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Abstract

Since the positioning accuracy of sensors degrades due to noise and environmental interfer-

ence when a single sensor is used to localize a suspended rare-earth permanent magneti-

cally levitated train, a multi-sensor information fusion method using multiple sensors and

self-correcting weighting is proposed for permanent magnetic levitated train localization. A

decay memory factor is introduced to reduce the weight of the influence of historical mea-

surement data on the fusion estimation, thus enhancing the robustness of the fusion algo-

rithm. The Kalman filtering results suffer from inaccuracy when process noise is present in

the system. In this paper, we use a covariance adaptive scheme that replaces the prediction

step of the Kalman filter with covariance. It uses the covariance adaptive scheme to search

the posterior sequence online and reconstruct the prior error covariance. Since the process

noise covariance is not used in the new adaptive scheme, the negative impact of the mis-

match noise statistics is greatly reduced. Simulation and experimental results show that the

use of multi-sensor information fusion and covariance adaptive Kalman algorithm has signif-

icant advantages in terms of adaptability, accuracy and simplicity.

Introduction

The problems of traffic congestion and environmental pollution caused by population concen-

tration due to rapid economic development and urbanization have become imminent. As a

typical green, safe and efficient mode of transportation, maglev rail transit has great potential

for development [1]. Magnetic levitation, as an advanced technology for rail transportation,

will promote further development and application in transportation [2, 3]. At present, China,

the US, Germany and Japan are the four most developed countries in maglev technology, and

are clearly leading in the international arena with abundant research results [4–6]. Meanwhile,

countries such as Switzerland, Canada, and South Korea are actively researching new maglev

rail technology [7]. The positioning system of permanent magnet magnetic levitation train

plays a very important role in the safety of train dispatching and train movement control.
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Accurately and without delay detecting the speed and position of the permanent magnet mag-

lev train at a certain moment is the primary condition to ensure the safe operation of the

whole system. Therefore, the research on the positioning of permanent magnet magnetic levi-

tation trains is the basis for the future development of magnetic levitation trains, which is nec-

essary and urgency.

When using single sensor for positioning of permanent magnet maglev trains, the position-

ing accuracy is degraded due to the presence of noise and occlusion in the environment, there-

fore a multi-sensor information fusion method is employed to solve this problem. Multi-

sensor fusion technology applies data fusion [8, 9] to target tracking [10], vehicle localization

[11] and other fields [12–14], which solves some problems of low accuracy in many cases and

has broad application prospects and great scientific value [15]. In order to meet the require-

ments for positioning of permanent magnet magnetic levitation trains, multiple sensors are

generally installed on the maglev trains for data acquisition. And then positioning is per-

formed based on the acquired information. Therefore, the positioning accuracy of permanent

magnet maglev trains depends on the accuracy of the acquired information. However, the

noise, electromagnetic interference between devices, and environmental factors present in the

practical application lead to random errors or mistakes in the sensors in a multi-sensor system

[16]. This can cause bias or even distortion in the measurement results and ultimately lead to

inaccurate positioning of the permanent magnet maglev train. Weighted fusion is a method

for optimal data fusion by assigning a weighting factor to each sensor [17, 18], which produces

optimal unbiased fusion results that minimize the mean square error fusion result without any

a priori knowledge of the system and observation noise [19, 20]. Indeed, the performance of

weighted fusion depends largely on the distribution of weights. If the weight distribution is not

reasonable, it may not be able to significantly improve the accuracy and reliability of the sys-

tem. Therefore, proper distribution of weights is an important factor in achieving high accu-

racy estimation in weighted fusion.

The Kalman filter has been widely used as an optimal state estimator in navigation, target

tracking [21, 22]and control [23]. The optimality of the Kalman filter depends heavily on the a

priori knowledge of the noise statistics [24]. The use of incorrect prior statistics may lead to

significant estimation errors and even filter divergence [25]. Nevertheless, how to determine

the process noise and the covariance of the measurement noise is a major hurdle in practice

[26]. Therefore, it is rather meaningful to specially investigate the filtering problems with inac-

curate or mismatched process noise covariance [27]. Adaptive techniques using covariance

matching, correlation, maximum likelihood and Bayesian methods in combination with Kal-

man filtering are one of the common approaches to solve this problem [18]. The Sage-Husa

adaptive Kalman filter is a covariance matching method that recursively estimates the noise

statistics based on the maximum posterior criterion [28, 29]. The innovation-based adaptive

Kalman filter (IAKF) is a maximum likelihood method that estimates the noise covariance

matrix based on the fact that the innovation sequence of the Kalman filter is a white process

[30, 31]. The multi-model adaptive Kalman filter is an approximation of the Bayesian

approach that solves the problem of model uncertainty by combining Kalman filters of differ-

ent models into a group [32, 33]. Kalman algorithm is more common in the previous studies

of maglev train operation. In [34], the Kalman algorithm is used to filter the gap signal and

obtain more ideal gap data, but the dynamic instability of this method is more obvious. In

[35], Kalman technique is used to fuse multi-rate data with acceleration and displacement

measurements having different sampling frequencies, and after numerical simulation and

analysis, the effectiveness of the method is proved. In [36], an adaptive Kalman filtering algo-

rithm based on the change of speed information is added into the operating speed sensor of

low and medium-speed maglev trains to reduce the positioning error of maglev trains.
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At present, China has researched different types of high-speed magnetic levitation technol-

ogy [37, 38]. In 2014, Jiangxi University of Science and Technology proposed a new type of

efficient and intelligent permanent magnetic levitation rail transportation system. In Septem-

ber 2019, a 60-meter-long permanent magnet magnetic levitation rail transit system technol-

ogy verification line (Fig 1) was completed, marking the creation of a safe, convenient and

efficient low to medium speed, low to medium capacity rail transit system. The current posi-

tioning method used in the technology verification line of the permanent magnet magnetic

suspension rail system is a cross induction loop, which has the disadvantages of difficult instal-

lation, inconvenient maintenance and high cost. In response to these shortcomings, multiple

sensors are used to locate the suspended rare earth permanent magnet maglev train, achieving

multi-sensor information fusion positioning of the permanent magnet maglev train. This

method has low positioning cost and wide application range. Accompanied by the rapid

improvement of sensor technology, the use of multi-sensor fusion positioning can more effec-

tively improve the effect of train positioning, not only to improve the stability and fault toler-

ance of the system, but also to ensure the accuracy of the position in the time and space range.

