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Abstract

Colorectal cancer (CRC) is a major global health concern, with microsatellite instability-high

(MSI-H) being a defining characteristic of hereditary nonpolyposis colorectal cancer syn-

drome and affecting 15% of sporadic CRCs. Tumors with MSI-H have unique features and

better prognosis compared to MSI-L and microsatellite stable (MSS) tumors. This study pro-

posed establishing a MSI prediction model using more available and low-cost colonoscopy

images instead of histopathology. The experiment utilized a database of 427 MSI-H and

1590 MSS colonoscopy images and vision Transformer (ViT) with different feature training

approaches to establish the MSI prediction model. The accuracy of combining pre-trained

ViT features was 84% with an area under the receiver operating characteristic curve of 0.86,

which was better than that of DenseNet201 (80%, 0.80) in the experiment with support vec-

tor machine. The content-based image retrieval (CBIR) approach showed that ViT features

can obtain a mean average precision of 0.81 compared to 0.79 of DenseNet201. ViT

reduced the issues that occur in convolutional neural networks, including limited receptive

field and gradient disappearance, and may be better at interpreting diagnostic information

around tumors and surrounding tissues. By using CBIR, the presentation of similar images

with the same MSI status would provide more convincing deep learning suggestions for clin-

ical use.

Introduction

Colorectal cancer (CRC) affected more than 1.9 million people in 2020 and was responsible

for approximately 935,000 deaths. It is currently the second leading cause of death and the

third most commonly diagnosed cancer worldwide [1]. Microsatellite instability-high

(MSI-H) is a defining characteristic of hereditary nonpolyposis colorectal cancer syndrome,

and around 15% of sporadic colorectal carcinomas exhibit MSI-H [2]. Tumors with MSI-H

display distinct features, such as a preference for developing in the proximal colon,
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lymphocytic infiltration, and a poorly differentiated, mucinous, or signet ring appearance

[2,3]. Furthermore, MSI-H tumors are associated with specific pathological characteristics,

such as a host immune response, including Crohn’s-like lymphoid reaction, intratumoral lym-

phocytic infiltrate, and intraepithelial T cells. Compared to MSI-low (MSI-L) and microsatel-

lite stable (MSS) tumors, CRCs with MSI-H have a more favorable prognosis [2,4].

The identification of MSI in CRC has revealed the heterogeneity of this disease, and the use

of neoadjuvant therapy with immune checkpoint blockade in dMMR/MSI-H tumors has

resulted in favorable response rates. This has significant clinical importance for organ-preserv-

ing approaches [5–7] and has implications for the treatment strategy in the management of

CRCs. As a result, MSI testing has become a crucial component of CRC management. The

Bethesda guidelines [8] have been widely accepted as the criteria for MSI testing. Currently,

the NCCN Guidelines recommend universal MMR or MSI testing for all patients with a per-

sonal history of colon or rectal cancer. Besides serving as a predictive marker for immunother-

apy in advanced CRC, MMR/MSI status can also aid in identifying individuals with Lynch

syndrome [9].

Various methods for detecting microsatellite instability include fluorescent multiplex poly-

merase chain reaction (PCR) and capillary electrophoresis (CE) [10,11], immunohistochemis-

try (IHC) [12], and next-generation sequencing [13]. However, these techniques require a

considerable amount of resources and labor. Some studies have examined the usefulness of

histopathology in identifying MSI-H cancers by evaluating the pathologic features. While his-

topathological evaluation can be used to prioritize sporadic colon cancers for MSI studies, the

morphological prediction of MSI-H has low sensitivity, necessitating molecular analysis for

therapeutic decisions [14].

Colonoscopy is a valuable tool for diagnosing CRC, providing important information

about the appearance, location, and depth of invasion of tumors in the colon wall. Tumors can

vary in their appearance, with irregular, depressed, or ulcerating surfaces, and surrounding tis-

sues can also provide important information. Statistical analysis can be used to summarize

image characteristics that differentiate between different tumor statuses, but quantifying these

image findings can be challenging. The features used to describe CRC status can be complex

and difficult to quantify, and changes in illumination can result in changes in the findings.

