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Abstract

In the protozoan parasite Leishmania, most genes encoding for ribosomal proteins (RPs)

are present as two or more copies in the genome. However, their untranslated regions

(UTRs) are predominantly divergent and might be associated with a distinct regulation of the

expression of paralogous genes. Herein, we investigated the expression profiles of two RPs

(S16 and L13a) encoded by duplicated genes in Leishmania major. The genes encoding for

the S16 protein possess identical coding sequences (CDSs) and divergent UTRs, whereas

the CDSs of L13a diverge by two amino acids and by their UTRs. Using CRISPR/Cas9

genome editing, we generated knockout (Δ) and endogenously tagged transfectants for

each paralog of L13a and S16 genes. Combining tagged and Δ cell lines we found evidence

of differential expression of both RPS16 and RPL13a isoforms throughout parasite develop-

ment, with one isoform consistently more abundant than its respective copy. In addition,

compensatory expression was observed for each paralog upon deletion of the correspond-

ing isoform, suggesting functional conservation between these proteins. This differential

expression pattern relates to post-translational processes, given compensation occurs at

the level of the protein, with no alterations detected at transcript level. Ribosomal profiles for

RPL13a indicate a standard behavior for these paralogues suggestive of interaction with

heavy RNA-protein complexes, as already reported for other RPs in trypanosomatids. We

identified paralog-specific bound to their 3’UTRs which may be influential in regulating para-

log expression. In support, we identified conserved cis-elements within the 3’UTRs of

RPS16 and RPL13a; cis-elements exclusive to the UTR of the more abundant paralog or to

the less abundant ones were identified.

Introduction

Ribosomal proteins (RPs) are essential components of the ribosome in all organisms. In

eukaryotes, 47 and 33 different RPs are present in the large (RLS) and small ribosome (RSS)
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subunits, respectively [1]. In Saccharomyces cerevisiae, approximately 75% of genes encoding

for RPs are duplicated; these copies are either exact or highly similar in sequences with current

findings suggesting that such duplicated genes confer benefits by altering gene dosage or evolv-

ing diverged functions [2]. Duplicated gene sequences that are identical or display high conser-

vation at the level of the DNA coding sequence (CDS) but possess divergent untranslated

regions (UTRs) may undergo distinct and paralog-specific gene expression regulation [3]

whereas, dissimilarities in the CDSs may coincide with functional differences amongst the

paralogs [4]. However, information on the expression control of these genes in different organ-

isms remains scarce.

In addition to their canonical functions, noncanonical activities of RPs have been reported

in different cellular pathways and organisms [5–7], such as disturbing bud site selection [8]

and cell development in yeast [9]. More recently, RPs were linked to altered signaling pathways

and oncogenesis [10]. In colorectal cancer, for instance, inactivation or partial mutation of the

isoform RPL22 promoted the upregulation of its homologous paralog RPL22L1, leading to

increased drug resistance [11]. Furthermore, noncanonical functions have been attributed to

RPL13a, a conserved eukaryotic RP that regulates the translation of specific mRNAs molecules

in humans [12].

Ribosomes are highly conserved RNA-protein complexes responsible for translation [13].

Differences in the levels of the ribosomal subunits (RS) may directly affect translation rates in

the cell, and indeed alterations to the expression of paralog RP genes has been shown to

directly affects RS levels. In yeast, the two paralogues of both RPL26 and RPL33 genes share

highly conserved CDSs (> 98%), but in both cases only one of the two paralogs exerted a posi-

tive influence on RLS abundance [9]. Studies in other organisms have reported different func-

tions for duplicated genes encoding ribosomal proteins, a demonstration of moonlight activity

for RPs. Given that most RP genes are duplicated in the genome of Leishmania, we sought to

investigate if two duplicated RP genes, both with divergent UTRs and one with two amino acid

substitutions, play differing roles in L. major.
In trypanosomatids, almost all polymerase II protein coding genes are organized into poly-

cistronic transcription units (PTUs) [14] that lack canonical promoters for the individual gene

transcription [15]. Consequently, gene expression control primarily operates at the posttran-

scriptional level [16] via alterations to mRNA transport, stability, decay and rate of translation

[17]. Leishmania parasites are adaptive organisms switching between mammalian and inverte-

brate hosts during their life cycle, and modulating gene expression for their adaptation and

survival in the distinct hostile environments [18]. Co-transcriptionally, mRNAs are trans-

spliced at the 5’UTR in a process coupled to the polyadenylation of the upstream gene [19].

Gene expression modulation in these parasites is strongly dependent on cis elements present

within their 3’UTR, which are recognized by RNA binding proteins (RBPs) that direct the

transcript to distinct fates [20]. Interestingly, the translation of RP genes in trypanosomatids

was recently reported to be regulated by different proteins binding to their 5’ or 3’UTRs [21].