At the same time, in order to make the further development of suspended rare-earth perma-

nent magnet magnetically levitated trains, experts and scholars should study the positioning

technology to provide the powerful theoretical support and detailed supporting materials for

the subsequent commercial promotion and application of suspended rare-earth permanent

magnetically levitated trains.

In this paper, a self-correcting weighted fusion estimation algorithm is first designed. A

decay memory factor is introduced to reduce the weight of the influence of historical measure-

ment data on the fusion estimation in order to fuse the information from multiple sensors of a

permanent magnet maglev train. Second, a new covariance adaptive Kalman algorithm

(CAKF) is used to adapt the error covariance online by prior values. Since CAKF calibrates the

a priori error covariance directly through online feedback from random sequences, the

Fig 1. Permanent magnet magnetic levitation rail transit system technology verification line. Reprinted from [Jiangxi University of Science and

Technology Permanent Magnet Magnetic Levitation Railway Transportation System Technology Validation Line] under a CC BY license, with

permission from [Jiangxi University of Science and Technology], original copyright [2019].

https://doi.org/10.1371/journal.pone.0292269.g001
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filtering effect does not depend on the exact process noise covariance. Simulation and experi-

mental results show that CAKF has a smaller root-mean-square error(RMSE).

Model building

Self-correcting weighted fusion multi-sensor model

The formula for the weighted fusion algorithm [39] is shown in Eq (1).

yðkÞ ¼
XM

i¼1

½oiðkÞziðkÞ� ð1Þ

Where zi(k) is the measurement value of the ith sensor at time k, y(k) is the true state value

of the observed object at time k, ωi(k) is the weight of the ith sensor at time k, andM is the

number of sensors in the multi-sensor system.

The weight value of the distributed fusion algorithm determines the fusion accuracy. The

conventional weight calculation method is based on the cumulative deviation of all historical

measurement signals. It obtains the weight of each sensor dynamically based on the principle

of least squares. This not only increases the storage volume of sensor measurement data, but

also increases the influence weight of historical measurement signals. To address the above

problems, an improved weight calculation method is designed by introducing a decay memory

factor. The specific process is as follows:

• Step 1. Calculate the center point �zðkÞ of the sensor’s position at each moment.

�zðkÞ ¼
1

M

XM

i¼1

ziðkÞ ð2Þ

• Step 2. Calculate the deviation Δzi(k) between the measured value of each sensor and the cen-

ter point.

DziðkÞ ¼ ziðkÞ � �zðkÞ ð3Þ

• Step 3. Calculate the sum of the deviation and the squared deviation of the decay memory of

each sensor.

Si1ðkÞ ¼ tSi1ðk � 1Þ þ ð1 � tÞDziðkÞ ð4Þ

Si2ðkÞ ¼ tSi2ðk � 1Þ þ ð1 � tÞDz2i ðkÞ ð5Þ

Where, Si1(k) is the sum of the asymptotic memory deviations of the ith sensor at time kth
moment, Si2(k) is the sum of the squared asymptotic memory deviations of the ith sensor at

time kth moment, τ has a value range of [0, 1].

• Step 4. Calculate the average value D�ZiðkÞ of the deviation for each sensor.

D�ZiðkÞ ¼ Si1ðkÞ=M ð6Þ
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• Step 5. Calculate the average value σi(k) of the deviation for each sensor.

siðkÞ ¼
�
Si2ðkÞ � 2D�ZiðkÞSi1ðkÞ þ kD�Z2

i ðkÞ
k � 1

�1=2

ð7Þ

• Step 6. Calculate the weight ωi(k) of each sensor.

oiðkÞ ¼
�

s2
i ðkÞ

XM

i¼1

1

s2
i ðkÞ

�� 1

ð8Þ

The weights of each sensor are calculated according to the above method, and Eq (1) is used

to calculate the final fusion estimation result at the kth moment.

CAKF model

Consider the discrete time stochastic system as shown by the state-space model.

xk ¼ Axk� 1 þ Bwk� 1 ð9Þ

yk ¼ Cxk þ vk ð10Þ

Where k is the discrete time index, xk denotes the system state, yk is the measurement vec-

tor, A is a known constant state transformation, B is the input transformation, and C is the

measurement matrix. Both wk with covariance Q and vk with covariance R are mutually inde-

pendent zero-mean Gaussian white noise.

Given the estimated value x̂ �k� 1
and the measured value yk, the Kalman filter outputs the

optimal least squares estimate of the true state xk of instant k. The estimation of the Kalman is

shown in Eqs (11)–(15)

x̂ �k ¼ Ax̂
�
k� 1 ð11Þ

P�k ¼ AP
�
k� 1
AT þ BQBT ð12Þ

x̂k ¼ x̂ �k þ Kkðyk � Cx̂
�
k Þ ð13Þ

Kk ¼ P�k C
TðCP�k C

T þ RÞ� 1
ð14Þ

Pk ¼ P�k � KkCP
�
k ð15Þ

Where x̂ �k and x̂k denote the prior and posterior estimates of xk states, respectively, P�k is the

prior error covariance. Kk is the Kalman gain matrix. For the optimal linear filter, the innova-

tive sequence ek ¼ yk � Cx̂ �k is a Yk ¼ CP�k C
T Gaussian white noise with covariance, called

the innovative of the optimal filter.

Since the focus of this paper is on the effect of the unknown process noise Q on the results,

the value of the measurement noise covariance R is assumed to be completely known, which

was shown to be feasible in the literature [40–42].

In Kalman filter, Q is used in Eq (12). Therefore, in the new adaptive scheme, Eq (12) is

replaced by an online search for the prior error covariance of the posterior sequence through
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feedback.

P̂ �k ¼ P̂
�
k� 1
þ DP̂∗k� 1

ð16Þ

DP̂∗k� 1
¼ ðDx̂k� 1Dx̂Tk� 1

� Kk� 1CP̂k� 1jk� 2Þ=ðk � 1Þ ð17Þ

Where P̂ �k is the estimate of the prior error covariance, DP̂∗k� 1
is the key feedback adaptation

term, and Dx̂k� 1 is the vector that is derived by subtracting the a priori estimate from the poste-

riori estimate.