Additionally, interpreting the relationship between tumors and adjacent tissues can be diffi-

cult. Machine learning classifiers have been developed that use various methods to combine

image features to classify tumors, providing an overall evaluation by probability and solving

the problem of considering numerous findings simultaneously.

Deep learning offers an improved approach for extracting image features, as it can map

image pixels into a high-dimensional feature space and automatically interpret the relevant

image characteristics for a specific classification task without the need for human intervention.

In the field of computer vision, deep learning architectures such as convolutional neural net-

works (CNNs) and vision Transformers (ViTs) have been developed. While CNNs have been

used for pattern recognition in colonoscopy, they have limitations in scaling up the receptive

field. This study proposed the use of ViT, which considers the global relationships between

tumors and adjacent tissues in colonoscopy, as a more promising approach for feature

extraction.

Echle et al. [15] used haematoxylin and eosin (H&E)-stained slides and molecular analysis

findings to validate CNN approaches for predicting MSI in colorectal tumors across all stages.

They achieved a mean area under the receiver operating characteristic curve (AUC) of 0.92.

Yamashita et al. [16] proposed another CNN approach, based on a modified MobileNetV2

architecture pre-trained on ImageNet, and fine-tuned it to detect MSI from H&E-stained

whole-slide images. Chang et al. [17] further improved on this by adding an attention
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mechanism to the CNN, achieving an AUC of over 0.95 in predicting MSI in H&E-stained

images. Peng et al. [18] classified different tissues in colorectal cancer histology slides using a

CNN-based image retrieval approach, which provided more transparency and generalizability,

and achieved higher precision than a classification network. Finally, Komura et al. [19] proposed

a CNN-based content-based image retrieval (CBIR) method that successfully predicted 309 com-

binations of genomic features and cancer types by retrieving histologically similar images.

Previous studies have shown the diagnostic potential of H&E-stained slides in detecting

MSI, with researchers from various countries using CNN-based methods to establish predic-

tion models and investigate image patterns. In contrast, our study utilized the ViT architecture

instead of CNNs to predict MSI, benefiting from multi-head self-attention to address the limi-

tations of CNNs in scaling up the receptive field and avoiding gradient vanishing [20]. Fur-

thermore, this study serves as a proof of concept, highlighting the distinctive aspect of our

research, which utilizes colonoscopy instead of H&E-stained slides for deep learning-based

MSI prediction. We also implemented CBIR to demonstrate its precision in identifying simi-

larities and differences among tissue types, which can aid decision-making and establish corre-

lations between classification bases and tissue types.

Materials and methods

Study population

In this research, we conducted an analysis of two cohorts consisting of CRC patients. The first

cohort was enrolled between May 2014 and December 2017 and comprised of 441 patients,

among whom 407 had MSS CRC and 34 had MSI-H CRC. To increase the sample size of

MSI-H CRC, we enrolled an additional 89 patients who underwent surgery between January

2018 and May 2021. All patients underwent primary tumor resection at our hospital, and pre-

operative colonoscopy imaging was conducted for analysis. The primary tumor colonoscopy

images were randomly captured during tumor diagnosis or preoperative localization. Patients

with synchronous or metachronous CRC and those who received neoadjuvant therapy were

excluded from the study. Patients who didn’t have data about MSI status or pre-operative colo-

noscopy images were also excluded. The institutional review board approved the study proto-

col (2023-01-001CC), and the requirement for written informed consent was waived. The data

were collected and analysis was conducted since Feb 2023 after approval of institutional review

board. Because the correlation of MSI and the colonoscopy is necessary in the current study,

the authors (J-K Jiang and C-C Lin) could access to information that could identify individual

participants during or after data collection.