Thus, divergences in the UTRs of duplicated genes may promote differential expression via

changes in transcript stability and/or the control of protein translation. In Leishmania, multi-

copy genes are common [14], yet little is known about the factors involved in their differential

expression. Herein, to shed light on this regulation, we examine the expression profiles of two

duplicated RP genes with divergences only in the UTR (RPS16 genes) or both, in the UTR and

CDS (RPL13a genes). The two amino acid substitutions occurring between the L13a isoforms

are a Phenylalanine (Phe10) and a Glycine (Gly16) from L13a_15 that are respectively replaced

in the L13a_34 by Cysteine (Cys) and Serine (Ser), both potentially subjected to a diversity of

post-translational modifications (PTMs).
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Materials and methods

Sequence alignment

L. braziliensis RPL13a and RPS16 protein and gene sequences were obtained from TriTryp

data base (https://tritrypdb.org/tritrypdb/app/). The respective sequences were used as inputs

to perform multiple global alignment queries in Clustal Omega (https://www.ebi.ac.uk/Tools/

msa/clustalo/) to a sequence comparison. The RP nomenclature used herein is based on the

annotation of the Leishmania genome database (https://tritrypdb.org/tritrypdb/app/). If using

the universal nomenclature system proposed by Ban et al (2014), in which homologous ribo-

somal proteins are assigned the same name, regardless of the species, L13a would be named

uL13 and S16, uS9. For structural alignments, the predicted protein structures for both vari-

ants of L13 were obtained from AlphaFold database (https://alphafold.ebi.ac.uk/entry/

Q4QFG2 for LMJF_15_0200 and https://alphafold.ebi.ac.uk/entry/Q4Q3B9 for

LMJF_34_0860). The URLs corrresponding to mmCIF files were submitted to the online Pair-

wise Structure Alignment tool (https://www.rcsb.org/docs/tools/pairwise-structure-

alignment) (https://alphafold.ebi.ac.uk/files/AF-Q4QFG2-F1-model_v4.cif for LMJF_15_0200

and https://alphafold.ebi.ac.uk/files/AF-Q4Q3B9-F1-model_v4.cif for LMJF_34_0860) and the

default alignment method (jFATCAT-rigid) was applied to generate the superposition. Align-

ments were visualized using an integrated tool within the Pairwise Structure Alignment tool.

Parasite culture, differentiation, and transfection

Procyclic promastigotes of Leishmania major strain LV39 (MRHO/SU/59/P) were cultivated

in M199 medium (Sigma Aldrich) supplemented with 10% heat-inactivated fetal bovine

serum. To obtain metacyclic promastigotes, procyclic forms were cultivated for 5 days in

M199 and metacyclics were enriched from stationary phase cultures by Ficoll1 gradient [22].

Transfections were performed as described previously [23]. Briefly, 1x107 promastigotes were

resuspended in 100 μL Tb-BSF buffer and added to 60 μL of DNA generated by PCR (for Δ or

tagging). All this volume was transferred to an electrolytic cuvette and transfection was per-

formed using the X-001 program of Amaxa Nucleofector instrument (LONZA). Cultures were

maintained in M199 at 26˚C before selection with the appropriate drugs (16 μg/mL hygromy-

cin B; 20 μg/mL blasticidin; 16 μg/ mL puromycin) on solid M199 media. After 15–20 days,

individual colonies were collected and transferred to liquid M199 medium containing the

respective drug of selection and homozygosity was confirmed by DNA extraction and conven-

tional PCR and sequencing. Using specific primers (ST.3), the tagged regions were amplified

by conventional PCR, cloned into a pCR4-TOPO plasmid and sequenced by the Sanger

method with M13 primers, confirming the correct insertion of 3 copies of the myc tag (S6 Fig)

Immunofluorescence

RP subcellular localization was analyzed by immunofluorescence: a total of 1.5x106 cells were

centrifuged at 1,400 x g for 5 minutes at RT, followed by washing with 500 μl of PBS. Cells

were fixed for 10 minutes at RT in 500 μL of 3% paraformaldehyde in PBS, pelleted and

washed once with 500 μL PBS. The pellet was resuspended in 100 μL of 0.1% glycine in PBS

and 30 μL of the total cells were added to poly-lysine slides and left to adhere for 30 minutes.

Then, fixed cells were permeabilized with 30 μl of 0.2% Triton X-100 in PBS solution for 5

minutes at RT, then washed 5x in 1x PBS. Blocking was performed for 30 min with 5%

skimmed milk powder dissolved in TBS-T. α-myc (Sigma C3956) primary antibody was

diluted in blocking solution (1:4000) ratio and incubated for two hours. After incubation, five

washes were performed with 1x PBS then secondary antibodies conjugated with Alexa Fluor
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488 (Invitrogen A11001) were 1:500 diluted in PBS and incubated for 30 minutes at RT pro-

tected from the light. Nuclei and kinetoplast staining were performed using HOESCHT (Invi-

trogen H3570) at 2 μg�mL-1 for 15 min. Images were acquired on a Leica DMI6000B

fluorescence microscope at 60x magnification and processed using the Fiji Image software J

(https://imagej.net/Fiji/Downloads) [24].

Scanning Electron Microscopy (SEM)

107 parasites were fixed for 2 hours in 3% paraformaldehyde and 2% glutaraldehyde in PBS

supplemented with 0.9 mM CaCl2 and 0.5 mM MgCl2 at RT. The parasites were post-fixed in

2% OsO4 for 2 h and incubated with a thiocarbohydrazide (TCH) solution for 10 minutes, fol-

lowed by ethanol and acetone dehydration. Then, parasite cells were mounted on a support

and subjected to gold-coated metal plating. Cells were analyzed using an electron microscope

scan (JEOL-JSM-5200). Images were captured in the Electron Microscopy Multiuser Labora-

tory (Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP).

