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Abstract

A challenge to many real-world data streams is imbalance with concept drift, which is one of
the most critical tasks in anomaly detection. Learning nonstationary data streams for anom-
aly detection has been well studied in recent years. However, most of the researches
assume that the class of data streams is relatively balanced. Only a few approaches tackle
the joint issue of imbalance and concept drift. To overcome this joint issue, we propose an
ensemble learning method with generative adversarial network-based sampling and consis-
tency check (EGSCC) in this paper. First, we design a comprehensive anomaly detection
framework that includes an oversampling module by generative adversarial network, an
ensemble classifier, and a consistency check module. Next, we introduce double encoders
into GAN to better capture the distribution characteristics of imbalanced data for oversam-
pling. Then, we apply the stacking ensemble learning to deal with concept drift. Four base
classifiers of SVM, KNN, DT and RF are used in the first layer, and LR is used as meta clas-
sifier in second layer. Last but not least, we take consistency check of the incremental
instance and check set to determine whether it is anormal by statistical learning, instead of
threshold-based method. And the validation set is dynamic updated according to the consis-
tency check result. Finally, three artificial data sets obtained from Massive Online Analysis
platform and two real data sets are used to verify the performance of the proposed method
from four aspects: detection performance, parameter sensitivity, algorithm cost and anti-
noise ability. Experimental results show that the proposed method has significant advan-
tages in anomaly detection of imbalanced data streams with concept drift.
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Introduction

The joint of class imbalance and concept drift is a crucial issue for anomaly detection in real-
world application, where the underlying data distribution changes over time [1]. On one hand,
the data categories are not equally represented, which can cause learning bias towards the
majority class and result in poor generalization [2]. On the other hand, concept drift is also a
challenging problem in the field of data streams learning [3], which deeply influences the sta-
bility of data streams classification. Unfortunately, most of data streams are characterized as
high speed, nonstationary data distribution, and infinite length, facing the joint of imbalance
and concept drift. This may further hinder the anomaly detection, then the high demand for
this type of solution is evident [4].

Class imbalance is mainly reflected in the following three aspects [5]: 1) great difference in
data volume; 2) imbalanced distribution of samples; 3) overlap of samples in feature space. As a
result, little anomaly data is always buried in a sea of normal data [6]. Therefore, how to overcome
class imbalance and obtain high detection accuracy is an urgent problem to be solved for anomaly
detection [7]. Generally, solutions are tried mainly from three strategies: data processing, feature
extraction and algorithm optimization. For data processing, sampling has been carried out to
improve the balance of dataset and change the samples’ distribution [8]; for feature extraction, an
appropriate feature model is used to map the data to the feature space, and better feature repre-
sentation is obtained [9]; for algorithm optimization, optimized algorithm is applied to improve
the recognition rate of minority class samples [10]. Obviously, data-level approaches are easier
with no need for understanding of loss function, such as oversampling [11]. Oversampling needs
sufficient information to generate high-quality data. However, it is harder to capture the distribu-
tion of minority samples, so as to likely to generate low-quality samples deviating from its distri-
bution. Therefore, how to produce more diverse and high-quality samples is still critical.

Due to concept drift, the dynamic of target concepts deteriorates the performance of classi-
fiers learned from past instances. Thus, concept drift requires classifiers to be adjusted to adapt
to the new condition. Essentially, concept drift is the change of the joint probability distribu-
tion of data [12]. Based on Bayesian theory, the reason of concept drift may be the change of
unconditional probability, conditional probability, or both of them [13]. From this perspective,
concept drift is divided into virtual drift and real drift [14]. Furthermore, according to the evo-
lution process, concept drift can also be classified as abrupt drift, incremental drift, gradual
drift, and recursive drift [15]. The adaptation of concept drift is its vital way to overcome this
issue, including methods of model adjustment [16], model reconstruction [17], and ensemble
learning [18]. Model adjustment approaches adjusted model parameters based on the transfor-
mation of data stream characteristics to adapt to the new data distribution, so as to overcome
concept drift. In contrast, when the concept drift is detected, the original model is completely
abandoned by model reconstruction approaches, and the detection model is retrained based
on the data distribution at this time. Since each detection model has different sensitivity to dif-
ferent types of concept drift, ensemble methods were proposed. It is focus on ensuring the
overall detection effect, rather than whether the concept drift of a single model, based on the
detection results of multiple models. However, how to avoid overfitting and adjust to more
types of concept drift is still challenging for ensemble model.

The problem becomes more complicated if concept drift occurs together with class imbal-
ance, because they will tend to affect each other significantly [19]. For example, traditional
drift detection algorithms based on classification error that are insensitive to class imbalance
will become inefficient because they cannot detect concept drifts in the minority class. In addi-
tion, methods that apply sampling to address class imbalance will be influenced because the
imbalance status varies in the case of concept drift with a variable imbalance ratio [20]. To
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date, only a few methods have been proposed to address the joint of class imbalance and con-
cept drift [21]. Based on the number of processed instances at a time, the existing approaches
for tackling the joint problem can be categorized as online algorithms [22] and chunk-based
algorithms [23]. However, chunk learners require a large amount of data to build the model.
To overcome the issue of class imbalance, chunk-based models need to collect minority data
in past chunks and propagate them into the latest chunk. As a part of data items seen in previ-
ous batches should be preserved and accessed, this framework is not strictly incremental.
Meanwhile, chunk learners cannot handle the real drift, especially when minority samples
become the majority class. So incremental learning maybe a better choice. Incremental learn-
ing method learns new knowledge while retaining the vast majority of previously learned
knowledge. It first uses part of the existing data to build an initial model, and then uses the sub-
sequent data to adjust and update the model to adapt to the changes in the data distribution.
Single classifier needs to constantly adjust the internal structure or parameters to adapt to the
change of data flow in incremental learning, so it often performs very unstable. The introduc-
tion of ensemble learning effectively improves the ability of incremental learning [24, 25].

This paper focus on binary classification because this setup is the most frequently studied in
the literature and most commonly meets real-world anomaly detection problems. Our
research aims to propose effective data stream anomaly detection algorithms in a situation
where a disproportion in the quantity of the arriving objects from different classes is present,
together with multifarious concept drift. In this paper, we proposed an ensemble learning
method with generative adversarial network-based sampling and consistency check (EGSCC).
And the main contributions are as follows:

o We tackled the joint challenges of mixed drift and variable imbalance ratios, and formulated
the anomaly detection framework for non-stationary imbalanced data streams, which
employs GAN (Generative Adversarial Network)-based oversampling preprocessing, stack-
ing ensemble learning and consistency check technique.