MSI testing

MSI testing was performed at our hospital since 2014. Immunohistochemistry (IHC) staining of

tumor tissue was used to detect the expression of the four mismatch repair (MMR) genes, namely

MLH1, MSH2, MSH6, and PMS2. A normal IHC test indicated that all four MMR proteins were

expressed normally, and the tumor was considered MSS. Conversely, an abnormal IHC test sug-

gested that at least one of the MMR proteins was not expressed, indicating a possible inherited

mutation in the related gene. Loss of protein expression by IHC in any of the MMR genes was

confirmed by specialized gastrointestinal pathologists with expertise in CRC pathology.

Vision Transformer

Deep learning approaches including CNNs and ViT have been suggested to recognize patterns

in medical images [21–23]. Especially, ViT has shown improved generalization compared to

PLOS ONE Detecting microsatellite instability in colorectal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0292277 January 25, 2024 3 / 16

https://doi.org/10.1371/journal.pone.0292277


CNNs, meaning that it can perform well on images outside of the training dataset [24,25].

ViT’s architecture, as depicted in Fig 1, begins by flattening the split patches and projecting

them into patch embeddings.

This resulting sequence is then preprocessed with a prepend class token (xclass) and position

embeddings (Epos) to preserve the positional information of the original image, as expressed in

Formula 1:

z0 ¼ ½xclass; x
1

pE; x2

pE; . . . ; xNp E� þ Epos ð1Þ

where x1, x2, . . ., and xp are patches.

Subsequently, the encoder is constructed using multiple rounds of concatenating multi-

headed self-attention, and multilayer perceptron blocks. The blocks are layered in the usual

way and concluded with a residual connection. The multihead self-attention mechanism

employed by ViT involves converting the input xi into ai, which is then processed through the

self-attention layer. At this stage, it is multiplied by three different matrices to generate query

(q), key (k), and value (v) vectors. These vectors can be further expanded into a multihead

structure by repeating the operation. The q vector is then used to perform inner products with

different k vectors, producing similarity measurements that consider long-term dependence.

The resulting weights are then multiplied by the v vector to produce the final output.

Model training

Training deep neural networks involves optimizing the model parameters to minimize the loss

function for a specific task. There are three different approaches as shown in Fig 1 to model

training, each with trade-offs between accuracy and efficiency: training from scratch, pre-

training, and fine-tuning. Training from scratch initializes the training process with random

weights and biases, and the model is trained on a large labeled dataset for a specific task. While

computationally expensive, this approach can achieve good performance with enough labeled

data. Pre-training involves training a neural network on a large and diverse dataset, such as

ImageNet, to generate substantial weights and biases that represent characteristics of the data.

If the labeled dataset for the specific task is limited, pre-training can provide general features

Fig 1. Vision Transformer modeling.

https://doi.org/10.1371/journal.pone.0292277.g001
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that help distinguish data. Fine-tuning continues training on a smaller, task-specific dataset to

learn more specific features related to the target task, leading to faster convergence and better

performance. Fine-tuning requires fewer computational resources and is faster than training

from scratch. In the experiment, using ViT as the base deep learning architecture, the three

approaches were implemented for comparisons for the MSI prediction.

In the literature, when trained on large-scale datasets, ViT outperformed the ResNet archi-

tecture [20]. Thus, the pre-trained parameters used in the experiment was trained from Ima-

geNet ILSVRC 2012 dataset [26], containing 1.3M images and 1k classes. By splitting the input

image with patch size = 16×16, the multi-head self-attention mechanism trained 768 feature

vectors to represent image characteristics.

Performance evaluation

The approaches of train from scratch and fin-tune are complete neural networks which have

the end layer to generate classification labels for each image. For a specific task, the output vec-

tor represents the probabilities of the input belonging to each class. Softmax function can nor-

malize each element in this vector to a range of 0 to 1, and the sum of probabilities is 1.

Consequently, the softmax function can interpret the probability vector output as the probabil-

ities for each corresponding class. During training, the cross-entropy loss function calculates

the difference between the predicted probabilities and the true labels, and then the backpropa-

gation mechanism is used to update the weights in the network.

Pre-training approach used an alternative way for classification since it is trained based on

the prior data and labels which can’t used in other tasks. Extracting features from the pre-train

model and combining them in machine learning classifiers would be more practical. Addition-

ally, the machine learning classifiers can perform better in generating nonlinear decision

boundaries than softmax. Also, the minority class can be effectively handled in the

classification.