Western blotting

Parasites were pelleted (1,400 x g for 5 minutes at RT), washed once with 500 μL of cold-PBS

supplemented with protease inhibitors (Roche), resuspended in 10 μL of extraction buffer54

and boiled for 10 min. Total protein was quantified in Nanodrop One spectrophotometer

(Thermo Scientific) by measuring the absorbance at 280 nm. For every protein sample, sample

buffer was added [23] and boiled for 3 minutes. 30 μg of total protein for each sample was frac-

tionated in a 12% polyacrylamide gel. Proteins were transferred to nitrocellulose membranes

(GE Healthcare Life Sciences: 10600003) and blocked for 1 h with TBS-T buffer (Tris-saline-

Tween buffer: 10 mM Tris, 100 mM NaCl, pH 7.6, Tween20 0.1%) containing 5% milk pow-

der. Immune detection was performed with the appropriate primary and secondary antibod-

ies, following the manufacturer’s recommendations: α-myc (1:4000; Sigma C3956) and α
-EF1α: (1:80000; Merck 05–235). Both primary antibodies were diluted in solution of TBS-T

with 2.5% powdered milk and incubated for 1 h at RT, followed by incubation with secondary

antibody under the same conditions. Membrane visualization was performed via chemilumi-

nescence (ECL kit–GE Healthcare: RPN2232) and images were obtained on the ImageQuant

LAS 4000 equipment (GE Healthcare). Band quantification was performed using ROI manager

tool of Fiji ImageJ software to determine the band skew of each sample. Band skew is a param-

eter used to quantify the pixels of one image, and has no specific unit [25]. Increase in the

band skew means higher pixel’s intensity, here directly correlated to the protein amount. All

band skews were compared between the samples.

RNA extraction and transcripts quantification

Cells were pelleted (1,400 x g for 5 minutes at RT), lysed with TRIzol reagent (Invitrogen) and

RNA extraction was performed using DirectZol RNA Miniprep kit (Zyme Research). Total

RNA was treated with DNase Turbo (ThermoFisher Scientific) and RT-qPCR performed and

analyzed as described by Freitas Castro and cols [26], using G6PDH as housekeeping genes for

normalization.

Pull-down assay

The regions corresponding to the 3’UTR of the RPS16 and RPL13a genes were retrieved from

TriTryp data base (https://tritrypdb.org/tritrypdb/app/). These sequences were cloned into

pUC-56 plasmid between a T7 promoter and 4xS1m aptamer sequences, adapted from

PLOS ONE Expression levels of duplicated genes are mantained by a compensation mechanism

PLOS ONE | https://doi.org/10.1371/journal.pone.0292152 May 16, 2024 4 / 21

https://imagej.net/Fiji/Downloads
https://tritrypdb.org/tritrypdb/app/
https://doi.org/10.1371/journal.pone.0292152


Leppek’s strategy [27]. Then, RNA was in vitro transcribed (MEGAscript T7 transcription kit–

ThermoFisher AM1334). Thirty micrograms of purified RNA were immobilized on Streptavi-

din magnetic beads (NEB) at 4˚C for 8h under orbital rotation. 108 parasites were lysed on ice

by physical pressure using a 19G needle with 1mL of SA-RNP-Lyse buffer (20mM Tris-HCl

pH7.5, 150mM NaCl, 1.5mM MgCl2, 2mM DTT, 2mM RNAse inhibitor, 1 protease inhibitor

cocktail tablet, 1% Triton X-100). Biotinylated proteins were previously removed from the

extract by incubating the lysed extract for 8h at 4˚C with the streptavidin beads. Then, the

supernatant was incubated with the bead-immobilized RNA sequences for 8h at 4˚C. An

empty plasmid with no sequence between T7 promoter and 4xS1m aptamer was used as RNA

control to identify unspecific proteins. After that, the beads were washed three times with

wash buffer (20mM Tris-HCl pH7.5, 300mM NaCl, 5mM MgCl2, 2mM DTT, 2mM RNAse

inhibitor, 1 protease inhibitor cocktail tablet), resuspended in 35 μL of Laemmli buffer [28]

and boiled for 10 mins before application into 12% polyacrylamide gel. Samples were run at

110V until the samples reached the separation gel.

Proteomic analysis, mass spectrometry, DataBase searching and criteria for

protein identification

Gel bands containing the samples were sent to protein identification by mass spectrometry

analysis (Proteomics Platform of the CHU de Québec Research Centre, Quebec, Canada).

Three biological replicates were evaluated for each protein and for the control. Results were

obtained and analyzed using the software Scaffold Protein. The list of identified proteins was

filtered using a protein threshold of 99%, a peptide threshold of 95% and a minimum of 1 pep-

tide identified for all the samples. Proteins interacting with the control RNA sequence were

unconsidered and the results were based on the proteins specifically interacting with the

3’UTR sequences in triplicate. Detailed information on Mass Spectrometry, Database search-

ing and criteria for protein identification have been described elsewhere [23].

Starvation resistance assay

Nutritional stress was evaluated by incubating 106 parasites per well in a 96 well plate in PBS

for 4 h. After that, plate was centrifuged 1,400 x g for 5 minutes at RT, cells were resuspended

in complete M199 with MTT (3-(4,5-DIMETHYL-2-THIAZOLYL)-2,5-DIPHENYL-2H-

TETRAZOLIUM�BROMIDE) 1 mg�mL-1 and incubated for 24 h at 26˚C. After that, parasites

were pelleted and 200 μL of DMSO was added to solubilize the tetrazolium crystals. Absor-

bance was measured at 560 nm considering the substrate conversion for cell non-starved as

100% of nutritional response. Experiments represent three biological replicates performed as

quintuplicate technical replicates.