We introduce encoder into the GAN model and optimize its subnet with SE (Squeeze and
excite) block module to better capture the distribution characteristics for overcoming imbal-
ance. Class label is treated as auxiliary information to improve multi-flow pattern learning
ability and avoid mode collapse. Wasserstein distance has also been used to measure the dis-
tribution distance with gradient penalty and strengthen Lipschitz restriction, which acceler-
ates model convergence and alleviated gradient disappearance.

» We undertake consistency check of incremental instances with the check set. Incremental
instance anomaly is detected by statistical learning method, that is the percentile of incre-
mental instance in the validation set is used instead of threshold. Besides, the validation set is
dynamic updated according to this percentile result.

The outline of this article is as follows. in Section 2, we review the related research on the
composition issue of concept drift and class imbalance. Then, the proposed approach is
described in detail in Section 3, and Section 4 presents the experiments and discussions. Sec-
tion 5 concludes the paper and offers insight into future directions in the field of imbalanced
data stream preprocessing.

Related works
Anomaly detection for imbalanced data

Anomaly detection for imbalanced data has been extensively studied in recent decade, with
several outstanding survey papers published to provide a bird’s eye view [26, 27]. From these

PLOS ONE | https://doi.org/10.1371/journal.pone.0292140 January 26, 2024 3/24


https://doi.org/10.1371/journal.pone.0292140

PLOS ONE

An ensemble learning method for imbalanced data streams with concept drift

surveys, most of state-of-the-art approaches have addressed this problem from aspect of
resampling preprocessing, including oversampling and under-sampling. However, under-
sampling is faced with the dilemma of deleting sample selection. How to reserve more valuable
data is still challenging, because of the parameter sensitivity when evaluating the samples’
value. In addition, the number of deleted samples is always set based on experience, leading to
unstable performance. Therefore, it comes as no surprise that oversampling remains by far the
more popular method.

The most classic oversampling method is random synthetic minority oversampling technique
(SMOTE), which generates samples with linear inter-potation. Despite its effectiveness, recent
studies reported that its degeneration is usually associated with noisy. Therefore, several variants
based on SMOTE have been developed. Larger weights are given to the hard-to-learn class, and
more samples are generated. Noise-immunity majority weighted minority oversampling tech-
nique (NI-MWMOTE) [28] starts by adaptively removing noise. Subsequently, it clusters the
samples and adaptively determines the number of generated samples using misclassification
error. Moreover, a kernel subspace self-organizing map is introduced in Minority oversampling
in kernel adaptive subspaces (MOKAS) [29], so as to improve the quality of generated samples.

Despite the above merits, most of these algorithms focus rather on the data characteristic,
while they cannot accurately learn the distribution, so that the generated samples lack diver-
sity. In recent years, GAN model has been developed for sampling, given its better ability to fit
the data distribution. Engelmann et al. [30] employed conditional GAN combined with auxil-
iary information to model continuous and class variables to sample data of the specified class.
The sampling results were used as the training set for the classifiers. And it is effective to maxi-
mize the classification performance on strongly nonlinear datasets. Zheng et al. [31] further
introduced the penalty coefficients into the GAN model, which was more comprehensive for
data processing and showed greater advantages in terms of data generation quality and model
stability. To effectively apply this approach for high-dimensional features, Liu et al. [32] pro-
posed a GAN and feature selection-based method (GAN-FS). The stability and diversity of the
generation were achieved using a penalty coefficient to limit the gradient range and further
model the complex high-dimensional generated data. Dlamini and Fahim [33] put forward
GAN with KL-divergence. This method not only guide learning toward the minority class, but
also overcome gradient vanish.

Anomaly detection for stream data with concept drift

The purpose of either qualitative detection or quantitative analysis for concept drift is to pro-
vide a basis for decision making and optimization of concept drift adaptation, so the adapta-
tion of concept drift is its essential problem, including the methods of model adjustment,
model reconstruction, and ensemble learning.

When concept drift occurs, finding the drift point and correct it may be the most direct idea
to adapt to concept drift. Subtree node adjustment can also be used to achieve model local
update. Dynamic extreme learning machine (DELM) dynamically adjusted the number of nodes
in the decision subtree based on error rate detection [34]. Besides, the linear classifier can also be
used for local adjustment of the model [35]. The principle of local adjustment of the model is the
same as weight adjustment of the linear classifier, which is to further amplify the significant
influences and focus more on the data features that have a significant impact on the results,
while further neglecting to reduce the non-significant influences and weaken their features.

Model reconstruction is to reconstruct the detection model based on all historical data after
identifying the concept drift, which can always maintain good detection accuracy. However, fre-
quent model reconstruction will reduce the utilization of the model, putting great pressure on
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computation and memory of the computing environment. The classical model reconstruction
method is adaptive sliding window (ADWIN) algorithm [36]. It was based on the idea of "replace-
ment", in which two models were built in advance to detect and classify incremental instances.

Ensemble learning is a common method to deal with concept drift. The accuracy updated
ensemble (AUE) algorithm was proposed by Brzezinski and Stefanowski [37]. On one hand,
the variability of each base classifier in the ensemble model is enhanced by a weighting strategy
of base classifiers to accommodate abrupt drift. On the other hand, ensemble selection based
on sub-classification accuracy is performed to improve the ensemble model to adapt to the
gradual drift and obtain better multi-category drift adaptation.

Anomaly detection for imbalanced data with concept drift

In recent years, the coupling problem of data imbalance and concept drift has attracted more
and more attention. Some researchers have proposed algorithms considering these two issues
comprehensively.

