf þ

1

2
l

2
Þtþ

1

2
x

2

Z T

t
o2ðuÞdu�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
tþ x

2
R T
t o

2ðuÞdu
q ;

dð1Þ2 ¼ dð1Þ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
tþ x

2
R T
t o

2ðuÞdu
q

:

Proof. By the martingale pricing theory, the price of the floating exchange rate foreign stock

quanto call option struck in foreign currency can be given by

V1ðSðtÞ; FðtÞ;oðtÞ; l; xÞ ¼ e� rdtEQ½FðTÞmaxfSðTÞ � Kf ; 0gjF t�; ð7Þ

where EQ½�� is the expectation operator under domestic risk-neutral martingale measureQ.
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From Eq (5), we have

FðtÞ ¼ Fð0Þ expfðrd � rf �
1

2
s2

FÞt þ sFW
Q
F ðtÞg;

and denote the equivalent martingale measure byQ1 defined by

dQ1

dQ
¼ expf�

1

2
s2

Ft þ sFW
Q
F ðtÞg:

Then, formula (7) can be rewritten as

V1ðSðtÞ; FðtÞ;oðtÞ; l; xÞ

¼ e� rdtEQ½FðtÞeðrd � rf ÞðT� tÞ
dQ1

dQ
max fSðTÞ � Kf ; 0gjF t�;

¼ FðtÞe� rf tEQ1 ½SðTÞIfKf<SðTÞgjF t� � FðtÞe� rf ðT� tÞKfE
Q1 ½IfKf<SðTÞgjF t�;

ð8Þ

where I{} denotes the indicator function.

Under equivalent martingale measureQ1, we obtain

d ln SðtÞ ¼ ðrf �
1

2
x

2
o2ðtÞ �

1

2
l

2
Þdt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

ð1 � r2Þ

q

d ~WQ1ðtÞ þ rldWQ1
F ðtÞ;

where ~WQ1ðtÞ and WQ1
F ðtÞ are independent standard Brownian motions under measureQ1

satisfying

d ~WQ1ðtÞ ¼ d ~WQðtÞ; dWQ1
F ðtÞ ¼ dWQ

F ðtÞ � sFdt:

Thus, we get

SðTÞ ¼ SðtÞ exp

(Z T

t
ðrf �

1

2
x

2
o2ðuÞ �

1

2
l

2
Þduþ

Z T

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðuÞ þ l2

ð1 � r2Þ

q

d ~WQ1ðuÞ

þ
R T
t rldW

Q1
F ðuÞ

)

:

Therefore, the second expectation expression on the right side of Eq (8) can be given by

EQ1 ½IfKf<SðTÞgjF t� ¼ PrQ1ðKf < SðTÞjF tÞ

¼ F

ln
SðtÞ
Kf
þ ½ðrf �

1

2
l

2
Þt �

1

2
x

2

Z T

t
o2ðuÞdu�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
tþ x

2
R T
t o

2ðuÞdu
q

0

B
B
B
@

1

C
C
C
A

Next, we derive the first expectation in Eq (8). By Girsanov theorem, we obtain an equiva-

lent martingale measureQ2 defined by

dQ2

dQ1

¼ exp

(

�
1

2

Z t

0

ðx
2
o2ðuÞ þ l2

Þduþ
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðuÞ þ l2

q

dWQ1
3 ðuÞ

)

:

where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

q

dWQ1
3 ðtÞ≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

ð1 � r2Þ

q

d ~WQ1ðtÞ þ rldWQ1
F ðtÞ.
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Based on Girsanov theorem, we obtain the standard Brownian motions WQ2
3 ðtÞ under mea-

sureQ2 satisfying

dWQ2
3 ðtÞ ¼ d ~WQ1ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

q

dt;

Based on Ito formula, under measureQ2, we derive

d ln SðtÞ ¼ ðrf þ
1

2
x

2
o2ðtÞ þ

1

2
l

2
Þdt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

q

dWQ2
3 ðtÞ ð9Þ

Thus, the first expectation is given by

EQ1 ½SðTÞIfKf<SðTÞgjF t� ¼ EQ1 ½erf tSðtÞ
dQ2

dQ1

IfKf<SðTÞgjF t�

¼ erf tSðtÞEQ2 ½IfKf<SðTÞgjF t�

¼ erf tSðtÞPrQ2ðKf < SðTÞjF tÞ

¼ erf tSðtÞFðdð1Þ1 Þ;

where dð1Þ1 ¼
ln SðtÞ

Kf
þ½ rfþ1

2
l2ð Þtþ1

2
x2
R T

t
o2ðuÞdu�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2tþx2

R T

t
o2ðuÞdu

q .