Dx̂j ¼ x̂ j � x̂ �j ; j ¼ 1; 2; . . . ; k � 1 ð18Þ

As shown in Fig 2, the DP̂∗k� 1
is first computed in Eq (17) using Dx̂k� 1 and Kk� 1CP̂ �k� 1

, and

then the P̂ �k is obtained by calibrating the final DP̂∗k� 1
with the feedback term P̂ �k� 1

. By compar-

ing the mathematical expressions of Eqs (16) and (17) with (12) of the Kalman filter, the char-

acteristics of CAKF scheme are as follows:

• The computational effort of the new scheme’s method is approximately the same as that of

Kalman’s algorithm and does not require Q. This naturally relaxes the prior and accuracy

constraints of Kalman theory on the covariance Q.

• The new scheme utilizes the posterior sequence and the feedback channel. Thus the poste-

rior information in the sequence allows the timely adjustment of the prior at the next

moment.

Derivation of the covariance adaptive scheme

Assuming that εk = {e1, e2, . . .ek−1} denotes the set of historical innovation sequences up to

moment k. P̂ �k is the unknown constant P�k based on the estimation of εk, then

LðP̂ �k Þ ¼ ln pðεkjP̂ �k Þ ¼ ln
Yk� 1

j¼1

pðejjP̂
�

k Þ ¼
Xk� 1

j¼1

ln pðejjP̂
�

k Þ ð19Þ

where pðεkjP̂ �k Þ is the probability density of the set εk and pðejjP̂ �k Þ is the set density of the

Fig 2. Schematic diagram of the CAKF.

https://doi.org/10.1371/journal.pone.0292269.g002
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Gaussian sequence ej conditioned to be P̂ �k .

pðejjP̂ �k Þ ¼ pðejjP̂
�
j Þ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ

m det ðYjÞ
q exp

�

�
1

2
eTj Y

� 1

j ej

�

ð20Þ

Where det(�) is the determinant operator, j = 1, 2, . . ., k − 1. LðP̂ �k Þ is a scalar, while the

covariance P̂ �k is a symmetric matrix of n × n, the derivativeMk ¼ @LðP̂ �k Þ=@P̂
�
k is also a sym-

metric matrix of n × n.

Ms;tk ¼ �
1

2
trf
Xk� 1

j¼1

�

ðY
� 1

j � Y
� 1

j eje
T
j Y

� 1

j Þ
@Yj

@ðP̂ �k Þ
s;t

�

g

¼ �
1

2
trf
Xk� 1

j¼1

�

ðY
� 1

j � Y
� 1

j eje
T
j Y

� 1

j ÞC
@P�j

@ðP̂ �k Þ
s;t C

T

�

g

ð21Þ

where ðP̂ �k Þ
s;t

andMs;tk are the sth row and the tth column of P̂ �k andMk with 1� s� n,

1� t� n, respectively. Then, according to mathematical knowledge, the maximum value is

obtained by settingMs;tk ¼ 0.

trf
Xk� 1

j¼1

�

CTðY� 1

j � Y
� 1

j eje
T
j Y

� 1

j ÞC
@P�j

@ðP̂ �k Þ
s;t

�

g ¼ 0 ð22Þ

The approximation of P�k is constant and @P�j =@ðP̂
�
k Þ
s;t
¼ @P̂ �k =@ðP̂

�
k Þ
s;t

is 0 except for the

sth row and the element in column t, which is 1. Actually, s and t can be any value of 1, 2, . . .,

n. (22) can be expressed into

Xk� 1

j¼1

½CTðY� 1

j � Y
� 1

j eje
T
j Y

� 1

j ÞC� ¼ 0n�n ð23Þ

Multiplying P�k ¼ P
�
j before and after the equation, we can obtain Eq (24).

Xk� 1

j¼1

½P�j C
TðY

� 1

j � Y
� 1

j eje
T
j Y

� 1

j ÞCP
�

j � ¼ 0n�n ð24Þ

Rewriting the above equation with Eq (14) and Yk ¼ CP�k C
T þ R, Eq (25) was obtained.

Xk� 1

j¼1

ðKjCP
�

j � Kjeje
T
j K

T
j Þ ¼ 0n�n ð25Þ

Combining (13), (15), (17), Dx̂j ¼ Kjej and KjCP�j ¼ P
�
j � Pj, we can obtain Eq (26).

Xk� 1

j¼1

ðP�j � Pj � Dx̂ jDx̂
T
j Þ ¼ 0n�n ð26Þ
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And then

Xk� 1

j¼1

P�j ¼
Xk� 1

j¼1

ðPj þ Dx̂jDx̂
T
j Þ ð27Þ

Assuming that the approximation is P�k ¼ P
�
j ; j < k, the unknown P�k at moment k can be

approximated by calculating P�j averaged over all historical moments, so the estimated covari-

ance P̂ �k can be obtained by the following equation.

P̂ �k ¼
1

k � 1

Xk� 1

j¼1

P�j ¼
1

k � 1

Xk� 1

j¼1

ðPj þ Dx̂jDx̂
T
j Þ ð28Þ

Similarly, for the previous moment of k − 1,

P̂ �k� 1
¼

1

k � 2

Xk� 2

j¼1

P�j ¼
1

k � 2

Xk� 2

j¼1

ðPj þ Dx̂jDx̂
T
j Þ ð29Þ

By analogy, it can be written as Eq (30).

P̂ �k ¼
k � 2

k � 1
P̂ �k� 1
þ

1

k � 1
ðPk� 1 þ Dx̂k� 1Dx̂

T
k� 1
Þ ð30Þ

In the new adaptive scheme, P�k� 1
is denoted by P̂ �k� 1

and combined with Eq (14), P�k� 1
¼

P̂ �k� 1
� Kk� 1CP̂ �k� 1

can be obtained, so the following equation can be obtained.