In the experiment, four classifiers were used for training and testing the MSI classification

using pre-train features, including logistic regression (LR) [27], artificial neural network

(ANN) [28], subspace ensemble k nearest neighbor (SEKNN) [29], and support vector

machine (SVM) [30]. The performances of different classifiers were calculated and compared

in the experiment.

LR uses a logistic function, also known as the sigmoid function, as the cost function. The

sigmoid function is an S-shaped curve that maps any number to a score between 0.0 and 1.0.

In LR, the goal is to predict the probability of a binary outcome based on one or more input

features. The model assigns weights and intercepts to each feature, and then uses these weights

and intercepts to compute a score for each data point. The score is transformed into a proba-

bility value using the logistic function, which maps the score to a value between 0.0 and 1.0.

In ANN, the network is composed of layers of interconnected nodes, or neurons. The input

features are fed into the network, and each feature is individually connected to the neurons in

the middle hidden layer with different connection strengths, which are represented by weights.

The neurons in the hidden layer then process the inputs and pass their outputs to the next

layer until the output layer is reached, which produces the final output of the network. The

backpropagation calculates the error between the predicted output and the true labels and uses

this error to adjust the weights of the connections between the neurons. By iterations, the net-

work is able to learn and improve its predictions.

SEKNN is an ensemble method that utilizes random selection to generate subsets of the

original features. By creating multiple models based on these subsets, the approach combines

models with different feature sets that provide diverse perspectives on the data, resulting in
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better training. This method is particularly useful for k nearest neighbor (KNN) since KNN is

sensitive to changes in features. The SEKNN method is based on the using of multiple KNN

models, which can help overcome the limitations of a single model trained on the entire fea-

ture set.

SVM is used due to its effectiveness in high-dimensional spaces, meaning it can handle data

points that have many features or dimensions. SVM works by finding the hyperplane that best

separates two classes in the feature space. This hyperplane is selected to maximize the margin,

which is the distance between the hyperplane and the nearest data points from each class. In

SVM, a kernel function is used to transform the input features into a higher-dimensional

space where a linear decision boundary can be identified. By mapping the original feature

space to this higher-dimensional space, the algorithm can find a decision boundary that is

capable of separating the data points into different classes.

The MSI value of each case was predicted based on the trained models. The resulting probabil-

ity was used for binary classification using a threshold, where the patient was classified as either

having MSI-H or not. To evaluate the generalization ability of the model, five-fold cross-validation

was employed. The dataset was divided into five equally sized groups, with each group being used

once as a test set while the remaining nine groups were used for training. This process was

repeated five times, and the results were averaged to obtain the final performance. Performance

indices, including accuracy, sensitivity, specificity, and the area under the receiver operating char-

acteristic curve (AUC), were used to evaluate the models’ performances. AUC was used to con-

sider the trade-offs between sensitivity and specificity at different thresholds [31].

Image retrieval

A CBIR system can automatically extracts the characteristics of a query image and compare

them to the existed target image database to obtain interested images in an objective and rapid

way. The performance evaluation of a CBIR system is reliant on its ability to retrieve images in

a rank order that corresponds to the similarity between the query image and the images in the

database. The ranking is determined by measuring the similarity between the query image and

the target images. To measure the effectiveness of the CBIR system, the ground truth relevance

images of the targets must be labeled. The ratio of relevant images to retrieved images is used

to establish the benchmark for the top k accuracy, which indicates the number of relevant

images retrieved in the top k. In the experiment, multiple query images were used to test the

CBIR system, and the mean average precision (mAP) was calculated for each top k cutoff [32].

TP means the total relevance of the top k. FP means the total irrelevance of the top k.