Therefore, the price of the quanto call option with liquidity risk is

V1ðSðtÞ; FðtÞ;oðtÞ; l; xÞ ¼ FðtÞ½SðtÞFðdð1Þ1 Þ � Kf e� rf tFðd
ð1Þ

2 Þ�:

Theorem 2. Suppose the underlying foreign asset is an imperfectly liquid stock S(t) defined by
Eq (1), then the time-t price of the quanto call option struck in domestic currency at maturity T
with payoff max{F(T)S(T) − Kd, 0} is

V2ðSðtÞ; FðtÞ;oðtÞ; l; x; r; sFÞ ¼ FðtÞSðtÞFðdð2Þ1 Þ � Kde� rdtFðd
ð2Þ

2 Þ; ð10Þ

where τ = T − t, ω(t) is liquidity level, λ, ξ are defined as previously, and

dð2Þ1 ¼

ln
FðtÞSðtÞ

Kd
þ ½ðrd þ

1

2
l

2
þ rlsF þ

1

2
s2

FÞtþ
1

2
x

2

Z T

t
o2ðuÞdu�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl
2
þ 2rlsF þ s

2
FÞtþ x

2
R T
t o

2ðuÞdu
q ;

dð2Þ2 ¼ dð2Þ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl
2
þ 2rlsF þ s

2
FÞtþ x

2

Z T

t
o2ðuÞdu

s

:

Proof. By martingale pricing theory, we have

V2ðSðtÞ; FðtÞ;oðtÞ; l; x;rÞ ¼ e� rdtEQ½max fFðTÞSðTÞ � Kd; 0gjF t�

¼ e� rdtEQ½ŜðTÞIfKd<ŜðTÞgjF t� � e� rdtEQ½KdIfKd<ŜðTÞgjF t�;
ð11Þ

where ŜðTÞ ¼ FðTÞSðTÞ.
According to Girsanov theorem, from Eq (13), we derive

d ln ŜðtÞ ¼ ðrd �
1

2
x

2
o2ðtÞ �

1

2
l

2
�

1

2
s2

F � rlsFÞdt

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðtÞ þ l2

ð1 � r2Þ

q

d ~WQðtÞ þ ðsF þ rlÞdW
Q
F ðtÞ:

ð12Þ
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Then, we have

ŜðTÞ ¼ ŜðtÞ exp

(Z T

t
ðrd �

1

2
x

2
o2ðuÞ �

1

2
l

2
�

1

2
s2

F � rlsFÞdu

þ

Z T

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðuÞ þ l2

ð1 � r2Þ

q

d ~WQðuÞ þ
Z T

t
ðsF þ rlÞdW

Q
F ðtÞ

)

:

ð13Þ

Denote the equivalent martingale measure byQ1 defined by the following Radon-Nikodym

derivative

dQ1

dQ
¼ exp

(

�
1

2

Z T

t
ðx

2
o2ðuÞ þ l2

þ s2

F þ 2rlsFÞdu

þ

Z T

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðuÞ þ l2

þ s2
F þ 2rlsF

q

dWQ
4
ðuÞ

)

;

ð14Þ

where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðuÞ þ l2

þ s2
F þ 2rlsF

q

dWQ
4 ðuÞ≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðuÞ þ l2

ð1 � r2Þ

q

d ~WQðuÞ

þ

Z T

t
ðsF þ rlÞdW

Q
F ðtÞ:

Substituting Eqs (13) and (14) into Eq (11), then we obtain

V2ðSðtÞ; FðtÞ;oðtÞ; l; x; rÞ

¼ e� rdtEQ½ŜðTÞIfKd<ŜðTÞgjF t� � e� rdtEQ½KdIfKd<ŜðTÞgjF t�;

¼ e� rdtEQ½erdtŜðtÞ
dQ1

dQ
IfKd<ŜðTÞgjF t� � e� rdtEQ½KdIfKd<ŜðTÞgjF t�

¼ ŜðtÞEQ1 ½IfKd<ŜðTÞgjF t� � e� rdtKdE
Q½IfKd<ŜðTÞgjF t�;

¼ ŜðtÞPrQ1ðKd < ŜðTÞjF tÞ � e� rdtKdPr
QðKd < ŜðTÞjF tÞ

Based on Girsanov theorem and probability theory, we derive

PrQ1ðKd < ŜðTÞjF tÞ ¼ Fðdð2Þ1 Þ; PrQðKd < ŜðTÞjF tÞ ¼ Fðdð2Þ2 Þ;

where

dð2Þ1 ¼

ln
FðtÞSðtÞ

Kd
þ ½ðrd þ

1

2
l

2
þ rlsF þ

1

2
s2

FÞtþ
1

2
x

2

Z T

t
o2ðuÞdu�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl
2
þ 2rlsF þ s

2
FÞtþ x

2
R T
t o

2ðuÞdu
q ;

dð2Þ2 ¼ dð2Þ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl
2
þ 2rlsF þ s

2
FÞtþ x

2

Z T

t
o2ðuÞdu

s

:

Therefore, the price of the quanto call option with liquidity risk is

V2ðSðtÞ; FðtÞ;oðtÞ; l; x;r; sFÞ ¼ FðtÞSðtÞFðdð2Þ1 Þ � Kde
� rdtFðdð2Þ2 Þ:

Theorem 3. Suppose the underlying foreign asset is an imperfectly liquid stock S(t) defined by
Eq (1), then the time-t price of the fixed exchange rate foreign equity call at maturity T with
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payoff F0 max{S(T) − Kf, 0} is

V3ðSðtÞ; FðtÞ;oðtÞ; l; x; r; sFÞ ¼ F0e
� rdt½SðtÞeðrf � rlsFÞtFðdð3Þ1 Þ � KfFðd

ð3Þ

2 Þ�; ð15Þ

where F0 is the predetermined fixed exchange rate, τ = T − t, and ω(t) is the liquidity level, λ, ξ
are defined as previously, and

dð3Þ1 ¼

ln
SðtÞ
Kf
þ rf þ

1

2
l

2
� rlsF

� �

tþ
1

2
x

2

Z T

t
o2ðuÞdu

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
tþ x

2
R T
t o

2ðuÞdu
q ;

dð3Þ2 ¼ dð3Þ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
tþ x

2
R T
t o

2ðuÞdu
q

:

Proof. By martingale pricing theory and Girsanov theorem, we have

V3ðSðtÞ; FðtÞ;oðtÞ; l; x; r;sFÞ

¼ e� rdtEQ½F0 max fSðTÞ � Kf ; 0gjF t�

¼ e� rdtF0E
Q½SðTÞIfKf<SðTÞgjF t� � e� rdtF0KfE

Q½IfKf<SðTÞgjF t�

¼ e� rdtF0SðtÞeðrf � rlsFÞtE
Q1 ½IfKf<SðTÞgjF t� � e� rdtF0KfE

Q½IfKf<SðTÞgjF t�

¼ F0e� rdt½SðtÞeðrf � rlsFÞtFðd
ð3Þ

1 Þ � KfFðd
ð3Þ

2 Þ�;

ð16Þ

where

dð3Þ1 ¼

ln
SðtÞ
Kf
þ ½ðrf þ

1

2
l

2
� rlsFÞtþ

1

2
x

2
R T
t o

2ðuÞdu�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
tþ x

2
R T
t o

2ðuÞdu
q ;

dð3Þ2 ¼ dð3Þ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
tþ x

2

Z T

t
o2ðuÞdu

s

:

Theorem 4. Suppose the underlying foreign asset is an imperfectly liquid stock S(t) defined by
Eq (1), then the time-t price of the equity-linked foreign exchange call option at maturity T with
payoff S(T) max{F(T) − KF, 0} is

V4ðSðtÞ; FðtÞ; l; r; sFÞ ¼ St½FðtÞFðd
ð4Þ

1 Þ � KFe
ðrf � rd � rlsFÞtFðdð4Þ2 Þ�; ð17Þ

where F0 is the predetermined fixed exchange rate, τ = T − t, and ω(t) is the liquidity level, λ, ξ
are defined as previously, and

dð4Þ1 ¼

ln
FðtÞ
KF
þ ½ðrd � rf þ

1

2
s2

F þ rlsFÞt�

sF

ffiffiffi
t
p ;

dð4Þ2 ¼ dð4Þ1 � sF

ffiffiffi
t
p

:
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Proof. By martingale pricing theory, we obtain

V4ðSðtÞ; FðtÞ; l;r; sFÞ ¼ e� rdtEQ½SðTÞmax fFðTÞ � KF; 0gjF t�

¼ e� rdtEQ½SðtÞeðrf � rlsFÞt
dQ1

dQ
max fFðTÞ � KF; 0gjF t�

¼ SðtÞeðrf � rd � rlsFÞtEQ1 ½FðTÞIfKF<FðTÞgjF t�

� SðtÞeðrf � rd � rlsFÞtEQ1 ½KFIfKF<FðTÞgjF t�

ð18Þ

Under measureQ1 defined by

dQ1

dQ
¼ expf�

1

2

Z T

t
ðx

2
o2ðuÞ þ l2

Þduþ
Z T

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2ðuÞ þ l2

ð1 � r2Þ

q

d ~WQðuÞ

þ

Z T

t
rldWQ

F ðtÞg;

we derive

d ln FðtÞ ¼ ðrd � rf �
1

2
s2

F þ rlsFÞdt þ sFdW
Q1
F ðtÞ:

Denote the equivalent martingale measure by Q2 defined by

dQ2

dQ1

¼ expf�
1

2
s2

Ft þ sFW
Q1
F ðtÞg:

According to the Girsanov theorem and probability theory, the first term on the right side

of Eq (18) is rewritten by

SðtÞeðrf � rd � rlsFÞtEQ1 ½FðTÞIfKF<FðTÞgjF t� ¼ SðtÞFðtÞEQ1 ½
dQ2

dQ1

IfKF<FðTÞgjF t�

¼ SðtÞFðtÞEQ2 ½IfKF<FðTÞgjF t�

¼ SðtÞFðtÞFðdð4Þ1 Þ;

where

dð4Þ1 ¼
ln FðtÞ

KF
þ ½ðrd � rf þ 1

2
s2
F þ rlsFÞt�

sF

ffiffiffi
t
p :

Similarly, the second term on the right side of Eq (18) is rewritten by

SðtÞeðrf � rd � rlsFÞtEQ1 ½KFIfKF<FðTÞgjF t� ¼ SðtÞeðrf � rd � rlsFÞtKFFðd
ð4Þ

2 Þ;

where dð4Þ2 ¼ dð4Þ1 � sF

ffiffiffi
t
p

.

Therefore, the price of the equity-linked foreign exchange call option is

V4ðSðtÞ; FðtÞ; l; r; sFÞ ¼ St½FðtÞFðd
ð4Þ

1 Þ � KFe
ðrf � rd � rlsFÞtFðdð4Þ2 Þ�:

Theorems (1)–(4) provide the theoretical pricing models to study the impact of stock

liquidity on quanto options in an imperfectly liquid market. For better applying these theoreti-

cal models in practice, the precise estimation of unknown parameters is still required. As
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mentioned before, the main focus of this paper is to propose an approach to estimating model

parameters and performing posterior inference on the quanto option price.

3 Posterior inference on the quanto option pricing model

Due to the lack of market data on quanto options, it is difficult to estimate the parameters of

the quanto option pricing model. The accuracy of parameter estimation directly affects the

performance of option pricing models. In this section, we propose a posterior inferential

method to conduct statistical inferences on unknown parameters and the quanto option price.