P̂ �k ¼ P̂
�
k� 1
þ

1

k � 1
ðDx̂k� 1Dx̂

T
k� 1
� Kk� 1CP̂

�

k� 1
Þ ð31Þ

Simulation

In order to verify the fault tolerance performance and fusion accuracy of the self-correcting

weighted fusion algorithm and the adaptive Kalman fusion algorithm, the designed algo-

rithm is used for the fusion design of three sensors with random intermittent noise. In the

simulation experiment of this paper, the designed permanent magnet maglev train point

object does CA accelerated motion with acceleration of 1m/s2 for 100 seconds, CV uniform

motion for 100 seconds, and CA accelerated motion with acceleration of -1m/s2 for 100 sec-

onds. The sampling time is T = 1s. The state vector is positioned as the position and speed of

the permanent magnet maglev train, and the sensor collects the position of the point object

according to Eq (10).

The target states are position and velocity, X ¼ ½x; _x�T , and the CV model and CA model

are Eqs (32) and (33), respectively.

Xk ¼
0 1

0 0

" #

Xk� 1 þ
T2=2

T

" #

Wk� 1 ð32Þ

Xk ¼

1 T T2=2

0 1 T

0 0 1

2

6
4

3

7
5Xk� 1 þ

T2=2

T

1

2

6
6
4

3

7
7
5Wk� 1 ð33Þ
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The main situations where sensor data errors occur include sensor failure, sensor deviation,

and significant sudden changes in sensor failure. In a sensor system, each sensor measures dif-

ferent results for information at the same location, and each sensor generates different types of

data errors or errors, and at different times. In the simulation experiment, the measurement

results after simulating the added noise and error for each sensor are shown in Fig 3.

As can be seen in Fig 3, the measurement signal of sensor 1 contains not only measure-

ment noise but also a random drift signal with small amplitude. The measurement result of

sensor 2 contains not only the measurement noise but also the pulse error signal. The signal

has a large random amplitude, but a short duration. The measurement signal of sensor 3 con-

tains measurement noise, and there also exist random signal masking and failure to receive

the signal.

The three sensor signals are fused using the designed self-correcting weighted multi-sen-

sor fusion algorithm for data fusion and compared with the results of the ideal state. As can

be seen in Fig 4, the self-correcting weighted multi-sensor fusion algorithm is unaffected by

erroneous data in the case of erroneous sensor measurements, distorted measurement drift

and interrupted sensor signals. The fusion results are closer to the real positioning data. This

indicates that the self-correcting weighted multi-sensor fusion algorithm is less affected by

Fig 3. Ideal state and measured values of three sensors. (a) Ideal state; (b) Measured value of sensor 1; (c) Measured value of sensor 2; (d) Measured value of sensor 3.

https://doi.org/10.1371/journal.pone.0292269.g003
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faulty signals, has better fault tolerance performance, better robustness, and higher fusion

accuracy.

In order to study the performance of Kalman, IAKF, and CAKF on different Q values, sim-

ulation experiments with Q values ranging from 0.1 to 10 were added. Assume that R is

known, so the effect of R on the results is not considered anymore. To evaluate the accuracy,

Fig 4. Self-correcting weighted multi-sensor fusion results. (a) Self-correcting weighted multi-sensor fusion localization results; (b) Comparison of

multi-sensor positioning data.

https://doi.org/10.1371/journal.pone.0292269.g004
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the root mean square error is chosen as the performance metric, as shown in Eq (34).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1
ðyk � x̂kÞ

2

N

r

ð34Þ

Based on the results in Fig 5, it is clear that: (1) Kalman algorithm shows great adaptability

when the initial value ofQ is large, but when the initial value of Q is small, the RMSE of Kalman

algorithm is large and cannot meet the application requirements. (2) IAKF algorithm can

obtain high fusion accuracy when the initial value ofQ is small. However, as the initial value of

Q increases, the RMSE of IAKF algorithm also increases, and the positioning accuracy

decreases, which does not guarantee the adaptivity and cannot meet the needs of fusion. (3)

The positioning accuracy of CAKF is significantly better than the Kalman algorithm when the

initial value ofQ is small, and the value of RMSE is also smaller than that of the IAKF algorithm.

At larger initial values ofQ, the filtering effect is significantly better than the IAKF algorithm,

and the error of CAKF is reduced compared with the Kalman algorithm. In other words, CAKF

has better adaptability in positioning accuracy for different Q initial values, and the new covari-

ance adaptive scheme relaxes the constraints of Kalman theory on the previous exact Q.

To investigate the performance of the above method for different noise intensities, Gaussian

noise with a mean of 0.1–3 and a variance of 1–30 was added to the measured signals fused by

the self-correcting weighted multi-sensor fusion algorithm, and the simulation results are

shown in Fig 6.

The simulation results show that: (1) for the traditional Kalman algorithm, both the IAKF

algorithm and CAKF have better positioning effects than the Kalman algorithm. (2) The

RMSE of CAKF is almost always smaller than the RMSE of the IAKF algorithm. This indicates

that CAKF has better adaptability to noise of different intensities than other methods, and the

new covariance adaptive scheme is less affected by noise and has better robustness and

adaptability.

Fig 5. RMSE results for different Q.

https://doi.org/10.1371/journal.pone.0292269.g005
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Experiment

This experiment is based on the technology verification line of permanent magnetic levitation

rail transportation system of Jiangxi University of Science and Technology. In the experiment,

INS sensor, Doppler radar sensor and GNSS sensor are respectively used to position the

Fig 6. Fusion effect under different Gaussian noise.

https://doi.org/10.1371/journal.pone.0292269.g006

Fig 7. Positioning test of the technology verification line of the permanent magnet maglev rail transit system.

Reprinted from [Jiangxi University of Science and Technology Permanent Magnet Magnetic Levitation Railway

Transportation System Technology Validation Line] under a CC BY license, with permission from [Jiangxi University

of Science and Technology], original copyright [2019].

https://doi.org/10.1371/journal.pone.0292269.g007
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Fig 8. Suspended rare earth permanent magnet maglev train positioning data acquisition. (a) Data from cross

induction loop; (b) Positioning data from INS; (c) Positioning data of Doppler radar; (d) Positioning data of GNSS.

https://doi.org/10.1371/journal.pone.0292269.g008
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suspended rare earth permanent magnet maglev train (Fig 7). The precise positioning of the

suspended rare earth permanent magnet maglev train is provided by the cross induction loop.