TP ¼
Xk

n¼1
Rn ð2Þ

FP ¼
Xk

n¼1
ð1 � RnÞ ð3Þ

Precision ¼
TP

ðTP þ FPÞ
ð4Þ

AP ¼
1

jRj

XjRj

k¼1
PrecisionðRkÞ;mAP ¼

1

Q

XQ

k¼1
APk;Q : query ð5Þ

Results

This study enrolled a total of 123 MSI-H tumors and 407 MSS tumors, which comprised 427

MSI-H and 1590 MSS colonoscopy images. Fig 2 demonstrate the flow diagram for the
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patients enrolled in the current study. Table 1 provides a summary of the clinicopathologic

characteristics of MSI-H and MSS tumors. When compared to MSS tumors, MSI-H tumors

exhibit significant differences, including earlier staging, a predominant occurrence on the

right side, higher rates of poor to undifferentiated grading, increased presence of tumor with

�50% mucin component, elevated occurrences of lymphovascular invasion (LVI), perineural

invasion, and signet ring cell components. Additionally, there is a tendency for these MSI-H

tumors to be more prevalent in females (p = 0.066). Fig 3 demonstrate the gross images of MSI

tumor and MSS tumor. To conduct the image retrieval process, the collected images were sep-

arated into the target image database (80%) and query images (20%). The similarity measure-

ments between the query images and the target image database were based on image

characteristics trained from the target image database, and the training involved five-fold

cross-validation. Table 2 displays the classification performances of various learning networks,

including DenseNet201, which was compared to ViT. Overall, the approaches of ViT were

superior to DenseNet201. Among the approaches, combining pre-trained features in SVM

outperformed the ways of fine-tuning and training from scratch. Based on the performance

comparisons in Tables 3 and 4, SVM was selected as the best machine learning classifier. Fig 4

illustrates the receiver operating characteristic (ROC) curve and AUC value of the best perfor-

mance achieved by DenseNet201 and ViT.

Fig 2. Flow diagram for the patients enrolled in the current study.

https://doi.org/10.1371/journal.pone.0292277.g002

PLOS ONE Detecting microsatellite instability in colorectal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0292277 January 25, 2024 7 / 16

https://doi.org/10.1371/journal.pone.0292277.g002
https://doi.org/10.1371/journal.pone.0292277


Table 1. Clinicopathologic profile of all colorectal cancer patients.

Characteristic (number) MSI-H (123) (%) MSS

(407)

(%) p

Age

Mean ± SD 66.7±15.0 63.9±12.6

0.067

Age ≧50 y/o

Yes

No

105

18

85.4

14.6

355

52

87.2

12.8

0.594

Gender

Male

Female

61

62

49.6

50.4

240

167

59.0

41.0

0.066

PreOP CEA level (ng/mL)

Mean ± SD 11.7±27.1 31.7±191.6

0.248

Elevated PreOP CEA≧5 ng/mL

Yes

No

41

82

33.3

66.7

169

237

41.5

58.2

0.221

Stage

I

II

III

IV

25

69

23

6

20.3

56.1

18.7

4.9

83

124

135

65

20.4

30.5

33.2

16.0

0.001

Location

Right-sided colon

Left-sided colon

Rectum

84

28

11

68.3

22.8

8.9

104

218

85

25.6

53.6

20.9

0.001

Grade of differentiation

Well to moderate

Poor to undifferentiated

98

25

79.7

20.3

378

29

92.9

7.1

0.001

Mucinous component

≧50%

< 50%

25

96

20.7

79.3

19

384

4.7

95.3

0.001

LVI

Yes

No

18

99

15.4

84.6

119

257

31.6

68.4

0.001

Perineural invasion

Yes

No

4

113

3.4

96.6

47

329

12.5

87.5

0.005

Signet ring cell component

Yes

No

13

104

11.1

88.9

8

368

2.1

97.9

0.001*

LVI: Lymphovascular invasion.

*Fisher’s Exact Test.

https://doi.org/10.1371/journal.pone.0292277.t001

Fig 3. Demonstration of colonoscopy images of colon cancer with different MSI status. (a) MSI-H (b) MSS.

https://doi.org/10.1371/journal.pone.0292277.g003
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Table 2. Classification performances of different learning networks.