Sucrose density gradient

Promastigotes extracts from Leishmania major under normal growth condition were fraction-

ated on sucrose gradient [29]. Briefly, 5 x108 cells were previously incubated in cycloheximide

100 μg�mL-1 for 10 min. Cells were kept on ice and washed once with TKM buffer (10 mM

Tris, 10 mM KCl, 1 mM MgCl2 and pH 7.5) supplemented with 100 μg�mL-1 cycloheximide,

10 μg�mL-1 heparin, 10 μg�mL-1 E-64 (cysteine protease irreversible inhibitor–Sigma-Aldrich)

and protease inhibitor cocktail (Roche). For polysome dissociation, cells were treated with

puromycin 2mM. Cells were pelleted and 100 μL of lysis buffer (TKM supplemented with 10%

surfactant NP-40 and 2 M sucrose) were lysed by 10 x up and down agitation with a P200

pipette, followed by centrifugation at 18,000 x g at 4˚C for 10 min. The supernatant was added

on the top of linear 10–50% sucrose density gradient prepared in the same buffer. The system
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was centrifuged at 39,000 rpm at 4˚C for 2 h in a Beckman SW41 rotor. After centrifugation,

the gradient fractions were collected using the ISCO gradient fractionation system with the

same sensitivity in the instrument (1.0) and starting the gradient profile at the baseline of 30

cm on the ISCO paper for all gradient replicates, using 30 μL of each sample for blotting assays.

For a semi-quantitative analysis, the scale with arbitrary values of A254 nm was inserted into

the polysomal profile graph, since the ISCO instrument does not provide absolute absorbance

values. To assign these values, we relied on the centimeter scale of the ISCO paper on which

the gradients are plotted, considering the maximum absorbance as 1. The intensity values of

the 80S and 40S peaks were determined considering the y axis values. Peaks height were esti-

mated considering the values from their base to the top. In this way, the intensity of the 80S

peak relative to the 40S peak can be determined.

Statistical analysis

Statistical t-test (Mann–Whitney) and one-way ANOVA followed by Tukey’s multiple com-

parison tests were performed using GraphPad Prism 8, considering as significant a p-value

<0.05.

Results

RPs from paralog genes have different expression levels and

undistinguishable subcellular distribution

We investigated the expression of two pairs of duplicated paralogous genes encoding for RPs in

L. major LV39 parasites: RPS16 (Fig 1A) and RPL13a (Fig 1B). RPS16 was studied as a model

for paralogs with identical coding sequences and divergent UTRs (Fig 1C), whilst RPL13a we

selected as a representative for paralogs with non-identical coding sequences and divergent

UTRs (Fig 1D). Seven nucleotide substitutions were found when comparing the two copies of

RPL13a genes; two of them led to a codon modification and to non-conserved amino acid sub-

stitutions (Fig 1D) however, such alterations lead to no detectable changes in their 3D structures

(S1D Fig), suggesting the RPL13a paralogs may retain conserved functions. Next, we focused on

the roles of the divergent 3’UTRs, which are known to be involved in the interaction with RNA

binding proteins [30] and, therefore, in the control of gene expression by regulating or modulat-

ing the mRNAs transcriptional and translational rates, as well as their stability.

To investigate the fate of each of these RPs in L. major, we used CRISPR/Cas9 to fuse an

endogenous epitope tag to the N-terminus of each protein as previously described [31]. Briefly,

donor DNA containing 3xmyc epitopes and a blasticidin resistance gene was used to repair the

Cas9-induced double strand break at 5’-end of each one of the paralogs (Fig 2A). The insertion

of the tag in each copy of the RPS16 paralogs was confirmed by PCR and sequencing, showing

that each individual paralog, RPS16_80 or RPS16_90, was efficiently tagged in both alleles (S1

and S6 Figs). For the RPL13a isoforms, due to the similarity of their amplicon size, the PCR

was carried out for both copies, RPL13a_15 and RPL13a_34, allowing the confirmation of tag

insertion in only one paralogue with the maintenance of unmodified paralogous copy (S1 Fig).

These confirmed transfectants were subsequently used to check the individual expression level

and subcellular localization of all four RP isoforms.

Log-phase procyclic promastigotes and metacyclic promastigotes, purified from cultures in

stationary phase by a Ficoll gradient fractionation [22], were isolated from axenic cultures and

their morphologies examined by scanning electron microscopy to confirm their lifecycle

stages; metacyclic promastigotes have elongated flagella and reduced cell body size when com-

pared to the procyclic form (Fig 2B).
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Fig 1. Paralog genes and proteins alignments. (A) 40S ribosomal protein S16 genes are found in tandem on the minus strand of

chromosome 26 and (B) 60S ribosomal protein L13a genes are found on distinct chromosomes (15 and 34) and in opposite

directions. (C) RPS16 and (D) RPL13a gene alignments, highlight the divergences in the UTR sequences. (E) RPL13a amino acid

sequence alignment showing the two amino acid substitutions (*).

https://doi.org/10.1371/journal.pone.0292152.g001
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Fig 2. Protein levels and subcellular localization of duplicated S16 and L13a ribosomal proteins. (A) Strategy for 3xmyc tag insertion in only one of the

copies of the RP genes using CRISPR/Cas9. (B) Procyclic promastigotes were cultivated until the log phase from which metacyclic forms were purified by Ficoll

gradient (see methods). Their morphological differences were confirmed by scanning electron microscopy. (C) Western blots probed with α-myc show that, for

both RPs, the levels of protein for one paralog are consistently reduced in comparison to the other, and moreover, abundance is further reduced in metacyclic

compared to procyclic promastigotes. (D) Immunofluorescence analysis confirms the cytoplasmic localization for all RP (green) proteins in procyclic

promastigotes (nucleus [N] and kinetoplast [K] are indicated and stained in blue using Hoechst).

https://doi.org/10.1371/journal.pone.0292152.g002
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The relative protein abundance derived from each paralogous gene was evaluated by west-

ern blotting (Fig 2C) in both procyclic and metacyclic promastigotes. RPS16_80 and

RPL13a_15 are consistently present in higher levels than their respective paralog in both life-

cycle stages. Such differences in protein abundance were more prominent between the

RPS16_80 and RPS16_90 isoforms in metacyclic promastigotes; RPS16_80 levels remain

unchanged between procyclic and metacyclic stages but RPS16_90 was found to be lower in

abundance when compared to RPS16_80; such difference between RPS16_80 e RPS16_90 lev-

els is more striking in metacyclics.