Zhang et al. [38] combined the reinforcement learning with ensemble model to significantly
improved the anomaly detection performance for drifting imbalanced data streams. Its online
active learning strategy with interactive interrogation mechanism is used to transform the
original unsupervised learning into supervised learning, making it more prominent in anom-
aly detection with data label unknown or missing. Liu et al. [19] proposed a comprehensive
active learning method for multiclass imbalanced streaming data with concept drift. They
developed a comprehensive online active learning framework that includes an ensemble classi-
fier, a drift detector, a label sliding window, sample sliding windows and an initialization train-
ing sample sequence. And a variable threshold uncertainty strategy based on an asymmetric
margin threshold matrix is designed to comprehensively address the problem that a given class
can simultaneously be a majority to a given subset of classes while also being a minority to oth-
ers. A novel sample weight formula that comprehensively considers the class imbalance ratio
of the sample’s category and the prediction difficulty is also used. Klikowski and Wozniak [39]
presented a novel deterministic sampling classifier with weighted bagging (DSCB) algorithm
employs data preprocessing methods and weighted bagging technique to classify non-station-
ary imbalanced data stream. It builds models based on an incoming data chunk, but it also
takes previously arrived instances into account. The proposed approach outperformed state-
of-the-art methods on real and artificially generated data streams with various imbalance
ratios, label noise levels, and concept drift types. Li et al. [40] proposed a chunk-based incre-
mental ensemble algorithm called dynamic updated ensemble (DUE) for learning imbalanced
data streams with concept drift. It learns one chunk at a time without requiring access to previ-
ous data, and emphasizes misclassified examples in the model update procedure. As a result, it
can timely react to multiple kinds of concept drifts and adapt to the new condition when
switching majority class to minority class, without consuming plenty of memory usage. Zyble-
wski et al. [41] proposed a novel framework employing stratified bagging for training base clas-
sifiers to integrate data preprocessing and dynamic ensemble selection methods. Four
preprocessing techniques and two dynamic selection methods, used on both bagging classifiers
and base estimator levels, were considered. Experimental results carried out on 135 artificially
generated data streams proved it outperformed online and chunk-based state-of-art methods.

The proposed approach
Approach framework

The proposed EGSCC approach consists of three essential modules to construct anomaly
detection of imbalanced data streams with concept drift (Fig 1).
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In the first phase, we extract some of the raw historical data as check set, which are all nor-
mal samples. And the other of the imbalanced data are oversampled by an optimized GAN
model to achieve rebalancing. In the second phase, we use a stacking ensemble model to obtain
an evaluation function to score validation set and the incremental instances. The score value is
in [0,1]. Then in the third phase, we take consistency check to implement anomaly detection,
with credibility theory of statistical learning, instead of the preset threshold. In addition, we
also update the check set according the statistical learning result of consistency check.

GAN-based oversampling

The data input to the GAN model is the original imbalanced data including majority and
minority class data. And the output is some minority class data. Its role is to supplement the
minority class samples to overcome the impact of data imbalance on subsequent predictor
training.

The structure of the GAN model designed in this paper for oversampling is shown in Fig 2.
Double encoders are added to realize the mapping learning from feature space to data space,
together with the reconstruction of hidden space features of generated data. Encoders are
designed with eight layers, including convolution, Bach Norm, Leaky ReLu, squeeze and excite
(SE), and full connection (FC). The convolution layer ensures that the connection can extract
the features more effectively, and map low- to high-dimensional space for oversampling opera-
tion. Hence, oversampling can improve the resolution of the model to the feature, and achieve
higher accuracy through learning. The Bach Norm accelerates the convergence rate of the
model and effectively avoids gradient disappearance. The scaling factor within the Bach Norm
can effectively identify neurons that contribute little to the network, and some neurons can be
automatically weakened or eliminated after the activation function. The Leaky ReLu is used as
the activation function, which will count the part of the input that is less than 0. Then the saw-
tooth problem in the gradient direction is avoided in the backpropagation process. The squeeze
and excite (SE) block adopt feature recalibration strategy by feature compression, excitation
and reweighting. So as to the weight of effective features is increased, and the weight of invalid
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or small effect is reduced. The full connection (FC) layer plays the role of “classifier”. By inte-
grating feature representation into a value, it reduces the influence of feature location on the
classification results, and improves the robustness of the entire network. As a result, GAN with
encoders can learn the characteristics of sample data in the feature space, simplify the data
representation, and then obtain effective patterns, further improving the generation ability.

In fact, GAN is a distribution registration transformation operation. Its generator trans-
forms a Gaussian distribution (or other random prior distribution) into a target data distribu-
tion. For this purpose, the generator needs to be able to fully mine the characteristics of the
data. Encoders are added to further improving the data generation ability. We adopt the fea-
ture re-calibration strategy in its subnet structure o to further improve ability of feature learn-
ing. It is designed with an eight-layer structure. The squeeze and excite block module embed
into the encoder. The weight of effective features is increased, and the weight of invalid or
small effect is reduced. By integrating feature representation into a value, it reduces the influ-
ence of feature location on the results and improves the robustness of the entire network. With
encoders, the generators can better learn high-value features and reappear the distribution of
the original data.

The sample (x, y) is encoded by the encoder E; in the data space, and the feature (E;(x), y)
corresponding to the sample (x, y) in the feature space is obtained, where y is the class label of
the data x. At the same time, the random noise (z, y) is decoded by the generator G in the fea-
ture space, and the generated sample (G(z), y) is obtained. The noise dataset (z, y) generated
randomly, which is a Gaussian random variable. In fact, GAN is a distribution registration
transformation operation. Its generator transforms a Gaussian distribution (or other random
prior distribution) into a target data distribution.

Then the generated sample (G(z), y) is encoded by the encoder E, again to obtain the recon-
structed feature E,(G(z)) of the generated data in the feature space. Thus, three data pairs con-
sisting of data space and corresponding feature space features are generated. Discriminator D
obtains the discriminant loss by discriminating these three data pairs, and gradually solves the
model gradient recursively based on the discriminant loss, so as to realize the update of model
weight and reverse optimization of encoder E;, E, and generator G.
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The number of input neurons for the generator and discriminator is initially set and fixed
based on the data feature dimensions to be processed. And the dimensionality of G(z) and
E»(G(2)) the same in the feature space. Besides, the dimensionality of x and G(z) are also the
same in date space.

The training goal of this model is to achieve a maximum and minimum binary game balance:

min max V(D,E,,E,,G) (1)

G,Ey,E»

In the training process, gradient disappearance and model collapse are two main problems
for GAN-based model. If the model’s confrontational training reaches the optimal state, the
generated and real data distribution are low-dimensional manifolds, and their spatial overlap
measure is 0 by JS divergence. It means that G can only learn a few manifolds, and the distribu-
tion P, of the generated data cannot completely match the distribution P, of the real data.
Under this situation, no matter how far apart the two distributions are from, the divergence of
JS remains unchanged, thus losing the ability to measure the distribution distance. The update
gradient of G is 0, so parameters cannot be updated, which is a typical gradient disappearance
problem.