Experimental results of self-correcting weighted multi-sensor information

fusion algorithm

The data acquisition results of INS, Doppler radar and GNSS for suspended rare earth perma-

nent magnet maglev trains are shown in Fig 8. In the self-correcting weighted fusion algo-

rithm, the RMSE is used as an evaluation metric to verify the effect of different τ values on the

fusion results. The results in Fig 9 were obtained by calculating the values of RMSE for τ values

from 0.01 to 1.

As can be seen in Fig 9, there is some error in the fusion results when τ is taken to different

values. When the τ value is 0.94, the RMSE value of the fusion result with the localization value

of the cross induction loop is the smallest. It is shown that the highest accuracy of self-correct-

ing weighted multi-sensor fusion localization for suspended rare-earth permanent magnet

maglev trains is achieved at τ = 0.94. In order to ensure the optimal fusion effect of sensors, in

the subsequent self-correcting weighted fusion algorithm, τ = 0.94.

Fig 10 shows the positioning results of the suspended rare earth permanent magnet maglev

train using INS, Doppler radar, GNSS and self-correcting weighted multi-sensor fusion algo-

rithms, respectively. In order to evaluate the positioning accuracy of four methods for perma-

nent magnet maglev trains, ME and RMSE were used as performance indicators to calculate

the errors between the four methods and the cross induction loop. ME is used to measure

whether the results are unbiased and is calculated by Eq (35). The calculation results are

Fig 9. Effect of different τ values on self-correcting weighted fusion algorithm.

https://doi.org/10.1371/journal.pone.0292269.g009
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shown in Table 1.

ME ¼
PN
k¼1
ðyk � x̂kÞ
N

ð35Þ

Fig 10 shows that sensor fluctuations have a small effect on the values of the self-correcting

weighted multi-sensor fusion algorithm. When the positioning data from INS, Doppler radar

and GNSS show large differences, the self-correcting weighted multi-sensor fusion results are

closer to the actual positioning data than the three sensors.

From Table 1, it can be seen that the MEs of INS, Doppler radar, GNSS, and self-correcting

weighted fusion algorithms are 0.3694, 0.3894, 0.2627, and 0.1950, respectively. The RMSEs

are 0.4282, 0.4582, 0.3225, and 0.2376, respectively. The ME of the self-correcting weighted

fusion algorithm is reduced by 47.212%, 49.923%, and 25.771% compared to the three sensors,

respectively. RMSE decreased by 44.512%, 48.145%, and 26.326%, respectively. These results

all show that the self-correcting weighted multi-sensor fusion algorithm has lower errors. The

positioning accuracy is closer to the cross induction loop, which is more accurate for the posi-

tioning of permanent magnet maglev trains.

Table 1. Errors of INS, Doppler radar, GNSS and fusion algorithms.

Evaluation Indicators INS Doppler radar GNSS Fusion Algorithm

ME 0.3694 0.3894 0.2627 0.1950

RMSE 0.4282 0.4582 0.3225 0.2376

https://doi.org/10.1371/journal.pone.0292269.t001

Fig 10. Self-correcting weighted fusion algorithm fusion positioning results.

https://doi.org/10.1371/journal.pone.0292269.g010

PLOS ONE Multi-sensor information fusion for localization of permanent magnet maglev trains

PLOS ONE | https://doi.org/10.1371/journal.pone.0292269 November 28, 2023 15 / 23

https://doi.org/10.1371/journal.pone.0292269.t001
https://doi.org/10.1371/journal.pone.0292269.g010
https://doi.org/10.1371/journal.pone.0292269


Experimental results of CAKF

Next, the localization accuracy of the three algorithms, Kalman, IAKF and CAKF, for the per-

manent magnet maglev rail transit system is verified. The self-correcting weighted fusion

results are processed using each of the three algorithms, and the results are shown in Fig 11.

The positioning errors of the three algorithms are shown in Fig 12 and Table 2.

Fig 11 shows that the positioning of the suspended rare-earth permanent magnet maglev

train can be achieved more accurately using CAKF. In the starting phase of localization, the

localization results of Kalman algorithm and IAKF differ from the real values by about 1m,

while the localization results of CAKF do not differ much from the real values. In the middle

and late stages of localization, IAKF localizes better than Kalman algorithm, but there is a large

gap with the true value. The localization of CAKF has a much smaller gap with the true value.

This shows that CAKF always maintains effective positioning and higher positioning accuracy.

Fig 12 shows that the MEs of Kalman’s algorithm are all less than 1.5 and the RMSEs are all

less than 2.25. The MEs of IAKF are all less than 1.3 and the RMSEs are all less than 1.7. The

MEs of CAKF are all less than 1.1 and the RMSEs are all less than 1.2. The error magnitudes of

CAKF are significantly smaller than those of Kalman and IAKF. Except for the 26–30 sampling

points, the ME of CAKF is less than 0.6 and the RMSE is less than 0.3, which are lower than

the errors of 1.25 for Kalman and 1 for IAKF.

Fig 13 and Table 2 show that for ME error, Kalman is 0.6693, IAKF is 0.5341, and CAKF is

0.2576. For the RMSE, Kalman is 0.7384, IAKF is 0.6083, and CAKF is 0.3569. The ME of

CAKF is reduced by 61.512%, 51.769% compared to the other two algorithms. The RMSE is

decreased by 51.666%, 41.328%. The data in Fig 13 and Table 2 both indicate that CAKF has a

smaller deviation from the actual position of the permanent magnet maglev train, making the

positioning more accurate.

Fig 11. Positioning effect of suspended rare earth permanent magnet maglev train.

https://doi.org/10.1371/journal.pone.0292269.g011
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Fig 12. Error values of the three filtering methods. (a) Kalman’s error value; (b) IAKF’s error value;(c) Error value of

CAKF.

https://doi.org/10.1371/journal.pone.0292269.g012
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Self-correcting weighted multi-sensor information fusion algorithm

combined with CAKF algorithm for the localization of permanent magnet

maglev trains

In order to compare the fusion positioning effect of a single sensor and multiple sensors, the

suspended permanent magnet maglev train is located using INS, Doppler radar, GNSS and

three sensor self-correcting weighted fusion results. The positioning results using the CAKF

Table 2. Positioning evaluation of suspended rare earth permanent magnet magnetic levitation.