The subcellular localization of RPS16 and RPL13a and their paralogs were investigated by

indirect immunofluorescence. We detected myc signal for all RPs localizing (Fig 2D) exclu-

sively to the cytoplasm, with no detectable co-localization with the nuclear or kinetoplastid

Hoechst signal. Additionally, direct immunofluorescence performed for RPS16 using an α-

RPS16 antibody raised in L. major LV39 confirmed the cytoplasmic localization in the myc-
tagged RPS16 cell lines (S2 Fig). Importantly, the intensity of the immunofluorescence signal

corroborated the western blotting results and confirmed the differences in the abundance of

each RP isoform in procyclic promastigotes.

Profile of proteins interacting with the UTRs of the studied RP transcripts

Since the 3’UTRs of both duplicated genes are not conserved and the expression levels of each

paralog differed, we performed pull-down assays using the S1m in vitro system [27] to identify

proteins potentially involved in such regulatory mechanisms. Briefly, the 3’UTR sequences

were determined based on TriTrypDB annotations (Fig 3A), fused to the S1m aptamer and

transcribed in vitro. After RNA immobilization on streptavidin-coated magnetic beads, the

3’UTR sequences were incubated with log-phase L. major LV39 protein extract. The bound

proteins were isolated and identified by mass spectrometry (MS). Gene ontology (GO) analysis

revealed that the proteins interacting with RPL13a and RPS16 3’UTRs are mostly involved in

peptide and ribosome biogenesis, respectively (Fig 3B). Among these proteins, six were identi-

fied as binding to all four 3‘UTR sequences (Fig 3C), and four of them are directly related to

protein folding and ribosomal biogenesis and processing. We speculate that these four proteins

common to all the examined UTRs are possibly core proteins that bind to mRNA of RP genes

and might be involved in intra nuclear trafficking and nucleolar activities (Fig 3D).

Increased response to starvation and RP levels of mutant parasites

Considering that ribosomal activity is affected under nutritional stress potentiating or uncov-

ering non-canonical functions of ribosomal proteins, as shown for other organisms [5–8], we

analyzed the resistance to starvation by comparing parental cells (pT007) to RP transfectants

knocked out for each one of the paralogs. To this end, cells carrying a myc tag in one of the

paralogous gene was knocked out for its corresponding counterpart (Fig 4A) with all knock-

outs (Δ) confirmed by PCR (S3 Fig). The ability to rapidly adapt and respond to starvation is

critical for Leishmania differentiation and survival. Procyclic promastigotes were incubated

for 4h in PBS, with recovery of 24h in fresh medium, and viability measured via colorimetric

assays using MTT (Fig 4B). Curiously, an increment of the parasite resistance to the nutritional

stress was observed for all the Δ parasites compared to parental cells, as indicated by the higher

mitochondrial activity measured by MTT conversion (Fig 4C).

Additionally, the RP levels were evaluated by western blotting prior to and after 4 hours of

starvation in PBS, as well as at 24hs post recovery in fresh medium. As shown (Fig 4D), upon

starvation, a subtle decrease in the levels of both L13 and S16 proteins was observed, which

were completely recovered to the unstarved levels after 24h in fresh medium. Interestingly,
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this trend was also observed for RPS16_90 and RLP13_34 which are consistently expressed at

lower levels under physiological conditions (Fig 4D). Additionally, under stress conditions no

marked changes in the subcellular distribution of these RPs were observed (Fig 4E).

Fig 3. Identification of proteins interacting with the 3’UTRs of the RPS16 and RPL13a paralogs mRNA. (A) For the pulldown assays, fragments from the

3’UTRs of each gene were amplified and cloned into PUC-54-4xS1m; the position of the primers and lengths of the fragments are indicated. (B) Gene ontology

analysis of proteins identified in vitro interacting with individual 3’UTR of each RPS16 and RPL13a paralog genes (shades of blue), and proteins interacting

with both paralogs (red). (C) Specific and shared proteins for each duplicated gene were identified, with total of 24 and 18 for RPS16_80 and 90, respectively.

For RPL13a paralogues, similar numbers of specific proteins were obtained: 30 and 31 proteins for RPL13a_15 and 34, respectively. (D) All 3’UTRs of

ribosomal protein duplicated genes bound to proteins involved in ribosome pathways, when considered the five most relevant p-values (D). All the analyses

were based on the results from three independent assays.

https://doi.org/10.1371/journal.pone.0292152.g003
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Fig 4. Nutritional stress response and expression levels of RPs under starvation. (A) After tagging one of the paralogues, the other one was deleted using

CRISPR/Cas9. (B) Procyclic promastigotes in exponential growth were exposed to total starvation in PBS for 4h at 27˚C, followed by viability assays, blotting

and immunofluorescence analysis. (C) Cell viability was quantified by MTT assay at 24h post-starvation, to examine the recovery capacity of the mutant cells

compared to parental line (pT007). (D) Expression levels of RPs were lower under starvation (St), particularly for RPS16_90 and RPL13a_34, with general

recovery of parental levels after 24h of recovery in fresh medium (Rv) in comparison to the non-starved cells (control–Ct)–detection by western blotting with