To overcome the above problem, Wasserstein distance with better smoothness was instead
of JS divergence in this paper. Comparatively, the superiority of Wasserstein distance is that
even if there is no overlap between the two distributions, it can still reflect their distance. It is
calculated as follows:

W(P,P) = inf E. . [lx = (2)

U8 en(p,py)

Where, inf stands for the lower bound. IT (P,, P,) represents the set of the combined distri-
butions of P, and P,. If two samples x; and x; are from(x,y) ~7, then it calculates the distance
between them. Further, the expected value E(, )~ [||x1-x,||] of the sample pair’s distance
under the joint distribution is obtained, and the Wasserstein distance is obtained as the lower
bound of the expected value in all possible joint distributions. Since the Wasserstein distance
cannot be solved directly, it is converted to the following form:

WP, P) == sup B_, [{(x)] — E,_, [{(+)] 3)

A1l <K

Where, || f||1 is the additional boundary function, which updates the parameter clipping to
a limited range, thus overcoming gradient disappearance. It also adds a Lipschitz constant to
the function f with the use of repruning, that is, for a continuous function, K>0, the maximum
absolute value of the derivative in a certain interval is less than K in the domain, and then K is
called Lipschitz constant. This constant specifies the maximum local variation of a continuous
function, as shown in Eq (4).

|f(x1) _f(x2)| < K|x1 _xQ‘ (4)

If fis expressed as a function of parameter w, the neural network fy,, with weight W can be
used for simulation. The optimization formula is shown as followed:

L= r‘?eavi( Ex~P, [fw('x)] - Ewag [fw(x)] (5)

However, the weighted clipping can lead to gradient imbalance. As the discriminator is a
multi-layer network, if the clipping threshold is small, the gradient will disappear after multiple
layers; if the clipping threshold is too large, the phenomenon of gradient explosion will occur.
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Therefore, gradient penalty (GP) is introduced to strengthen the Lipschitz restriction, that is,
an additional Penalty coefficient is set to realize the connection between the gradient and K.

In this paper, the "class label" y is regarded as the generated "conditional" information, with
that GAN model can not only generate the required minority negative samples, but also over-
come model collapse. The "class label", noise and real data are input at the same time, thus
improving the convergence ability of the model. By this optimization, the model collapse was
overcome by adding new constraints and gradient punishment into the discriminator. Then
the objective function is translated:

minmaxE, , [D(xly)] - E._, [D(G(z]y)|y)], — 2E.:[(IVD ()], - 1)']

Wasserstein loss gradient penalty (6)

Where, 4 is the gradient penalty factor; Ppepar, is the probability distribution of gradient
penalty coefficient;V is the gradient. Both of them guarantee that the gradient of discriminator
D is not to exceed constant K. G(z]y) represents the generated sample of the generator based
on the input noise and label y, and D(|y) indicates the probability of determining the label of
sample as y.

Stacking ensemble model

There are mainly three strategies for ensemble learning: Bagging, Boosting and Stacking. As a
label-based ensemble learning strategy, stacking is a multilevel framework based on cross-vali-
dation. In this paper, a two-layer stacking ensemble framework consisting of base predictors
in the first layer and meta predictor in the second layer with 5-fold cross validation is applied
to avoid overfitting (Fig 3).

Four classical stable and simple models, namely SVM, KNN, DT and RF are selected as
base predictors. And LR (Logistic Regression) model is chosen as the meta predictor. Training
set are divided averagely into five subsets, Train_1, Train_2, Train_3, Train_4 and Train_5,
and each subset contains 7 pieces of data. Then, four of them is used to train the train base pre-
dictors, and the other one is predicted by the trained base predictor. After 5-fold cross valida-
tion operation, all of the training set data are predicted by the base predictor.

Taking SVM base predictor as an example, shown in Fig 4. We choose train_1 as validation
subset Valid_1 and other subsets Train_2, Train_3, Train_4 and Train_5 as training subsets in
the first time. After trained by these 4 training subsets, the SVM base predictor can predict
whether the validation set data is anormal or not. If the data is anormal, the output of SVM is
1, otherwise it’s 0. Train_2 is chosen as validation subset V1id_2 in the second time, while any-
thing else is the same as the first time. Then we can get the SVM predictions for Valid_2. The
above procedure is performed five times for 5-fold cross validation. As a result, each data of
the training set is predicted by the SVM base predictor, and the result can be treated as a binar-
ized feature: 1 or 0. This feature is a n*1 matrix.

For other three base predictors, KNN, DT and RF, we perform the same operation as for
SVM. And each of the base predictors will give us a prediction, that is, other three binarized
features: 1 or 0. We further combine these four binary features together for the meta predictor
training in the second layer. However, the original data features do not participate in meta pre-
dictor training and only the 4 new binary features obtained from base predictors are input into
meta predictor model, that is a 5n*4 matrix. As can be seen, the training of the second layer is
a simple 4-feature data learning.

Stacking is essentially a kind of representation learning method. In stacking, effective fea-
tures are learned after passing through multiple learners in the first layer by base predictors.
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https://doi.org/10.1371/journal.pone.0292140.g003

From this perspective, the first layer of stacking is the process of feature extraction. So, the fea-
tures in the second layer are learned from the data in the first layer. In the process of feature
extraction in the first layer by base predictors, we have used a complex nonlinear transforma-
tion, so there is no need for a complex classifier in the output layer. In order to overcome the
possible overfitting, relatively simple models are generally chosen for stacking ensemble. So,
LR model is chosen as the meta predictor, and the output is a probability value instead of a
binary function, which is more suitable for subsequent consistency check.

The LR model has probability property and can map sample features to the [0,1] interval.
The Sigmoid function used in the mapping process has a very large function gradient and will
quickly approach 0/1, which in turn can quickly obtain the probability of different detection
results. So LR model is very suitable as the final detection model to score the incremental
instances. The prediction function of LR is:

1

}’:P()’:”x;G):hv("):m

(7)

Where x is the data features input into LR model, that is the predictions from the four pre-
dictors. It is a 5n*4 matrix. fis the model parameter matrix need to be obtained by training.
The meaning of Eq (7) is to calculate the prior probability of the data being anormal under the
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given conditions of x and 0. In order to measure whether the best model parameter matrix
have been obtained, we defined a cost function based on cross entropy, which is also often
used in neural networks. So, the training function of LR model is to obtain the minimum of
the cost function:

minJ (6

~—~

st 1(9)=—;{i[y@logho(»cwwu—y<f>>log<1—ho<x<">>>]} (®

i=1

Where 5# is the total number of training data, x is the input of data i, y® is the actual label
of the raining data, and hg(x”) is the predicting result based on Eq (7). It can be seen that LR
can integrate the advantages of various models so as to realize the secondary learning.