Accuracy Sensitivity Specificity PPV NPV AUC

DenseNet201 (train from scratch) 51% 85% 42% 30% 93% 0.75

DenseNet201 (fine-tune) 77% 64% 80% 48% 89% 0.80

DenseNet201 (pre-train+ML) 80% 47% 89% 55% 86% 0.80

ViT (train from scratch) 69% 57% 72% 42% 87% 0.74

ViT (fine-tune) 81% 49% 89% 56% 86% 0.77

ViT (pre-train+ML) 84% 47% 94% 68% 87% 0.86

https://doi.org/10.1371/journal.pone.0292277.t002

Table 3. Performance indices of combining DenseNet201 features in machine learning classifiers.

Classifier Accuracy Sensitivity Specificity PPV NPV AUC

LR 55% 51% 56% 24% 81% 0.53

ANN 79% 50% 87% 51% 87% 0.74

SEKNN 78% 43% 87% 48% 85% 0.67

SVM 80% 47% 89% 55% 86% 0.80

https://doi.org/10.1371/journal.pone.0292277.t003

Table 4. Performance indices of combining ViT features in machine learning classifiers.

Classifier Accuracy Sensitivity Specificity PPV NPV AUC

LR 72% 52% 78% 39% 86% 0.69

ANN 81% 52% 89% 56% 87% 0.80

SEKNN 82% 46% 92% 62% 86% 0.77

SVM 84% 47% 94% 68% 87% 0.86

https://doi.org/10.1371/journal.pone.0292277.t004

Fig 4. Receiver operating characteristic curve of different features combined in SVM to MSI prediction. (a)

DenseNet201 features (b) ViT features.

https://doi.org/10.1371/journal.pone.0292277.g004
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Table 5 lists the top-10 image retrieval result. Based on the trained features in the classifica-

tions, ViT features had mAP = 0.81 which outperformed DenseNet201 features having

mAP = 0.79. ViT still have better result of image retrieval than DenseNet201. Fig 5 shows the

top-10 image retrieval results of the queries of MSI-H and MSS images based on ViT fine-tune

features.

Discussion

Apart from certain clinical and pathologic characteristics, MSI status can also serve as a bio-

marker for anticipating the response to particular therapies. MSI status is particularly useful in

Table 5. Retrieval performances of different learning networks.

Top-10

DenseNet201 (pre-train) 0.59

DenseNet201 (fine-tune) 0.79

ViT (pre-train) 0.72

ViT (fine-tune) 0.81

https://doi.org/10.1371/journal.pone.0292277.t005

Fig 5. Retrieved top 10 colonoscopy images using ViT fine-tune features (a) the query of MSI-H (b) the query of MSS.

https://doi.org/10.1371/journal.pone.0292277.g005
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guiding treatment decisions for stage II colorectal cancers, and MSI-high tumors have demon-

strated a high degree of responsiveness to immune checkpoint inhibitors (ICI) [4]. As a result,

MSI testing is a recommended component of the standard of care for all patients diagnosed

with CRC [33]. Numerous studies have employed deep learning for the prediction of MSI sta-

tus, with the majority of them using histopathologic images [34–44]. Additionally, radiomic

signatures have been demonstrated to predict genetic alterations [45–50]. The goal of this

study is to utilize deep learning models for the prediction of MSI status through the image

retrieval of colonoscopy images of primary tumors. Colonoscopy is a widely used and conve-

nient method for evaluating tumor status in clinical examinations. It has the advantage of pre-

senting real-time image information, which can reduce time and costs compared to using

histopathologic images and radiomic signatures. To our knowledge, this is the first study utiliz-

ing colonoscopy images for the prediction of MSI status in CRC.

By utilizing various training methods, the ViT architectures demonstrated superior perfor-

mance compared to DenseNet201, which is another type of CNN architecture. One possible

reason for this is that the attention mechanism used in ViT enables it to better analyze tumors

and surrounding tissues through similarity measurements between image patches. SVM was

utilized in this study to combine deep learning features, and the receiver operating characteris-

tic curve for DenseNet201 and ViT features were 0.80 and 0.86, respectively. The NPVs were

approximately 86–87%, suggesting a potential reduction in the expenses associated with MMR

testing in routine clinical practice. Furthermore, leveraging pre-trained features enhances the

efficiency and practicality of using deep learning.