α-myc. (E) Immunofluorescence revealed no significant difference between the RPs distribution (green) under stress, but a subtle accumulation can be

observed by increased signal in some regions of the cytoplasm (arrows) after 4h of total starvation (D).

https://doi.org/10.1371/journal.pone.0292152.g004
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Knockout of RPL13a paralogs reduced the amount of 60S and 80S

ribosomal subunits

Given that CDSs encoding the RPL13a proteins are non-identical with two non-conserved

amino acids substitutions at the N-terminus (Fig 1E), we investigated the ribosome organiza-

tion of these Δ cells under physiological condition. In that direction, we conducted polysomic

profile analyses to investigate the status of the assembly of the ribosomal subunits, translation

activity and biomolecule complexes [29,32]. Cell extracts of parental and Δ cells bearing only

one of the RPL13a paralogs were fractionated by a sucrose gradient after treatment with cyclo-

heximide or puromycin. For comparison purposes, we first analyzed the profile of polysomic

distribution in parental and Δ cells in the presence of cycloheximide and observed a decreased

peak for the 60S ribosome, as well as a subtle decrease in the 80S complex with a slight increase

in the 40S subunit for the ΔRPL13a_15 and ΔRPL13a_34. As shown in Fig 5A, the intensity of

the 80S peak for the ΔRPL13a_15 and ΔRPL13a_34 mutants relative to the 40S peak (80S/40S)

is 2.2-fold and 1.6-fold, respectively. For the parental cell, 80S peak intensity relative to 40S

peak (80S/40S) is 1.5-fold. When this 80S:40S ratio is compared between the three profiles, a

1.5- fold (2.2 or 2.3/1.5) reduction in the intensity of the peaks corresponding to the monoso-

mal fraction of the both RPL13amutants is observed with respect to the parental strain. Addi-

tionally, polysomal peaks were significantly reduced compared to the parental cell line. These

findings suggest that knockout of both RPL13a_15 and RPL13a_34 affects protein synthesis,

even in the presence of the corresponding paralog. Next, we analyzed the distribution of each

RPL13a paralog throughout the non-polysomic and polysomic fractions. No clear distinction

in the distribution of a specific paralog in the absence of the other was observed, with both

paralogous proteins being detected at similar levels at sucrose densities corresponding to

monosomes and light or heavy polysomes (Fig 5B). Additionally, both RPL13a paralogs were

detected mainly at the density of light polysome fractions when treated with puromycin, as if

large and small subunits were assembled but not organized for translation (Fig 5C).

Duplicated RPs present a paralog compensation that maintains protein

levels

Next, we sought to check if different paralogs could compensate for the absence of each other

in a compensatory mechanism to maintain the protein at parental levels. Protein levels were

evaluated in both procyclic and metacyclic parental and knockout promastigotes by western

blotting using a α-myc antibody. For all the studied proteins, when one of the genes was

deleted, the tagged paralog protein levels increased compensating the lack of its counterpart

(Fig 6A). This compensatory effect is more evident when the gene that is expressed at lower

levels (RPS16_90 and RPL13a_34) is kept and their highly expressed paralog deleted (Fig 2C).

Additionally, to confirm that the presence of at least one of the paralogs was necessary for par-

asite viability, we proceeded to knock out both RPS16 paralogs, but no double Δ clones could

be recovered. Recovered clones had inserted two drug resistance genes from two rounds of

transfections using CRISPR/Cas9 but all transfectants had retained at least one intact copy of

the parental gene (S3 Fig).

In addition to protein abundance, gene expression was also evaluated at the transcript levels

to evaluate at what level(s) the compensatory mechanism may occur. For that, total RNA from

both ΔRPL13a procyclic promastigotes was extracted and transcript levels quantified by RT-

qPCR utilizing specific primers for the divergent UTR regions of each L13a gene copy. Tran-

script levels in the Δ and parental cell lines were compared, and relative expression was nor-

malized to the expression of the housekeeping gene Glucose-6-phosphate dehydrogenase

(G6PDH). No significant differences in transcript levels were observed for either RPL13a
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paralogs (Fig 6B). This result indicates that RPL13a compensatory mechanism involves either

alterations to the translation rate or protein stability. However, it is unlikely that it is related to

increases in transcript levels and/or stability.

Discussion

The relevance of post-transcriptional gene expression regulation in Leishmania parasites [16]

associated to the typically duplicated genes encoding for RPs raised the hypothesis that such

proteins might be subjected to different expression regulation mechanisms or even possess

Fig 5. Knockout of RPL13a paralogs decreases 60S, 80S and polysomes. (A) RPL13a Δ mutants and the parental cell lines were subjected to sucrose

gradient fractionation and polysomal profile determination, where FP: free polysomes fraction, PP: pre-polysomes, LP: light polysomes and HP: heavy

polysomes. 254nm absorbance values were set arbitrarily and the relative intensity of the 80S and 40S peaks are shown in the dashed lines. Accumulation

of both RPL13a isoforms in light polysomes fraction was determined by western blotting after cycloheximide treatment. (B) Additionally, both RPL13a

isoforms were found in light polysome fraction (LP), even after ribosome dissociation by puromycin treatment. Experiments were performed in biological

duplicate and the polysome profiles correspond to the average of each sample.