In a nutshell, the data input to the four base predictors in the first layer of Stacking is the
rebalanced training data, and the output is the predicting results of each base predictors, that is
a binarized feature: 1 or 0. Then, these predicting results from four predictors SVM, KNN, DT
and RF are combined together as 4 new features of the training data, to input to the second
meta predictor LR (Logistic Regression) in the second layer of Stacking. The output of LR is a
probability value of whether the data is anormal.

Consistency check with statistical learning

Traditional threshold-based detection methods have the problems of parameter sensitivity and
experience dependence. Therefore, a new detection method based on consistency check with
statistical learning is applied in this paper.
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First, the check set C = {z}, 2, . . ., z,,} is extracted by random sampling from historical nor-
mal data. The size of the validation set is determined according to the volume of historical data
and can also be adjusted dynamically according to the incremental rate of the data stream. In
this paper, this size is set as a ratio of the historical data. Then, we can score this check set by
scoring function, that is, the LR model has been trained in the stacking ensemble model. As a
consequence, the check set score sequence can be obtained by arranging the scores of each
sample in the check set in ascending order:

Seq ={4,:9 49,19 (@ >q>...>q,,>4q,) )

For a new incremental instance J, the scoring function also give its score. The consistency
check of the incremental instance with the check set is conducted by comparing their scores. If
they are consistent, the incremental instance is treated as a normal sample, otherwise the incre-
mental instance is an anormal one. Traditional threshold-based methods presuppose a real
value function for the check set score sequence and new incremental instance. In this paper,
the real value function is set as the ranking of the new incremental instance [ in the check set
score sequence, based on the predicting results from LR:

S= (C’ d) :Ranking(qlvqw""Qk—lﬁlv qk"'vqn—w%) (k< I’l) (10)

Traditional threshold-based methods presuppose a k value. If the rank of the incremental
instance [ is higher than k, then the incremental instance is more likely to be consistent with
the check set, which is normal; otherwise, it is likely to be inconsistent with the check set,
which is anormal.

However, the preset ranking position greatly affects the final result, leading to performance
fluctuation of anomaly detection, especially under concept drift situation. Therefore, a statistical
learning idea is applied, which abandons the traditional threshold-based absolute determination
method and use the relative comparison of consistency check results to determine the implied
information (normal or anormal). We use p value to describe the percentile of the score ranking
of the incremental instance in the check set score sequence for relative comparison:

g Count{j 1S > sj} )

n

Where, 7 is the volume of check set; s; is the score in the check set score sequence, and s; is
the score of the incremental instance. And then we set a confidence level . When the detection
result is higher than this confidence level, it means a higher credibility level for the result.

For example, when £ = 0.02, and the p value of a new instance is larger than g, then this
instance has less than 2% probability to be as inconsistent with the check set. In other words,
we have more than 98% certainty that the data is consistent with the check set, namely normal.
To obtain the best performance with as little data as possible, the anomaly detection model is
not repeatedly trained, and the concept drift is countered by combining with check set
obtained during training of confidence levels dynamically updating.

It should be specially noted that the composition of the validation set adopts a put-back
sampling method, which means that these normal samples are still retained in the historical
data. Besides, as a benchmark for comparison, the check set is dynamically adjusted. New
instance with higher score will supplement, so as to keep the check set evolving toward “abso-
lutely normal”.

Usually, the evaluation of anomaly is realized by setting a threshold, that is, when the data
exceeds a certain threshold, it is considered as abnormal. However, in this way, the perfor-
mance of the algorithm will fluctuate for imbalanced data streams with concept drift. On one
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Table 1. Experimental data sets.

Dataset Number of instances
SEA 1,000,000
RBF 1,000,000
Waveform 1,000,000
HDEFES 1,119,770
Spam 9234

https://doi.org/10.1371/journal.pone.0292140.t001

hand, threshold has strong dependence on data scale, structure and characteristics, and per-
sonnel experience also matters. On the other hand, even if a preset threshold in time is appro-
priate, it may failure with high probability after concept drift occurs.

So, the strategy of consistency detection is adopted. Incremental instance anomaly is
detected by statistical learning method, that is the percentile of incremental instance in the vali-
dation set is used instead of threshold. Besides, the validation set is dynamic updated according
to this percentile result. As a result, it realizes that the anomaly evaluation index changes with
the change of data characteristics, and also guarantees the overall anomaly detection accuracy.

Experimental methodology
Datasets

Both real-world data streams and synthetic data streams are used in these experiments. The
synthetic data streams are used to compare the performances of the proposed method under
specific conditions. In terms of data generation, the imbalance ratio, location, number, and
amplitude of drift were set to obtain experimental data based on MOA (Massive Online Analy-
sis) platform. In addition, some of real datasets are selected as historical data, and the rest data
are selected as incremental instances according to data entries for the experiments.

Three artificial data sets, SEA, RBF and Waveform, are generated by MOA platform. MOA
was developed by the Machine Learning Group at the University of Waikato based on the WEKA
(Waikato Environment for Knowledge Analysis) extension project. A variety of artificial and real
data flow generators are provided, which can be easily formulated according to requirements
parameters generate a data stream. For example, the ArffFileStream generator can simulate the
static real data to generate data flow. At the same time, under MOA, the data flow generator can
also be used to simulate the generation of steams containing different concept drifting types. In
addition, data streams with different labels can also be generated for anomaly detection studies.
The proportion of anormal data can be set manually, which is related to the imbalance ratio. SEA
is an abrupt drift data set, including three numerical features, generated by SEA Drift Generator;
RBF is an abrupt and gradual drift hybrid data set, generated by Random RBF Drift Generator;
Waveform is an abrupt drift data set, generated by Waveform Drift Generator.

Other two real-word datasets are also used: 1) HDFS, the original Hadoop distributed file
system log data collected by The University of Berkeley, 1.58GB in total, containing 11,197,705
original logs. We random sampled 10% of them including 16,838 anormal samples, manually
marked by domain experts, involving 580 features, and the proportion of anormal data is 3.6%.
2) Spam, a gradual drift data set containing 9324 email instances. Among them, spam mails are
marked as anormal. The above data sets were used for experiments, as shown in Table 1.

Baseline methods

In order to evaluate the effectiveness and superiority of the proposed model. The proposed
was compared with three types of baseline methods, typical concept drift detection methods

Number of class values Number of drift point Concept drift type Imbalance ratio
4 3 Abrupt 5/10/20/100
2 5 Hybrid 5/10/20/100
3 3 Gradual 5/10/20/100
2 - 34
2 - - 55
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such as accuracy weighted ensemble (AWE), dynamic weighted majority (DWM), leveraging
bagging (Lev Bagging) and online dynamic updated ensemble (OAUE). AWE is an ensemble
algorithm based on the accuracy weighted. DWM is a dynamic weighted majority voting algo-
rithm. Lev Bagging is a Bagging online ensemble algorithm. OAUE is based on the cycle
weighting for online processing.