Evaluation Indicators Kalman IAKF CAKF

ME 0.6693 0.5341 0.2576

RMSE 0.7384 0.6083 0.3569

https://doi.org/10.1371/journal.pone.0292269.t002

Fig 13. Histogram of evaluation indicators.

https://doi.org/10.1371/journal.pone.0292269.g013

Fig 14. Fusion results of different sensors.

https://doi.org/10.1371/journal.pone.0292269.g014
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Fig 15. Error analysis of different positioning methods. (a) INS error results; (b) Doppler radar error results; (c)

GNSS error results; (d) Error results of fusion algorithm.

https://doi.org/10.1371/journal.pone.0292269.g015
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are shown in Fig 14. The error of comparing the positioning results using four methods with

the cross induction loop is shown in Fig 15.

As can be seen in Figs 14 and 15, the localization using the self-correcting weighted multi-

sensor fusion algorithm is better than the localization using a single INS, Doppler radar, and

GNSS. ME error stays below 0.6 and RMSE stays below 0.4. The fluctuations are smaller and

closer to the actual position.

From Fig 16 and Table 3, it can be seen that the ME and RMSE of the suspended rare earth

permanent magnet maglev train using INS are 0.3691 and 0.4596, respectively; Doppler radar

is 0.4165 and 0.5579, respectively; GNSS is 0.3380 and 0.4129, respectively; and proposed algo-

rithm is 0.2576 and 0.3569, respectively. The ME and RMSE of the proposed algorithm were

reduced by 30.209% and 22.346% compared to INS; by 38.151% and 36.028% compared to

Doppler radar; and by 23.787% and 13.563% compared to GNSS. It is demonstrated that the

localization position using multiple sensors has a smaller deviation from the actual position of

permanent magnet maglev trains and is closer to the actual value than using a single sensor.

This indicates that proposed algorithm has better localization effect and localization accuracy

in fusion localization.

Conclusion

A self-correcting weighted multi-sensor fusion algorithm is proposed to solve the problem of

biased fusion results due to large errors in multi-sensor localization of levitated rare earth per-

manent magnet maglev trains. For the Kalman filtering problem without accurate statistical

process noise, a new adaptive Kalman filter is used to relax the key constraint of Kalman theory

on the process noise covariance Q by using a feedback adaptation of the a posteriori sequence

to the a priori error covariance. The experimental results of the suspended rare earth permanent

magnet maglev train show that the RMSE is reduced by 44.512%, 48.145%, and 26.326% after

fusing three sensors, INS, Doppler radar, and GNSS, respectively, using the self-correcting

weighted multi-sensor fusion algorithm. Compared to Kalman and IAKF, the RMSE is reduced

by 51.666% and 41.328% using CAKF, respectively. The RMSE is reduced by 22.346%, 36.028%

and 13.563% using the fusion algorithm compared to the CAKF algorithm using a single sensor,

Fig 16. Histogram of evaluation indicators.

https://doi.org/10.1371/journal.pone.0292269.g016

Table 3. Evaluation of positioning errors of different sensors.

Evaluation Indicators INS Doppler radar GNSS Proposed algorithm

ME 0.3691 0.4165 0.3380 0.2576

RMSE 0.4593 0.5579 0.4129 0.3569

https://doi.org/10.1371/journal.pone.0292269.t003

PLOS ONE Multi-sensor information fusion for localization of permanent magnet maglev trains

PLOS ONE | https://doi.org/10.1371/journal.pone.0292269 November 28, 2023 20 / 23

https://doi.org/10.1371/journal.pone.0292269.g016
https://doi.org/10.1371/journal.pone.0292269.t003
https://doi.org/10.1371/journal.pone.0292269


respectively. Simulation and experimental results demonstrate that the self-correcting weighted

multi-sensor fusion algorithm and the adaptive Kalman algorithm are outstanding in terms of

fault tolerance performance, filtering adaptability and accuracy, and can meet the requirements

for the positioning of suspended rare earth permanent magnet maglev trains in practice.
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(XLSX)

Author Contributions

Conceptualization: Yiwei Xu, Kuangang Fan.

Data curation: Yiwei Xu, Qian Hu.

Funding acquisition: Kuangang Fan.

Methodology: Yiwei Xu.

Writing – original draft: Yiwei Xu.

Writing – review & editing: Kuangang Fan, Qian Hu, Haoqi Guo.

References
1. Wang YC, Pang QS, Fan KG, Tan WG. Simulation and experimental research on electromagnetic radi-

ation from suspended permanent magnetic levitation train. International Journal of Applied Electromag-

netics and Mechanics. 2022, 70(2): 129–147. https://doi.org/10.3233/JAE-210218

2. He YX, Wu J, Zheng YJ, Zhang YX, Hong XB. Track defect detection for high-speed maglev trains via

deep learning. IEEE Transactions on Instrumentation and Measurement. 2022, 71: 1–8. https://doi.org/

10.1109/TIM.2022.3191648

3. Wang LY, Wen HY. Research on the development trend of new railway technology and suggestions to

China. China Railway. 2020, 01: 59–64.

4. Bertola L, Cox T, Wheeler P, Garvey S, Morvan H. Superconducting electromagnetic launch system for

civil aircraft. IEEE Transactions on Applied Superconductivity. 2016, 26(8): 1–11. https://doi.org/10.

1109/TASC.2016.2598772

5. Tomita M. Maglev Technology and Research Trends on Superconductivity. Quarterly Report of RTRI.

2023, 64(1): 11–15. https://doi.org/10.2219/rtriqr.64.1_11

6. Lv G, Zhi RD, Cui LL, Zhang ZX. Characteristic Analysis of Improved Transverse Flux Linear Synchro-

nous Motor Integrated Propulsion, Levitation and Guidance for Maglev Train. IEEE Transactions on

Vehicular Technology. 2023, 80: 241–265.

7. Li CX, Zhang D, Ge JJ, Wang WJ. Target tracking with a dynamic and adaptive selection of radars

based on entropy. IET International Radar Conference. 2019, 21: 7936-7939.