3.1 Posterior inference on unknown parameters

Denote xt ¼ ln SðtÞ
Sðt� 1Þ

and yt ¼ ln FðtÞ
Fðt� 1Þ

as the continuously compounded returns. For simplic-

ity, we let ω(t) = ωt. Under the risk-neutral measureQ, from Eqs (4) and (5), we derive the

joint probability density

pðxt; ytjl; x; r;sF;ot� 1Þ

¼
1

2psF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2

t� 1
þ l

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

� exp

(

�
1

2ð1 � r2Þ

" xt � rf þ rlsF þ
1

2
x

2
o2

t� 1
þ

1

2
l

2

� �2

x
2
o2

t� 1
þ l

2
þ

yt � rd þ rf þ
1

2
s2

F

� �2

s2
F

�

2r xt � rf þ rlsF þ
1

2
x

2
o2

t� 1
þ

1

2
l

2

� �

yt � rd þ rf þ
1

2
s2

F

� �

sF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2

t� 1
þ l

2

q

#)

:

Denote the return observations by X = (x1, x2, � � �, xT)0 and Y = (y1, y2, � � �, yT)0, then the

likelihood function is given by

LðX;Yjl; x;r; sF;oÞ

¼
YT

t¼1

(
1

2psF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2

t� 1
þ l

2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

� exp

(

�
1

2ð1 � r2Þ
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2
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2
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2
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2
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2
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2
þ
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1

2
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s2
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2rðxt � rf þ rlsF þ
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2
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2
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þ

1

2
l

2
Þ yt � rd þ rf þ

1

2
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F

� �

sF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2
o2

t� 1
þ l

2

q
i
))

;

ð19Þ

where liquidity levels ω = (ω0, ω1, � � �, ωT−1)0 are described by the liquidity measure RDV

defined before.

The prior distribution represents the beliefs or assumptions about the parameters before we

observe any data. The choice of prior distribution can have a significant impact on the results

of Bayesian estimation. It can be chosen based on prior knowledge or empirical evidence.

Common choices include uniform, normal, and exponential distributions. Based on the

empirical evidence from existing literature, we consider truncated normal distribution as the

prior distribution for parameters λ, ξ, and take uniform distribution U 2 (−1, 1) as the prior
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distribution for correlation coefficient ρ. In addition, we take the noninformative prior for

parameter σF, i.e., pðsFÞ /
1

sF
. Supposing they are independent of each other. Thus, the joint

prior probability density is represented by

pðl; x;sF; rÞ ¼ fNðlÞIfl>0g � fNðxÞIfx>0g � pðsFÞ � U� 1<r<1; ð20Þ

where fN(�) denotes the probability density for standard normal distribution.

Based on Bayesian theorem, the kernel of the joint posterior probability density is given by

pðl; x; sF; rjX;Y;oÞ / pðl; x; sF; rÞLðX;Yjl; x;sF; r;oÞ

/
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e
�
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2

2s2
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i
))

;

ð21Þ

where μλ, σλ, μξ, and σξ are hyperparameters of prior distributions for λ and ξ, respectively. We

typically determine the values of hyperparameters through two steps. Step 1: We consider the

noninformative prior for parameters λ, and ξ. By Bayesian formula, we obtain the posterior

distributions for λ, and ξ based on the sample information. Step 2: Based on the posterior dis-

tributions obtained in Step 1, we perform statistical inference on λ, and ξ, including the mean,

standard deviation, kernel density, etc. These estimation results are further treated as the prior

information for choosing the values of the hyperparameters.

By conditional probability formula, the kernels of the fully conditional posterior probability

densities are given by

pðljx; sF; r;X;Y;oÞ
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;

ð22Þ
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pðxjl; sF; r;X;Y;oÞ
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ð23Þ

pðsFjl; x; r;X;Y;oÞ
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and
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ð25Þ

We are noting that the fully conditional posterior probability densities are more complex.

Thus, we propose a random walk chain Metropolis-Hastings algorithm to generate samples

from the fully conditional posterior densities. Then, by Monte Carlo method, we perform

statistical inference on parameters on the foundation of posterior samples λj, ξ j, s
j
F and ρj,

j = 1, 2, � � �, N. The inferential results consider the market data of stock prices and the

exchange rate simultaneously, which is helpful for the parameter calibration of the quanto

option pricing model.
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3.2 Posterior inference on the quanto option price

In this section, we further perform statistical inference on the quanto option price based on

the posterior estimations of the model parameters. From Theorems (1)–(4), we notice that the

quanto option price is adjusted depending on the liquidity level ω(t), the sensitivity ξ, the cor-

relation coefficient ρ, the volatility λ, and σF.

Given the values of S(t), F(t), ω(t) and τ at time t, the quanto option price with liquidity risk

V(S(t), F(t), ω(t), λ, ξ, ρ, σF) is the function of parameters λ, ξ, ρ, and σF from a mathematical

perspective. Based on posterior samples λj, ξj, ρj and s
j
F , VjðSðtÞ; FðtÞ;oðtÞ; lj

; x
j
; rj; s

j
FÞ evalu-

ated by Theorems (1)–(4) can be treated as the posterior samples of the quanto option price;

refer to [23] for more details.