Typical imbalance related techniques considering imbalanced data and concept drift issues
comprehensively are also used to make comparisons, such deterministic sampling classifier
with weighted bagging (DSCB) [39] and dynamic updated ensemble (DUE) [40].

The experiments were executed on a machine equipped with an eight-core Intel i9 CPU, a
3.4 GHz processor and 16 GB of RAM. All experiments were repeated ten times with the ran-
dom seeds set from 1 to 10. The results shown are the average values of ten trials.

Evaluation metrics

To verify the performance of the proposed model, the experimental verification and analysis
are carried out from four aspects: detection performance, parameters sensitivity, algorithm
cost and anti-noise ability.

For detection performance, detection accuracy rate is chosen for imbalanced data measure.
For parameters sensitivity, two parameters of the ratio of check set and the confidence level are
taken into consideration. Because, with they are directly determines the result of consistency
check and anomaly detection. Furthermore, in order to compare the cost of the proposed
method, the time and memory consumed by different algorithms are compared. Noise mainly
affects detection accuracy and has impact on space-time consumption. Since the noise situa-
tion in the real dataset cannot be determined, the anti-noise study of these algorithms is mainly
carried out based on the synthetic datasets.

Results and analysis
Detection performance

Fig 5 shows the quantitative relationship between the accuracy rate of different algorithms and
the number of processed instances. The position and fluctuation of curves indicate the adapt-
ability of different algorithms to concept drift.

Fig 5(A) shows that abrupt concept drifts occurred three times on SEA dataset (around
550K, 700K and 875K, respectively), and the accuracy rate of each algorithm changed

100

100 H @ AWE —®— DWM —A— Lev Bagging —v— OAUE] ®— AWE —® DWM —4&— Lev Bagging — ¥ OAUE 100 *
[ # DSCB < DUE » EGSCC | & DSCB 4 DUE b EGSCC B N : 3
, L4 4 B
[ S b B > 3 > > > rex
»" P >
el e UV \,,_%§ﬁ§§§§§sgieeg ¥ * gi';ib zap’,-.’».’;}h%
o0 | 2E—4 1 ¢ i *% “_é B« e i T3t e
g 4 90 |- « o ¥ .
3 ~ 0221:1A1 {i‘a“*:ﬂ:{:} i‘?’ »E - '.f’ , :.':i ““i‘{ t‘
3 W oy ¥ o oot A 0 .:.’ et = l ,.P —; . o Y i , [ | :x .‘I..-‘.
Zx0f oo "‘ﬂxl"q‘v" «"vo" | ;'é 3 o \"”“ LI
fr . v - i = X H Zs0 b . ‘-“ | jm Amy
L _ BT | RV
g 2 o ] %’:“ - - \J ’
70 | . ) . | Y ph L a n i
A 4 [ ] n A A A 70+ L
halt | o Ly » 20 Fvy A 2
] = AWE ® DWM A LevBagging v OAUF
- 4 »® 'S A AM A U 4 DSCB < DUE —» EGSCC
L N " L L L o L L . , . X 60 L \ . L 1 :
500 600 700 800 900 1000 $00 600 200 00 900 1000 500 600 700 800 900 1000
Number of Instances processed (k) Number of Instances processed (k) Number of Instances processed (k)
(a) SEA ' (b‘) RBF (c) HDFS
Fig 5. Accuracy rate with the number of instances processed.
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significantly with different delays after concept drifts occurred. From the perspective of curve
fluctuation, with the increase of the number of instances processed, various algorithm models
have different degrees of concept drift, which is reflected in the significant decrease of the
accuracy rate. Compared with the other six methods, the accuracy rate of the proposed
EGSCC method is always beyond 95%, and its fluctuation is very small when concept drift
occurs, so it can quickly recover to the original accuracy. Other algorithms such as AWE are
less effective for abrupt drift, so the overall adaptability to concept drift is limited, and the
accuracy decreases more obviously and fluctuates more.

The reason for the poor performance is not only concept drift but also data imbalance, so
algorithms only dealing with concept drift perform as well as any other algorithms dealing
with the two issues together, such as DSCB, DUE and the proposed EGSCC.

Fig 5(B) shows the relationship between accuracy rate and number of instances processed
on RBF dataset. The experimental results show that the accuracy of each method is excellent
and stable before the number of processing cases is 850K, and all of them exceed 80%. Signifi-
cant concept drift occurred at the number of processed instances 850K, and the accuracy rate
of each model significantly decreased to 25%-40% and kept low fluctuations. While the accu-
racy rate of the proposed EGSCC method rebounded to 70% after a period of adjustment,
which is significantly higher than other methods, followed by DSCB and DUE. The recovery is
not obvious for method only dealing with concept drift. The case of imbalanced data is even
more serious after concept drift, which may also lead to feature overlap, so the accuracy rate
dramatic declines for algorithms such as AWE, DWM.

The results of the accuracy rate variation of each algorithm in the HDFS dataset are shown
in Fig 5(C). The curves fluctuate several times indicating that concept drift occurs. However,
compared with other algorithms, the accuracy rate of the proposed EGSCC method always
stays above 95% with the least fluctuation, which means a better combined performance of
accuracy and stability.

In contrast to DSCB and DUE, dealing with the imbalance and concept drift together, the
stacking ensemble model adopted by EGSCC can quickly capture the abrupt concept drift and
the probability calculation of the consistency check can also achieve the effect of coping with
the gradual concept drift. Furthermore, it can effectively adapt to multiple types of hybrid con-
cept drift. Table 2 shows the statistical results of the average accuracy rate of each algorithm on
different datasets.

Table 2 shows that EGSCC has significant advantages over other algorithms on SEA and
RBF artificial datasets (ranked 1st) and achieves acceptable result on Waveform dataset
(ranked 3rd) and Spam (ranked 2nd). It indicates that the proposed EGSCC method is more
adaptable to abrupt drift. In addition, EGSCC has the best overall performance on the five
experimental datasets with an average accuracy rate of 87.37%, ranking first; the DUE method
comes secondly with an average accuracy rate of 84.99%; DSCB ranks thirdly with an accuracy

Table 2. Statistical results of the accuracy rate.