8. Qiu S, Zhao HK, Jiang N, Wang ZL, Liu L. Multi-sensor information fusion based on machine learning

for real applications in human activity recognition. State-of-the-art and research challenges. Information

Fusion. 2022, 80, 241–265. https://doi.org/10.1016/j.inffus.2021.11.006

9. Zhang K, Wang ZY, Guo LL, Peng YY, Zheng Z. An asynchronous data fusion algorithm for target

detection based on multi-sensor networks. IEEE Access. 2020, 8: 59511–59523. https://doi.org/10.

1109/ACCESS.2020.2982682

10. Senel N, Elger G, Doycheva K, Kefferpuetz K. Multi-Sensor Data Fusion for Real-Time Multi-Object

Tracking. Processes. 2023, 11(2): 501. https://doi.org/10.3390/pr11020501

11. Jiang XD, Liu ZM, Liu BL, Liu J. Multi-Sensor Fusion for Lateral Vehicle Localization in Tunnels. Applied

Sciences. 2022, 12(13): 6634. https://doi.org/10.3390/app12136634

12. Liu J, Yang L, Liang G, Zeng W, Rao ZY, Xiao XT. An Intelligent Online Drunk Driving Detection System

Based on Multi-Sensor Fusion Technology. Sensors. 2022, 22(21): 8460. https://doi.org/10.3390/

s22218460 PMID: 36366163

PLOS ONE Multi-sensor information fusion for localization of permanent magnet maglev trains

PLOS ONE | https://doi.org/10.1371/journal.pone.0292269 November 28, 2023 21 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0292269.s001
https://doi.org/10.3233/JAE-210218
https://doi.org/10.1109/TIM.2022.3191648
https://doi.org/10.1109/TIM.2022.3191648
https://doi.org/10.1109/TASC.2016.2598772
https://doi.org/10.1109/TASC.2016.2598772
https://doi.org/10.2219/rtriqr.64.1_11
https://doi.org/10.1016/j.inffus.2021.11.006
https://doi.org/10.1109/ACCESS.2020.2982682
https://doi.org/10.1109/ACCESS.2020.2982682
https://doi.org/10.3390/pr11020501
https://doi.org/10.3390/app12136634
https://doi.org/10.3390/s22218460
https://doi.org/10.3390/s22218460
http://www.ncbi.nlm.nih.gov/pubmed/36366163
https://doi.org/10.1371/journal.pone.0292269


13. Guan LW, Cong XD, Zhang Q, Liu FM, Gao YB, An WD, et al. A Comprehensive Review of Micro-Iner-

tial Measurement Unit Based Intelligent PIG Multi-Sensor Fusion Technologies for Small-Diameter

Pipeline Surveying. Micromachines. 2020, 11(9): 840. https://doi.org/10.3390/mi11090840 PMID:

32906816

14. Zhou DS, Lin K, Li YH, Sun JC, Zhang Q. Multi-sensor fusion for body sensor network in medical

human–robot interaction scenario. Information Fusion. 2020, 57: 15–26. https://doi.org/10.1016/j.

inffus.2019.11.001

15. Shen T, Ma ZW, Du XJ, Zhao WX, Shi JL. Development status and trend analysis of high-speed maglev

railways worldwide. China Railway. 2020, 11: 94–99.

16. Xu HY, Zhou ZJ, Li WJ. Self-tuning weighted fusion estimation method for intelligent ship. Journal of

Huazhong University of Science and Technology. 2019, 47(3): 25–30.

17. Caballero R, Hermoso A, Linares J. Networked distributed fusion estimation under uncertain outputs

with random transmission delays, packet losses and multi-packet processing. Signal Processing. 2019,

156: 71–83. https://doi.org/10.1016/j.sigpro.2018.10.012

18. Hossein R, Reza M, Ahmad A, Mohammad H. Scalable event-triggered distributed extended Kalman fil-

ter for nonlinear systems subject to randomly delayed and lost measurements. Digital Signal Process-

ing. 2021, 111: 102957. https://doi.org/10.1016/j.dsp.2020.102957

19. Yang G, Tian GY, Que PW, Li Y. Data fusion algorithm for pulsed eddy current detection. IET SCIENCE

MEASUREMENT & TECHNOLOGY. 2007, 1(6): 312–316. https://doi.org/10.1049/iet-smt:20060118

20. Gao SS, Zhong YM, Li W. Random Weighting Method for Multisensor Data Fusion. IEEE SENSORS

JOURNAL. 2011, 11(9): 1955–1961. https://doi.org/10.1109/JSEN.2011.2107896

21. Li YF, Bian CJ, Chen HZ. Object Tracking in Satellite Videos: Correlation Particle Filter Tracking Method

With Motion Estimation by Kalman Filter. IEEE Transactions on Geoscience and Remote Sensing.

2022, 60: 1–12. https://doi.org/10.1109/TGRS.2022.3226221

22. Wang WW, Zhang K, Su Y, Wang JY, Wang Q. Learning Cross-Attention Discriminators via Alternating

Time–Space Transformers for Visual Tracking. IEEE Transactions on Neural Networks and Learning

Systems. 2023, 1–14. https://doi.org/10.1109/TNNLS.2023.3323302 PMID: 37339028

23. Huang YL, Zhang YG, Wu ZM, Li N, Jonathon C. A Novel Adaptive Kalman Filter with Inaccurate Pro-

cess and Measurement Noise Covariance Matrices. IEEE Transactions on Automatic Control. 2018,

63(2): 594–601. https://doi.org/10.1109/TAC.2017.2730480

24. Wang JL, Wang JH, Zhang DX, Shao XW, Chen GZ. Kalman filtering through the feedback adaption of

prior error covariance. Signal Processing. 2018, 152: 47–53. https://doi.org/10.1016/j.sigpro.2018.05.

011

25. Mehra R. Approaches to adaptive filtering. IEEE Transactions on Automatic Control. 1972, 17(5): 693–

698. https://doi.org/10.1109/TAC.1972.1100100

26. Chang GB, Chen C, Zhang QZ, Zhang SB. Variational Bayesian adaptation of process noise covariance

matrix in Kalman filtering. Journal of the Franklin Institute. 2021, 358(7): 3980–3993. https://doi.org/10.

1016/j.jfranklin.2021.02.037

27. Ge QB, Shao T, Duan ZS, Wen CL. Performance Analysis of the Kalman Filter With Mismatched Noise

Covariances. IEEE Transactions on Automatic Control. 2016, 61(12): 4014–4019. https://doi.org/10.