By Monte Carlo integration, the posterior expectation of quanto option price is

E½VðSðtÞ; FðtÞ;oðtÞ; l; x;r; sFÞjX;Y�

’
1

N � n

XN

j¼nþ1

VjðSðtÞ; FðtÞ;oðtÞ; lj
; x

j
; rj; s

j
FÞ:

Furthermore, we can conduct statistical inference on any posterior moment we need. Unlike

traditional methods which usually provide only a point estimate, the proposed method pro-

vides more statistical characteristics about quanto option prices from a probabilistic perspec-

tive. These statistical characteristics can provide more information for investors with different

risk preferences to make better decisions.

4 Numerical analysis

In this section, we conduct the numerical analysis of the quanto option pricing model with

liquidity risk under the Bayesian framework. Li et al. [10] studied the effect of stock liquidity

on the quanto option price. They demonstrated that the quanto option pricing model with

liquidity adjustment can better fit the market price. However, the existing literature pays little

attention to the parameter estimation for the quanto option model. This paper proposes a

numerical algorithm to estimate the model parameters.

4.1 Metropolis-Hastings algorithm for posterior simulation

From the fully conditional posterior densities (22)–(25), we notice that the posterior densities

are not standard forms. The MCMC algorithm is required to generate posterior samples for

further statistical inferences on model parameters and the quanto option price. Gibbs sam-

pling and Metropolis-Hastings (M-H) sampling are two commonly used MCMC algorithms.

When posterior densities are standard, Gibbs sampling is often used to draw samples. Similarly

to [28], we apply the random walk chain Metropolis-Hastings algorithm to generate samples

from the posterior densities which are nonstandard. Let θ = (λ, ξ, σF, ρ) be the vector of

unknown parameters, and y
ðjÞ
i denotes the sample of the ith element in vector θ at iteration j

generated by following algorithm:

1. Draw a proposal y
∗
i from normal distribution Nðyðj� 1Þ

i ; s2
yi
Þ with mean y

ðj� 1Þ

i and variance

s2
yi

.

2. Draw an observation u from uniform distribution U[0, 1].

3. Compute the acceptance probability ~aðy
ðj� 1Þ

i ; y
∗
i Þ ¼ min

n
pðy∗i jy

ðj� 1Þ

� i ;X;Y;oÞ

pðyðj� 1Þ

i jy
ðj� 1Þ

� i ;X;Y;o
; 1
o

.
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4. If ~aðy
ðj� 1Þ

i ; y
∗
i Þ < u, then y

ðjÞ
i ¼ y

∗
i , otherwise y

ðjÞ
i ¼ y

ðj� 1Þ

i .

Where y
ðj� 1Þ

� i is the sample generated in the last step for elements in vector θ excluding the

ith one.

Meanwhile, to evaluate the efficiency of the proposed method, we employed the nonlinear

optimization (NOP) method introduced in [10, 15] to estimate the model parameters for

quanto option pricing. The objective function of the NOP method is to minimize the sum of

the squared price differences between the model and market prices of all available options. The

parameter estimations can be obtained by the following procedure:

SSEðtÞ ¼ min
l;x;r;sF

XZ

k¼1

h
Vk

marketðt; t;KÞ � Vk
modelðt; t;K; l; x;r; sFÞ

i2

;

where Vk
marketðt; t;KÞ represents the market price of the quanto option, and

Vk
modelðt; t;K; l; x; r; sFÞ is the model price evaluated by theoretical models. λ, ξ, ρ, and σF are

the unknown parameters to be estimated.

4.2 Application to market data

We consider such a quanto option contract in which an investor in Canada invests in the

European call option written on the Facebook In. (FB) stock traded in America. The investor

is exposed to the market risk of FB stock price and the exchange rate between US dollars and

Canadian dollars (USD/CAD).

After COVID-19 in 2020, the panic selling of the market caused a sharp drop in the stock

market. In addition, the liquidity change caused by the tightening of monetary policy is also an

important reason for the withdrawal of the stock market. Therefore, we obtained the market

data of FB stock prices and USD/CAD exchange rate from the Yahoo finance website from 6

January 2020 to 17 September 2021. During the period, we found that the stock market suf-

fered from the disturbance of COVID-19 and the global liquidity crunch. The risk-free interest

rate is obtained by the LIBOR rate, and the FB stock has zero dividend during the sample

period. Stock liquidity level is measured by RDV proxy defined before. Fig 1 shows the returns

and the liquidity levels of FB stock under the liquidity measure RDV. From Fig 1, we notice

that stock returns and liquidity have changed significantly during the sample period indicating

that there is indeed a correlation between asset prices and market liquidity.

Firstly, we perform statistical inference on unknown parameters based on the posterior dis-

tributions (22)–(25) by the MCMC numerical algorithm. The random walk chain Metropolis-

Hastings algorithm described in Section 4.1 is conducted 50000 times and discards the initial

25000 samples to remove the impact of initial values on estimations. The convergence of the

Markov chain is received according to Geweke’s convergence diagnostic [29].