Data Set AWE DWM Lev Bagging OAUE DSCB DUE EGSCC

SEA 75.59 (7) 85.10 (6) 89.93 (4) 86.85 (5) 90.75 (3) 91.43 (2) 95.12 (1)

RBF 55.19 (7) 58.27 (6) 65.89 (5) 63.47 (4) 70.83 (2) 67.22 (3) 71.78 (1)

Waveform 85.32 (5) 82.63(6) 90.64 (2) 80.17 (7) 87.46 (4) 90.88 (1) 88.25(3)

HDFS 85.74 (7) 90.52 (4) 90.37 (5) 91.54 (2) 91.17 (3) 89.89 (6) 95.26 (1)

Spam 78.22 (6) 76.41 (7) 85.20 (5) 89.74 (1) 86.02 (3) 85.52 (4) 86.45 (2)

Average 76.01 (7) 78.59 (6) 84.41 (4) 82.35(5) 85.25(3) 84.99 (2) 87.37 (1)

https://doi.org/10.1371/journal.pone.0292140.t002
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rate of 85.25%; the Lev Bagging method has the fourth overall performance with an accuracy
rate of 84.41%; and the AWE method has the worst overall performance with an accuracy rate
0f 76.01%.

Further analyzing the performance of the EGSCC method on two real-word datasets, it
ranks 1st on the HDFS dataset and 2nd on the Spam dataset, indicating that the proposed
method is also very effective on real-word datasets. The accuracy rate of EGSCC is slightly
lower than OAUE on the Spam dataset, however it is an online detection mechanism with
higher learning efficiency and less memory consumption. Therefore, the comprehensive per-
formance of EGSCC method is optimal, and the smaller data volume of Spam data set has
more demanding requirements on the learning ability of the algorithm. In addition, ensemble
learning method including DSCB, DUE and the proposed EGSCC perform better than non-
ensemble methods, because of the simultaneous coping with imbalance and concept drift

The results on the Spam data set are shown in Fig 6. It shows that on the Spam dataset, the
highest accuracy rate of the EGSCC algorithm is above 85%, when incremental instances are
less than 8k. And it remains a good performance when the increment instance is more than 8k.
However, the accuracy rate of OAUE rises from 80% to nearly 90%, and the EGSCC algorithm
ranks the second. In terms of stability analysis, the EGSCC algorithm is undoubtedly the best,
while the OAUE algorithm performs better when the number of processed instances is smaller
(<6.5k) or when the number of processed instances is higher, while the performance fluctuates
when the number of processed instances is in the median. Other two ensemble learning method
DSCB and DUE also shows advantages in terms of stability. These results show that the EGSCC
proposed in this paper performs better and balanced throughout the training phase. Meanwhile,
as a real data set, there is a hybrid of multiple types of drift in Spam, and the accuracy and stabil-
ity advantages of EGSCC algorithm also reflect its good adaptability to hybrid drift.

Parameters sensitivity

The EGSCC algorithm proposed in this paper focuses on the classification by statistical learn-
ing rather than threshold. So, the anomaly detection result is affected by two important
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Fig 6. Accuracy rate comparison on Spam dataset.
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parameters: the ratio of check set r and confidence level . The experiment results of EGSCC
under different ratios of check set r are shown in Table 3.

As shown in Table 3, the EGSCC model achieves the highest accuracy in four of the five
experimental datasets when the ratio of check set r is around 10%, and the accuracy in the SEA
dataset is slightly less than that when the ratio of check set r is 15%. However, the difference
between these two results is not significant, so r = 10% can be used as the best parameter of the
ratio of check set under the experimental conditions. The EGSCC algorithm significantly
improves the overall detection performance by taking into account both accuracy and
variability.

Fig 7 shows the accuracy rate of EGSCC model with different confidence level €. SEA data-
set is taken as an example to compare the accuracy rate of EGSCC with incremental instances
under different confidence level y. As can be seen from, with the increase of the number of
incremental instances, the detection accuracy rate of EGSCC increases gradually and reaches a
stable level without large fluctuations. It shows a good learning ability for incremental
instances without obvious concept drift. Meanwhile, comparing the detection accuracy rate
under different confidence levels, we can see that y = 0.02 has the best overall detection accu-
racy rate on the SEA dataset, which is also proved by the experimental results on several other
datasets.

Algorithm cost

Furthermore, in order to test the cost of EGSCC algorithm running on different data sets, the
time and memory consumed by different algorithms are compared. The comparison results of
computational efficiency are shown in Table 4.

The experimental results show that the proposed EGSCC algorithm has the highest average
ranking of time consumption and the best comprehensive computational efficiency on five
data sets. And the AWE algorithm has slightly inferior comprehensive computational effi-
ciency on five data sets than EGSCC, however, the difference between them is not obvious.
And its computational performance exceeds that of EGSCC algorithm on two other data sets,
SEA and Spam. The combined computational efficiency of the DWM algorithm and the
OAUE algorithm is comparable, and the former having an advantage on Waveform datasets,
while the latter is more applicable to HDFES datasets. The Lev Bagging algorithm has the largest
computational consumption. There is a big gap between DSCB and DUE. The average poten-
tial ranking of DSCB is 3.4, which is the third among the seven algorithms, while DUE has an
average ranking of 4.8, which is only better than Lev Bagging. The EGSCC algorithm uses the
detection mechanism of consistency check to avoid unnecessary model updates; meanwhile,
the GAN-based resampling strategy and of stacking ensemble achieves efficient and more rea-
sonable model screening and avoids unnecessary computations.

Table 5 shows the memory consumption of each algorithm. EGSCC consumes the least
memory, followed by AWE, while Lev Bagging is the costliest. The experimental results show

Table 3. Effect of ratio of check set on detection accuracy rate.

Ratio of check set r (%) 5 10 15 20
SEA 90.1 95.1 88.7 93.1
RBF 87.8 90.4 90.7 87.7
Waveform 89.6 93.2 89.6 92.2
HDES 88.4 91.2 87.3 90.2
Spam 88.5 90.3 87.4 88.9

https://doi.org/10.1371/journal.pone.0292140.t003
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https://doi.org/10.1371/journal.pone.0292140.9007

that the proposed DWM algorithm has the minimal average ranking of memory consumption
on five data sets. And the proposed EGSCC algorithm has slightly inferior comprehensive
memory consumption on five data sets than DWM. And it exceeds that of DWM algorithm on
HDES dataset. The OAUE algorithm has the largest memory consumption. There is some dif-
ference between DSCB and DUE. The average potential ranking of DSCB is 3.8, which is the
fourth among the seven algorithms, while DUE has an average ranking of 4.6, which is next to
the DSCB. Due to the fact that it does not establish a detection model for each new instance
and does not reconstruct the model periodically, EGSCC reduces the memory consumption of
frequent modeling.