The current study has several limitations. Firstly, the number of patients enrolled is limited,

and only a small percentage (7.7%) of patients in the initial cohort had MSI-H tumors. To

address this, we enrolled another MSI cohort, but this may impact the clinical applicability of

the current model in real-world settings. The next step should be to perform further external

validation using multicenter patients to generalize the clinical utility of the model. As more

data becomes available, both training from scratch and fine-tuning methods are likely to yield

better results. However, the increased amount of data also means that computational resources

and training time will be more demanding. Secondly, we omitted the inclusion of family his-

tory, a crucial parameter in clinical Lynch syndrome assessment. Additionally, we did not

incorporate clinicopathological features like age, staging, tumor location, and tumor differenti-

ation into our predictive model, even though they may have predictive value for MSI status. A

future study should aim to integrate additional diagnostic information to improve the accu-

racy of the model. The use of image retrieval to distinguish between various genetic back-

grounds, such as sporadic or hereditary MSI-H, has not yet been fully explored. This aspect

would be a subject of further investigation in our study. Third, further MLH1 methylation sta-

tus and/or genetic testing, such as, next-generation sequencing is needed in patients with the

loss of one or more MMR markers to differentiate sporadic MSI-H patients from Lynch syn-

drome. However, we didn’t have this information. How the background of MSI-H tumor

affects the decision of ViT features remained elusive. To tackle this concern, it is necessary for

us to initiate a prospective study to acquire this information and establish more robust evi-

dence for practical application. In addition, we utilized IHC for MMR proteins to detect the

MSI status, rather than PCR-based. IHC for MMR proteins is the initial step to screen for

Lynch syndrome [51]. Previous studies had proven to reveal a high coincidence rate of the two

methods for detecting MSI status up to more than 90% [52–54]. IHC and the PCR method

had high consistency in MSI status. Compared with PCR, the IHC method is the preferred sin-

gle screening test and is more economical and more convenient for clinical operations. While

there have been studies aimed at distinguishing MSI-H CRCs from MSS CRCs based on differ-

ences in their histopathological and pathomorphological characteristics, such as the prevalence
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of mucinous adenocarcinoma and aggressive histological features in MSI-H tumors [55], there

is currently no evidence suggesting that colonoscopy can grossly differentiate these features.

However, it remains uncertain whether colonoscopy can successfully identify these distinct

characteristics.

This study proposed the utilization of pre-trained ViT features to achieve a rapid and sub-

stantial MSI classification outcome, which is crucial for clinical applications. In addition to a

numerical value indicating the MSI classification, the study also presented additional evidence

through an image retrieval method, similar to the approach suggested by Komura et al. [19] in

their study. Through a top-10 image display, physicians can observe whether images with simi-

lar compositions possess the same MSI classification, thereby increasing confidence in the

decision-making. A future research direction could be to investigate the image differences

among various MSI statuses. Similar to previous studies utilizing radiomic signatures [45–50],

discovering more evidence from a larger pool of colonoscopy images would enhance the

results’ credibility and enable widespread use in clinical settings.

Conclusions

CRCs characterized by MSI-H have a more favorable prognosis. In this study, to achieve a

rapid and cost-effective outcome with limited cases, we proposed the use of ViT features

extracted from colonoscopy images. By combining pre-trained features in SVM, the classifica-

tion results exhibited 84% accuracy and an AUC of 0.86. Compared to conventional CNNs,

ViT based on the patch embedding and self-attention mechanism addresses the issue of lim-

ited receptive fields and gradient disappearance. The experiment also presented a CBIR result,

with a mAP of 0.81, illustrating that images with similar content have the same MSI status.

This proposed image classification and retrieval procedure, in conjunction with colonoscopy

examination, makes MSI prediction more accessible and convenient for clinical use.
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