Furthermore, we investigate the out-of-sample pricing performance of the proposed model

by comparing the model price with the market price. Although the market price data of the

quanto option is unavailable, we adopt a similar method in [10] to construct the quanto option

price as the benchmark by the market price of the European call option written on FB stock

and the USD/CAD exchange rate. Denote by Qcall(t, K, T) the market price of the quanto

option, then we have

Qcallðt;K;TÞ ¼ FðtÞCallðt;K;TÞ;

where F(t) is the USD/CAD exchange rate and Call(t, K, T) is the market price of the European

call option written on FB stock.
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Table 1 shows the posterior estimations of model parameters, including the posterior mean

(Mean), posterior standard deviation (Std.Dev.), and MCMC convergence diagnostics. Denote

the numerical standard errors by ‘NSE’ which shows the estimation accuracy. The column

marked ‘CD’ introduced by [29] is used to judge the convergence of the Markov chain. A com-

mon rule is to conclude that convergence of the MCMC algorithm has been achieved if ‘CD’ is

less than 1.96 in absolute value for all parameters. Table 1 indicates that convergence of the

MCMC algorithm has been achieved. The last column is the 99% highest posterior probability

density interval (HPDI) for parameters. Fig 2 shows the posterior probability histogram and

kernel density for parameters under the liquidity measure RDV.

We can see that the Bayesian method can provide more estimation results for model param-

eters. However, the traditional NOP method, which relies on a large number of market data of

the quanto option price, only provides a point estimation. We can not obtain the estimation

results of parameters σF and ρ by using the NOP method. Moreover, under the Bayesian

framework, parameter uncertainty and the randomness of the correlation coefficient ρ are

Fig 1. The returns and the liquidity levels of FB stock.

https://doi.org/10.1371/journal.pone.0292324.g001
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considered in the option pricing model. From posterior probability densities (22)–(25), we

note that the inferential results consider the market data of stock prices and the exchange rate

simultaneously, which is helpful for the parameter calibration of the quanto option pricing

model.

Fig 2. Posterior histogram and posterior kernel density for parameters under liquidity measure RDV.

https://doi.org/10.1371/journal.pone.0292324.g002

Table 1. Posterior results using Bayesian method and NOP estimates for quanto option model.

Method Parameter Mean Std.Dev. NSE CD 99%HPDI

Bayesian λ 0.0792 0.0493 0.0005 -1.2136 [0.0017, 0.1892]

ξ 1.5142 1.0169 0.0101 -0.8077 [0.0379, 4.8681]

σF 0.1645 0.1425 0.0015 0.3871 [0.0059, 0.7079]

ρ 0.9607 0.0386 0.0004 -0.7408 [0.8230, 0.9987]

NOP λ 0.3034 - - - -

ξ 3.2755 - - - -

σF - - - - -

ρ - - - - -

https://doi.org/10.1371/journal.pone.0292324.t001
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Similarly to [10], we take the floating exchange rate foreign equity quanto call option stuck

in foreign currency as an example. We illustrate how to conduct posterior inference on the

quanto option pricing model using the Bayesian method combined with Monte Carlo numeri-

cal algorithm.

Now we evaluate the quanto option with time to maturity τ = 28, 42, 63, 120 days, respec-

tively. Due to the limitation of the paper space, we only present the pricing results for the

quanto option with a maturity of 28 days. Based on the posterior samples of parameters λ, ξ, σF
and ρ, we conduct posterior inference on the quanto option price combining V1(S(t), F(t), ω
(t), λ, ξ) defined by Eq (6). Under the Bayesian framework, we can get the posterior mean,

standard deviation, quantiles, the 99%HPDI, and the posterior kernel density for the option

price. These posterior results provide more statistical characteristics about the option price

from a probabilistic perspective for investors with different risk preferences to make better

decisions. The proposed method considers the effect of parameter uncertainty and correlation

coefficient randomness on the option price.

To assess the pricing performance, we adopt the absolute percentage pricing errors as the

evaluation criteria. The absolute percentage pricing errors are defined by the absolute differ-

ence between the market price and the model price over the market price. Under liquidity mea-

sure RDV, Table 2 shows the posterior estimations of the quanto option price evaluated by the

Bayesian method and the corresponding model price evaluated by Eq (6) where the parameters

are estimated by the NOP method. It reports the mean and standard deviation of the pricing

errors for different moneyness categories, where moneyness is the stock price divided by the

strike price. OTM, NTM, and ITM denote out-of-the-money, near-the-money, and in-the-

money options, respectively. Table 2 shows that the standard deviation of pricing errors using

the Bayesian method is 0.0304 and the standard deviation is 0.4414 using the NOP method.

This indicates that the pricing performance of the Bayesian method is more stable than that of

the NOP method for OTM options. Additionally, the means are 0.9790, 0.6312, and 0.0623 for

different moneyness categories, indicating the pricing error using the proposed method is

lower for in-the-money options. Fig 3 shows the market price of the quanto option and the cor-

responding model price evaluated by the Bayesian method and the NOP method, respectively.

We notice that the model price can fit the market price well, indicating that the proposed

method is feasible in pricing the quanto option with liquidity risk. The pricing performance

for OTM options and ITM options is better than that for NTM options. For NTM options, the

model price evaluated by the NOP method is bigger than the market price. However, the

model price evaluated by the Bayesian method is smaller than the market price. This paper

provides an approach to estimating the model parameters and performing posterior inference

on the quanto option with liquidity risk.

5 Conclusion

Existing literature pays little attention to the parameter estimation for the quanto option pric-

ing model with liquidity risk. Due to the lack of market data on quanto options, traditional

Table 2. Out-of-sample pricing performance across different moneyness groups.

Moneyness Bayesian method NOP method

Mean Std.Dev. Mean Std.Dev.