Table 4. Comparison of running time consumption of each algorithm (seconds).

Data set AWE DWM Lev Bagging OAUE DSCB DUE EGSCC

SEA 11.75 (1) 32.23 (6) 42.29(7) 13.60 (4) 12.79 (3) 13.68 (5) 12.12 (2)

RBF 14.94 (3) 17.14 (4) 28.89 (5) 8.72 (1) 10.58 (2) 14.13 (4) 13.94 (3)

Waveform 6.19 (3) 4.31(1) 12.56 (6) 18.47 (7) 6.97 (5) 6.28 (4) 5.44 (2)

HDFS 18.94(6) 14.24 (2) 24.41 (7) 10.89 (1) 17.54 (4) 18.03 (5) 16.80 (3)

Spam 2.31(1) 2.61 (4) 2.99(7) 2.79 (5) 2.45 (3) 2.77 (6) 2.42(2)

Average Ranking 2.8(2) 3.4 (3) 6.4 (7) 3.6 (5) 3.4 (3) 4.8 (6) 2.4(1)
https://doi.org/10.1371/journal.pone.0292140.t004
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An asymptotic complexity of the proposed algorithm compared with the baseline methods
in terms of execution time and memory cost on HDFS dataset is provided. And the results are
shown in Fig 8, showing that ESSGHC has a better comprehensive advantage of time and
memory consumption.

As shown in Fig 8(A), Lev Bagging is obviously the most time-consuming and OAUE is the
obviously the most time saver. Because Lev Bagging uses the strategy of refactoring the model,
so it requires constant repetition of training the detector, which is time-consuming. And for
OAUE, it employs a strategy of dynamic selection, that is, once the predictors are trained, they
do not need to repeat the training, and only need to perform simply selecting. Other methods
including the proposed EGSCC use ensemble learning strategy, whose time cost is between
model refactoring and model optimization. In addition, EGSCC has no obvious advantage
when the amount of data is small, and DUE seems more advantageous. When the amount of
data continues to increase, its advantages gradually show, due to the representation learning
ability of Stacking from heterogeneous models. In Fig 8(B), it can be seen that OAUE is obvi-
ously the most memory-consuming and the proposed EGSCC is the obviously the most time
saver. Dynamic selection strategy of OAUE makes it necessary to stores the parameters of all
models, which is the most memory-consuming. As the amount of data increases, the memory
consumption of each algorithm does not increase significantly. And the proposed EGSCC
always keeps memory consumption to a minimum.

Anti-noise ability

Noise mainly affects detection accuracy and has less impact on space-time consumption. Since
the noise situation in the real dataset cannot be determined, the anti-noise study of the algo-
rithms is mainly carried out based on the synthetic dataset. Fig 9 shows the accuracy of each
algorithm versus noise rate on the SEA dataset.

Experimental result show that the higher the noise rate, the lower the accuracy rate. Espe-
cially when the noise rate exceeds 10%, the accuracy of the all algorithms decreases signifi-
cantly and the detection performance degrades seriously. When comparing the five different
algorithms horizontally, the accuracy of EGSCC algorithm decreases with the increase of noise
rate, however it is still higher than the other four algorithms, especially when the noise rate
exceeds 10%.

Accuracy advantage of EGSCC becomes more obvious in higher noise rate, and the accu-
racy rate always remains above 75%, which reflecting its advantages in noise resistance. Fur-
ther analyzing the reason, GAN-based oversampling, stacking ensemble learning and
consistency check with statistical learning ensure the robustness of EGSCC, so that it has better
anti-noise performance. This rule has also been verified in RBF and Waveform datasets, as
shown in Fig 10.

Table 5. Comparison of memory consumption of each algorithm (MB).

Data Set AWE
SEA 2.68 (3)
RBF 10.76 (7)
Waveform 5.05 (1)
HDES 6.23 (3)
Spam 0.84 (2)
Average ranking 3.2(3)

https://doi.org/10.1371/journal.pone.0292140.t005

DWM Lev Bagging OAUE DSCB DUE EGSCC

111(1) 37.30 (7) 6.83 (6) 4.95 (4) 5.77 (5) 2.14 (2)
1.04(1) 3.61(5) 7.62 (6) 3.07 (4) 2.13(2) 2.23(3)
6.18 (2) 80.29 (7) 30.71 (6) 7.96 (4) 9.41 (5) 6.37 (3)
9.31 (6) 7.27 (7) 13.46 (6) 6.14 (2) 8.55 (5) 4.26 (1)
0.60 (1) 1.46 (3) 1.94 (7) 1.66 (5) 1.89 (6) 1.63 (4)
2.2(1) 5.8 (6) 6(7) 3.8(4) 4.6 (5) 2.6 (2)
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Conclusion

In this paper, we discuss the issues of concept drift and class imbalance. While each of these
two problems has been well studied, the combined issue is mostly explored even though it has
attracted enough attention because of its wide real-world applications. EGSCC is proposed to
solve the problem of anomaly detection for imbalanced data streams with concept drift. It
combines the advantages of oversampling, ensemble learning and statistical learning. An opti-
mized GAN model with double encoders is introduced for oversampling first, dealing with
imbalance problem. Then, the stacking ensemble framework with 5-fold cross validation is
undertaken to train the score function for anomaly detection. Furthermore, we undertake con-
sistency check of incremental instances with the check set. And the detection result is obtained

[ —=— AWE
65 |—®—DWM
| [—&— Lev Bagging
| |-¥—OAUE
—&—DSCB

<4— DUE
55 Fl—»—EGscc

Accuracy Rate (%)

60

50 . 1 N 1 L 1 N 1 " | N 1 . 1 " 1
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Fig 9. Accuracy rate under different noise rates on SEA dataset.

https://doi.org/10.1371/journal.pone.0292140.g009
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Fig 10. Accuracy rate under different noise rates on RBF and Waveform datasets.

https://doi.org/10.1371/journal.pone.0292140.g010

by the percentile of incremental instance in the validation set, instead of threshold. Finally,
experiments about detection performance, parameters sensitivity, algorithm cost and anti-
noise ability have been carried out. And the results verify the better performance of the pro-
posed EGSCC method.

The EGSCC method introduced in this paper mainly focuses on binary classification in
anomaly detection, however, it could be easily extended to multi-class issues. Besides, class
overlap often occurs with class imbalance, which is not involved in this paper. So, directions
for future work include applying the proposed framework to multi-class data streams with
skewed class distributions and complex data distributions.
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