https://doi.org/10.1371/journal.pone.0292152.g005
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non-canonical functions. In our study, we observed a compensatory expression mechanism

for two pairs of RP paralogous genes, RPS16 and RPL13a, from L. major, which is linked to an

increase in either the rate of translation or protein stability of each paralog, but without

Fig 6. Compensatory expression of RP paralogs in knockout cells. (A) Expression levels in procyclic and metacyclic

promastigotes were analyzed by western blotting using α-myc. The presence and absence (Δ) of the correspond RPS16

and RPL13a paralogues are indicated by + and -, respectively. Band intensity was quantified in ImageJ software and the

results were plotted in the corresponding graph with the increment of band color indicated. (B) RT-qPCR was used to

quantify the relative expression of RPL13a transcripts in the parental (WT) and Δ promastigotes. Expression of the

gene of interest was normalized to the G6PDH housekeeping gene.

https://doi.org/10.1371/journal.pone.0292152.g006
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measurable effects on the levels of the RPL13a transcripts. In humans, RPs are encoded by

unique coding sequences, whereas 59 genes encoding for RPs are found to be duplicated in the

S. cerevisiae genome [33]. Gene duplication was considered as a redundancy in the genome,

since, in general, carrying two identical copies of a given gene was not considered to be advan-

tageous [34]. However, for highly expressed transcripts, as RP genes–the most expressed in

many cells [35]–such phenomenon can be favorable to supply the cell with high levels of RNA

[34]. Gene duplication is currently understood as a recurrent and relevant process contribut-

ing to genome evolution [36]. The maintenance of duplicated RP genes with higher sequence

similarity is remarkable when compared to other functional classes of duplicated genes in S.

cerevisiae. The sequence conservation of RP paralogous copies may be attributed to their

importance in maintaining protein folding or as surfaces for ribosome assembly and function

[37]. Interestingly, these RPs typically have highly similar coding sequences but very different

UTRs. In many of the investigated paralogs, the two copies were often expressed at different

levels, after which the singular deletion of one copy of a pair led to different effects on fitness

[37].

Herein, Leishmania RPS16 and RPL13a genes were investigated at protein and transcript

levels, with the aim to uncover evidence and add information on the regulatory processes of

these genes. RPS16 paralogs (LmjF.26.0880 and LmF.26.0890) are localized in tandem, with

identical CDSs and divergent UTRs (Fig 1A and 1C). RPL13a genes (LmjF.15.0200 and

LmjF.34.0860), on the other hand, are found on different chromosomes, with divergent UTRs

and non-identical CDSs (Fig 1B and 1D). The divergent UTRs of the paralogs may suggest dif-

ferent expression regulation for these genes since untranslated regions contain sites for the

binding of RBPs. 3’UTRs are strongly involved in the control of translational [30] and post-

transcriptional [38] activities in eukaryotes and in prokaryotes, 3’UTRs are involved in gene

expression regulation [39]. All this evidence strongly suggests that the control over the expres-

sion of these duplicated genes may be directly related to divergences within the 3’UTRs.

To investigate the relative abundance of RPS16 and RPL13a paralogs, all paralogs were

tagged at N-terminal (Fig 2A). We consistently found higher levels of one of the paralogs

across both procyclic and metacyclic forms, compared to their respective copy (Fig 2C). The

abundance results observed for RPS16 isoforms corroborate those of RNA levels, as previously

observed by RT-qPCR [26]. Due to the polycistronic nature of transcription in trypanosoma-

tids, correlations between the levels of transcripts and proteins are often poor. Moreover, in

human cells such correlations also appear poor, with only 33% of genes showing some correla-

tion between protein and mRNA levels [40]; correlations are instead commonly observed for

stage specific genes [41]. We were unable to evaluate the same parameters in amastigotes due

to experimental limitations pertaining to the cultivation of L. major axenic amastigotes in
vitro.

To search for any possibility of non-conventional functions for the RPs herein studied, we

checked the nutritional stress response of mutant parasites, an essential process for the parasite

adaptation and development in the in insect digestive tract [42], which also involves ribosomal

activity. After 4h of starvation and 24h of recovery, MTT assays indicated higher cell viability

for all the Δ parasite lines (Fig 4C). Increased mitochondrial activity could be a result of pro-

longed stress signaling, even after 24h of recovery. This elevated mitochondrial activity reveals

a difference in resilience to nutritional stress in the knockouts compared to the parental cell

line. Nevertheless, we cannot disregard the limitations of the MTT assay, as metabolic activity

may be modified by external factors directly affecting the conversion of formazan in culture

[43]. Although it cannot be ruled out at this point, no non-canonical roles for the RP isoforms

investigated in this study were identified, but specific phenotypical alterations have been

reported coinciding with the absence of one copy of a duplicated RP, uL6A or uL6B, in S.
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cerevisiae, resulting in variations in general protein synthesis [44]. Furthermore, RPL23AA
depletion promoted cell growth arrest with anomalies in Arabidopsis thaliana, even in the

presence of its isoform RPL23AB [45].

During starvation, Leishmania parasites usually store their mRNAs and some ribosomal

constituents within cytoplasmic granules to protect them from degradation [46]. The immu-

noblotting results suggest that no changes in RPs levels in the cell occur under starvation (Fig

4D), although a discrete, but detectable, clustering of these RPs suggests they may accumulate

in some cytoplasmic aggregates (Fig 4E). In fact, loss of RPL13a isoforms caused a decrease in

the 60S subunit, likely impacting upon the formation of the 80S subunit and subsequent poly-

somes. These data indicate a canonical behavior for the Leishmania RPL13a given a similar

pattern of polysomic profile distribution was observed for Trypanosoma cruzi RPL26, which

plays its canonical function [29]. However, in humans, RPL13a is dispensable for ribosomal

functionality, but essential for mRNA methylation, a well-known non-canonical function for

RPs [47]. Other non-canonical functions are also reported for human RPL13a, which plays dif-

ferent roles outside of the ribosome complex [48] including mRNA translation inhibition after

RPL13a phosphorylation and its release from the ribosomal subunit [12] and as a constitute of

the GAIT complex, a protein-RNA complex which drives the selective transcription control

for a group of related genes [49].