OTM 0.9790 0.0304 0.9427 0.4414

NTM 0.6312 0.2099 0.2773 0.1686

ITM 0.0623 0.0699 0.0151 0.0125

https://doi.org/10.1371/journal.pone.0292324.t002
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estimation methods may not be applicable to the quanto option pricing model. Therefore, this

paper proposes an approach to estimating the model parameters and performing posterior

inference on the quanto option price under the Bayesian framework. First, we derive the theo-

retical pricing formula of the quanto option with liquidity risk. Second, based on the dynamics

of the underlying stock price and the exchange rate process, we construct a likelihood function

for performing posterior inference on model parameters. We provide a different perspective

to estimate the correlation coefficient. Furthermore, we illustrate how to evaluate the quanto

option with liquidity risk based on posterior densities by a random walk chain Metropolis-

Hastings sampling algorithm. Finally, an empirical analysis is conducted to examine the pric-

ing performance. The empirical results demonstrate the proposed method is feasible in pricing

the quanto option with liquidity risk.

This paper provides an alternative approach to estimating the model parameters and per-

forms posterior inference on the quanto option with liquidity risk. The proposed method also

applies to other multi-asset option pricing models. For instance, the extensions on how to

incorporate stock market liquidity and option market liquidity into option pricing models

remain open in future studies.

Fig 3. Quanto option price with liquidity adjustment by Bayesian method and NOP method.

https://doi.org/10.1371/journal.pone.0292324.g003

PLOS ONE Pricing quanto options with market liquidity risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0292324 September 28, 2023 19 / 21

https://doi.org/10.1371/journal.pone.0292324.g003
https://doi.org/10.1371/journal.pone.0292324


Supporting information

S1 Dataset.

(ZIP)

Acknowledgments

The authors express sincere appreciation to the editor and the anonymous reviewers for their

constructive comments that improved the paper.

Declarations: A preprint has previously been published [Rui Gao and Yanfei Bai, 2022],

i.e., reference [30].

Author Contributions

Formal analysis: Yanfei Bai.

Methodology: Rui Gao.

Writing – original draft: Rui Gao.

Writing – review & editing: Yanfei Bai.

References
1. Black F, Scholes M. The Pricing of Options and Corporate Liabilities. Journal of Political Economy.

1973; 81(3):637–654. https://doi.org/10.1086/260062

2. Branger N, Muck M. Keep on smiling? The pricing of Quanto options when all covariances are stochas-

tic. Journal of Banking and Finance. 2012; 36(6):1577–1591. https://doi.org/10.1016/j.jbankfin.2012.01.

004

3. Kim YS, Lee J, Mittnik S, Park J. Quanto option pricing in the presence of fat tails and asymmetric

dependence. Journal of Econometrics. 2015; 187(2):512–520. https://doi.org/10.1016/j.jeconom.2015.

02.035

4. Lian YM, Chen JH. Foreign exchange option pricing under regime switching with asymmetrical jumps.

Finance Research Letters. 2021; p. 102294.

5. Batra L, Taneja HC. Approximate-Analytical solution to the information measure’s based quanto option

pricing model. Chaos, Solitons & Fractals. 2021; 153:111493. https://doi.org/10.1016/j.chaos.2021.

111493

6. Teng L, Ehrhardt M, Günther M. The pricing of Quanto options under dynamic correlation. Journal of

Computational and Applied Mathematics. 2015; 275:304–310. https://doi.org/10.1016/j.cam.2014.07.

017

7. Battauz A, De Donno M, Sbuelz A. On the exercise of American quanto options. The North American

Journal of Economics and Finance. 2022; 62:101738. https://doi.org/10.1016/j.najef.2022.101738

8. Lee H, Ha H, Lee M. Partial quanto lookback options. The North American Journal of Economics and

Finance. 2023; 64:101871. https://doi.org/10.1016/j.najef.2022.101871

9. Caldarera A, Brunetti C. Asset Prices and Asset Correlations in Illiquid Markets. In: Meeting Papers.

Society for Economic Dynamics; 2005.

10. Li Z, Zhang W, Liu Y. European quanto option pricing in presence of liquidity risk. The North American

Journal of Economics and Finance. 2018; 45:230–244. https://doi.org/10.1016/j.najef.2018.03.002

11. Gao R, Li Y, Bai Y. Numerical pricing of exchange option with stock liquidity under Bayesian statistical

method. Communications in Statistics—Theory and Methods. 2022; 51(10):3312–3333. https://doi.org/

10.1080/03610926.2020.1793364

12. Pasricha P, Zhu SP, He XJ. A closed-form pricing formula for European options with market liquidity

risk. Expert Systems with Applications. 2022; 189:116128. https://doi.org/10.1016/j.eswa.2021.116128

13. Liu H, Yong J. Option pricing with an illiquid underlying asset market. Journal of Economic Dynamics

and Control; 29(12):2125–2156. https://doi.org/10.1016/j.jedc.2004.11.004

14. Ku H, Zhang H. Option pricing for a large trader with price impact and liquidity costs. Journal of Mathe-

matical Analysis and Applications. 2018; 459(1):32–52. https://doi.org/10.1016/j.jmaa.2017.10.072