1109/TAC.2016.2535158

28. Sage P, Husa G. Adaptive filtering with unknown prior statistics. Joint Automatic Control Conference.

1969, 7: 760-769.

29. Wang XY, Wang AN, Wang DZ, Xiong YJ, Liang BX, Qi YF. A modified Sage-Husa adaptive Kalman fil-

ter for state estimation of electric vehicle servo control system. Energy Reports. 2022, 8: 20–27. https://

doi.org/10.1016/j.egyr.2022.02.105

30. Mohamed H, Schwarz K. Adaptive Kalman Filtering for INS/GPS. Journal of Geodesy. 1999, 73(4):

193–203. https://doi.org/10.1007/s001900050236

31. Huang YL, Zhang YG, Xu B, Wu ZM, Jonathon A. A New Adaptive Extended Kalman Filter for Coopera-

tive Localization. IEEE Transactions on Aerospace and Electronic Systems. 2018, 54(1): 353–368.

https://doi.org/10.1109/TAES.2017.2756763

32. Li XR, Bar-Shalom Y. A recursive multiple model approach to noise identification. IEEE Transactions on

Aerospace and Electronic Systems. 1994, 30(3), 671–684. https://doi.org/10.1109/7.303738

33. Qiao SH, Fan YS, Wang GF, Mu DD, He ZP. Strong tracking square-root modified sliding-window varia-

tional adaptive Kalman filtering with unknown noise covariance matrices. Signal Processing. 2023,

204: 108837. https://doi.org/10.1016/j.sigpro.2022.108837

34. Jiang Y, Tang B, Zhu YO, Ding C. Research on the Application of Extended Kalman Filter in the Sus-

pension Control of Maglev Trains. Automation Applications. 2009, 11: 1–3.

PLOS ONE Multi-sensor information fusion for localization of permanent magnet maglev trains

PLOS ONE | https://doi.org/10.1371/journal.pone.0292269 November 28, 2023 22 / 23

https://doi.org/10.3390/mi11090840
http://www.ncbi.nlm.nih.gov/pubmed/32906816
https://doi.org/10.1016/j.inffus.2019.11.001
https://doi.org/10.1016/j.inffus.2019.11.001
https://doi.org/10.1016/j.sigpro.2018.10.012
https://doi.org/10.1016/j.dsp.2020.102957
https://doi.org/10.1049/iet-smt:20060118
https://doi.org/10.1109/JSEN.2011.2107896
https://doi.org/10.1109/TGRS.2022.3226221
https://doi.org/10.1109/TNNLS.2023.3323302
http://www.ncbi.nlm.nih.gov/pubmed/37339028
https://doi.org/10.1109/TAC.2017.2730480
https://doi.org/10.1016/j.sigpro.2018.05.011
https://doi.org/10.1016/j.sigpro.2018.05.011
https://doi.org/10.1109/TAC.1972.1100100
https://doi.org/10.1016/j.jfranklin.2021.02.037
https://doi.org/10.1016/j.jfranklin.2021.02.037
https://doi.org/10.1109/TAC.2016.2535158
https://doi.org/10.1109/TAC.2016.2535158
https://doi.org/10.1016/j.egyr.2022.02.105
https://doi.org/10.1016/j.egyr.2022.02.105
https://doi.org/10.1007/s001900050236
https://doi.org/10.1109/TAES.2017.2756763
https://doi.org/10.1109/7.303738
https://doi.org/10.1016/j.sigpro.2022.108837
https://doi.org/10.1371/journal.pone.0292269


35. Lai T, Yi YH, Wang JY, Lin YX, Li HN. Displacement and acceleration data fusion based on multi rate

Kalman filtering method. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(6): 707–

713.

36. Cheng S, Liu C, Song LW, Xiang CQ, Li L. Maglev Train Integrated Positioning and Speed Measuring

Method Based on Multi-source Information Fusion. MODERN URBAN TRANSIT, 2022, 25(8): 136–

140.

37. Shen ZY. On Developing High-Speed Evacuated Tube Transportation in China. Journal of Southwest

Jiaotong University. 2005, 40(2): 133–137.

38. Deng ZG, Wang L, Li HT, Li JP, Wang HD, Yu JB. Dynamic Studies of the HTS Maglev Transit System.

IEEE Transactions on Applied Superconductivity. 2021, 31(5): 1–5. https://doi.org/10.1109/TASC.

2021.3094449

39. Ding HH, Feng H, Xu HX, Yin JJ, Long F. Data Fusion of Dynamic Positioning Based on the Improved

Weighted Fusion Algorithm. Journal of Wuhan University of Technology (Transportation Science &

Engineering). 2016, 40(4): 663–669.

40. Zanni L, Boudec J, Cherkaoui R, Paolone M. A Prediction-Error Covariance Estimator for Adaptive Kal-

man Filtering in Step-Varying Processes: Application to Power-System State Estimation. IEEE Trans-

actions on Control Systems Technology. 2017, 25(5): 1683–1697. https://doi.org/10.1109/TCST.2016.

2628716

41. Karasalo M, Hu X. An optimization approach to adaptive Kalman filtering. Automatica. 2011, 47(8):

1785–1793. https://doi.org/10.1016/j.automatica.2011.04.004

42. Feng B, Fu MY, Ma HB, Xia YQ, Wang B. Kalman Filter With Recursive Covariance Estimation—

Sequentially Estimating Process Noise Covariance. IEEE Transactions on Industrial Electronics. 2014,

61(11): 6253–6263. https://doi.org/10.1109/TIE.2014.2301756

PLOS ONE Multi-sensor information fusion for localization of permanent magnet maglev trains

PLOS ONE | https://doi.org/10.1371/journal.pone.0292269 November 28, 2023 23 / 23

https://doi.org/10.1109/TASC.2021.3094449
https://doi.org/10.1109/TASC.2021.3094449
https://doi.org/10.1109/TCST.2016.2628716
https://doi.org/10.1109/TCST.2016.2628716
https://doi.org/10.1016/j.automatica.2011.04.004
https://doi.org/10.1109/TIE.2014.2301756
https://doi.org/10.1371/journal.pone.0292269