Duplicated RPs might be associated with organism heterogeneity, and stage-specific RP iso-

forms were observed in A. thaliana, with higher RPS5A level found in rapidly dividing cells

during the early embryonic development, compared with its isoform, RPS5B, which is prefer-

entially expressed in differentiating cells [50]. In the same organism, RPL16b is another RP

present in higher amounts in dividing cells, whilst RPL16A expression shows a tissue-specific

association [51]. For Leishmania parasites, differentially expressed genes corroborate their

agile adaptation to the different host environments during the life cycle. Interestingly, one of

each RP paralog genes displays transcript and protein levels characteristically at higher levels

than their corresponding paralog, and adjustment of the protein amounts to native levels con-

sistently happens to compensate for the absence of the other paralog. We also show that this

compensatory mechanism for both RPS16 and RPL13a occurs at the protein level when their

paralogous copy was deleted (Fig 6A), similar to that observed for RPs from S. cerevisiae [44].

Such a mechanism does not involve the control of the transcript steady-state (Fig 6B). Thus,

we speculate that this compensatory expression mechanism is linked to the canonical roles

played by both isoforms and that there is a fine-tuning of protein abundance for each paralog.

As previously mentioned, the lack of regulators at individual genes delegates control over gene

expression in trypanosomatids largely to post-transcriptional processes, which includes

mRNA steady-state, translation rate and protein stability or post-translational modifications

[52]. Untranslated regions of mRNAs play a central role on these processes as they contain

sites for the binding of regulatory proteins, the RBPs [53,54]. Herein, 11 and 16 proteins were

identified to binding to the 3’UTRs of both RPS16 and RPL13a isoforms, respectively (Fig 3C).

After GO analysis, proteins involved in central aspects of translation, peptide and ribosome

metabolism were identified in both 3’UTRs of RPL13a genes. For RPS16, the most relevant

pathways were related to proteins involved in ribosomal biogenesis and metabolism (Fig 3B).

Thus, these proteins identified by in vitro pulldown assay reinforce the hypothesis that the

compensatory mechanism for the duplicated transcripts involves the translation machinery.

Comparing the pool of proteins, we observed that only 6 of them are common to all four RP

3’UTR sequences analyzed (Fig 3C), and that they might be the core RBPome for RP tran-

scripts. Interestingly, two proteins were detected to bind exclusively to the 3’UTRs of the iso-

forms present in lower abundance (RPL13a_34 and RPS16_90) and eight proteins were only

associated with the more abundant isoforms (RPL13a_15 and RPS16_80). The last two sets of

PLOS ONE Expression levels of duplicated genes are mantained by a compensation mechanism

PLOS ONE | https://doi.org/10.1371/journal.pone.0292152 May 16, 2024 16 / 21

https://doi.org/10.1371/journal.pone.0292152


proteins might be important for the specificities of control for the lower and higher RP expres-

sors. In combination with these results, and with the aim to find shared and specific cis-ele-

ments which might act as binding sites for RBPs, we examined the 3’UTR sequences of the RP

proteins identifying some conserved elements (S4 Fig) deserving of further experimental eval-

uation as putative functional binding sites implicated in the differential control of gene iso-

forms, as we have previously shown [55].

Despite a lack of evidence for non-canonical functions of L. major RPL13a in our report,

such a hypothesis cannot be discarded given many prior reports have shown alternative roles

for its orthologue in other organisms. Of note, the amino acid substitutions of Phenylalanine

(Phe10) and Glycine (Gly16) in L13a_15 to Cysteine (Cys) and Serine (Ser) respectively, in the

L13a_34 isoform, are putative targets of a large variety of post-translational modifications

(PTMs). As for serine, various PTMs such as phosphorylation, sulfation, and various sugar

chain modifications may occur. Additionally, the nucleophilicity and redox-sensitivity charac-

teristic of cysteine residues results in a variety of PTMs. In contrast, Phe does not undergo

PTMs, and Glycine is only subject to N-Myristoylation or N-acetylation. Despite the potential

relevance to protein function of these substitutions [56], many PTMs are labile and dynamic,

rendering them challenging to detect within a complex proteome [57]. Therefore, a technical

limitation associated with the conditions used to evaluate PTMs and moonlight activities for

each of the L13a isoforms may explain our results. In the end, we have provided insights into

the regulation of gene expression for duplicated genes in Leishmania parasites, together sup-

porting post-translational expression regulation. The conserved cis-elements within the

3’UTRs of these transcripts might be central to the compensatory mechanism observed for the

paralogs at the protein level.

Overall, our results indicate that the RP duplicated genes studied compensate for the lack of

the paralogous copy recovering the RP total levels of expression found in the wild type cells.

Nevertheless, the non-identical L13 isoforms do not fully replace each other as we observed

that despite the observed compensatory effect on the level of expression of the protein, the

absence of one paralog has an impact on the formation of polysomes. This is an intriguing

result to be further investigated.
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Formal analysis: Francisca S. Borges, José C. Quilles, Jr, Lucas B. Lorenzon, Caroline R.
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