PLOS ONE Pricing quanto options with market liquidity risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0292324 September 28, 2023 20 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0292324.s001
https://doi.org/10.1086/260062
https://doi.org/10.1016/j.jbankfin.2012.01.004
https://doi.org/10.1016/j.jbankfin.2012.01.004
https://doi.org/10.1016/j.jeconom.2015.02.035
https://doi.org/10.1016/j.jeconom.2015.02.035
https://doi.org/10.1016/j.chaos.2021.111493
https://doi.org/10.1016/j.chaos.2021.111493
https://doi.org/10.1016/j.cam.2014.07.017
https://doi.org/10.1016/j.cam.2014.07.017
https://doi.org/10.1016/j.najef.2022.101738
https://doi.org/10.1016/j.najef.2022.101871
https://doi.org/10.1016/j.najef.2018.03.002
https://doi.org/10.1080/03610926.2020.1793364
https://doi.org/10.1080/03610926.2020.1793364
https://doi.org/10.1016/j.eswa.2021.116128
https://doi.org/10.1016/j.jedc.2004.11.004
https://doi.org/10.1016/j.jmaa.2017.10.072
https://doi.org/10.1371/journal.pone.0292324


15. Feng SP, Hung MW, Wang YH. The importance of stock liquidity on option pricing. International Review

of Economics & Finance. 2016; 43(Supplement C):457–467. https://doi.org/10.1016/j.iref.2016.01.008

16. Zhang Y, Ding S, Duygun M. Derivatives pricing with liquidity risk. Journal of Futures Markets. 2019; 39

(11):1471–1485. https://doi.org/10.1002/fut.22008

17. Li Z, Zhang W, Liu Y, Zhang Y. Pricing discrete barrier options under jump-diffusion model with liquidity

risk. International Review of Economics & Finance. 2019; 59:347–368. https://doi.org/10.1016/j.iref.

2018.10.002

18. Wang X. Pricing vulnerable options with stochastic liquidity risk. The North American Journal of Eco-

nomics and Finance. 2022; 60:101637. https://doi.org/10.1016/j.najef.2021.101637

19. He XJ, Lin S. Analytically pricing exchange options with stochastic liquidity and regime switching. Jour-

nal of Futures Markets. 2023; 43(5):662–676. https://doi.org/10.1002/fut.22403

20. Pasricha P, He XJ. Exchange options with stochastic liquidity risk. Expert Systems with Applications.

2023; 223:119915. https://doi.org/10.1016/j.eswa.2023.119915

21. Karolyi GA. A Bayesian Approach to Modeling Stock Return Volatility for Option Valuation. Journal of

Financial and Quantitative Analysis. 1993; 28:579–594. https://doi.org/10.2307/2331167

22. Rombouts JVK, Stentoft L. Bayesian option pricing using mixed normal heteroskedasticity models.

Computational Statistics & Data Analysis. 2014; 76(Supplement C):588–605. https://doi.org/10.1016/j.

csda.2013.06.023

23. Tunaru R, Zheng T. Parameter estimation risk in asset pricing and risk management: A Bayesian

approach. International Review of Financial Analysis. 2017; 53:80–93. https://doi.org/10.1016/j.irfa.

2017.08.004

24. Gao R, Li Y, Bai Y, Hong S. Bayesian Inference for Optimal Risk Hedging Strategy Using Put Options

With Stock Liquidity. IEEE Access. 2019; 7:146046–146056. https://doi.org/10.1109/ACCESS.2019.

2946260

25. Lin L, Li Y, Gao R, Wu J. The numerical simulation of Quanto option prices using Bayesian statistical

methods. Physica A: Statistical Mechanics and its Applications. 2021; 567:125629. https://doi.org/10.

1016/j.physa.2020.125629

26. Gao R, Li Y, Lin L. Bayesian statistical inference for European options with stock liquidity. Physica A:

Statistical Mechanics and its Applications. 2019; 518:312–322. https://doi.org/10.1016/j.physa.2018.

12.008

27. Hu S, Poskitt DS, Zhang X. Bayesian estimation for a semiparametric nonlinear volatility model. Eco-

nomic Modelling. 2021; 98:361–370. https://doi.org/10.1016/j.econmod.2020.11.005

28. Chib S, Greenberg E. Understanding the Metropolis-Hastings Algorithm. The American Statistician.

1995; 49(4):327–335. https://doi.org/10.1080/00031305.1995.10476177

29. Geweke J. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior

Moments. Staff Report. 1991; 4:169–193.

30. Gao R, Bai Y. Posterior inference on Quanto option pricing model with liquidity-adjustment. 2022.

PLOS ONE Pricing quanto options with market liquidity risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0292324 September 28, 2023 21 / 21

https://doi.org/10.1016/j.iref.2016.01.008
https://doi.org/10.1002/fut.22008
https://doi.org/10.1016/j.iref.2018.10.002
https://doi.org/10.1016/j.iref.2018.10.002
https://doi.org/10.1016/j.najef.2021.101637
https://doi.org/10.1002/fut.22403
https://doi.org/10.1016/j.eswa.2023.119915
https://doi.org/10.2307/2331167
https://doi.org/10.1016/j.csda.2013.06.023
https://doi.org/10.1016/j.csda.2013.06.023
https://doi.org/10.1016/j.irfa.2017.08.004
https://doi.org/10.1016/j.irfa.2017.08.004
https://doi.org/10.1109/ACCESS.2019.2946260
https://doi.org/10.1109/ACCESS.2019.2946260
https://doi.org/10.1016/j.physa.2020.125629
https://doi.org/10.1016/j.physa.2020.125629
https://doi.org/10.1016/j.physa.2018.12.008
https://doi.org/10.1016/j.physa.2018.12.008
https://doi.org/10.1016/j.econmod.2020.11.005
https://doi.org/10.1080/00031305.1995.10476177
https://doi.org/10.1371/journal.pone.0292324

