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Abstract

Deep generative models, such as variational autoencoders (VAE), have gained increasing

attention in computational biology due to their ability to capture complex data manifolds

which subsequently can be used to achieve better performance in downstream tasks, such

as cancer type prediction or subtyping of cancer. However, these models are difficult to train

due to the large number of hyperparameters that need to be tuned. To get a better under-

standing of the importance of the different hyperparameters, we examined six different VAE

models when trained on TCGA transcriptomics data and evaluated on the downstream

tasks of cluster agreement with cancer subtypes and survival analysis. We studied the effect

of the latent space dimensionality, learning rate, optimizer, initialization and activation func-

tion on the quality of subsequent downstream tasks on the TCGA samples. We found β-

TCVAE and DIP-VAE to have a good performance, on average, despite being more sensi-

tive to hyperparameters selection. Based on these experiments, we derived recommenda-

tions for selecting the different hyperparameters settings. To ensure generalization, we

tested all hyperparameter configurations on the GTEx dataset. We found a significant corre-

lation (ρ = 0.7) between the hyperparameter effects on clustering performance in the TCGA

and GTEx datasets. This highlights the robustness and generalizability of our recommenda-

tions. In addition, we examined whether the learned latent spaces capture biologically rele-

vant information. Hereto, we measured the correlation and mutual information of the

different representations with various data characteristics such as gender, age, days to

metastasis, immune infiltration, and mutation signatures. We found that for all models the

latent factors, in general, do not uniquely correlate with one of the data characteristics nor

capture separable information in the latent factors even for models specifically designed for

disentanglement.

Introduction

Advancements in sequencing technologies have enabled profiling different “-omics” that revo-

lutionised the understanding of biology. These omics are usually of high dimensionality,
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which complicates the data analysis. This has sparked a large research interest in dimensional-

ity reduction methods which represent data in a lower-dimensional space while reducing

noise and preserving the signal in the data. There are different dimensionality reduction meth-

ods that can be categorized into linear and non-linear methods [1, 2]. Selecting an appropriate

dimensionality reduction method for an application depends on the structure of the high-

dimensional space and the structure of the low-dimensional manifold that we assume that the

data belongs to.

Variational AutoEncoders (VAE) are among the most used methods nowadays to embed

omics data into a lower dimensional representation. A variational autoencoder is similar to an

autoencoder (AE) as they both learn a set of latent variables z to encode an input sample x and

by forcing z to be able to reconstruct x (i.e. x̂). Both VAE and AE are based on an encoder-

decoder structure of artificial neural networks (Fig 1A and 1B). An AE is a deterministic

model that is trained by minimizing the reconstruction error of the input data.

The VAE differs in that, it learns a probabilistic mapping from x to z (i.e. a probability dis-

tribution p(z|x)) which enables the generation of new data points by drawing samples from

this distribution. Calculating this probability distribution p(z|x) is intractable, especially in

high dimensional data. To overcome this, Kingma and Welling applied variational inference

and neural networks to estimate it by a tractable approximation q(z|x) (see Eq 1) [3].

Various VAE variants have been proposed to address different aspects of the VAE formula-

tion and to improve the training of VAEs on specific tasks [4]. One task gaining attention is

the interpretability of the learned latent space. Several models have attempted to generate an

interpretable latent space by forcing individual latent factors to correspond to specific factors

of variation within the dataset, such as biological processes or metadata. Such representations

are called disentangled representations [5, 6]. This definition can be generalized to a “set of

latent factors” that together encode one independent factor of variation [7]. Another definition

mandates the disentanglement representation to be informative, separable from each other,

and interpretable [8]. Different VAE variants have been designed to tackle the disentangle-

ment problem and claim achieving a better performance in learning a more disentangled

latent space [9–11]. Some studies show that the more interpretable the latent space, the better

the model is at representing the data [5, 6, 12]. For instance, Way and Greene showed that a

VAE can learn a meaningful latent space trained on RNA-Seq data from The Cancer Genome

Atlas (TCGA) [13, 14]. Also, VAEs are proven to be useful in several applications, such as pre-

dicting drug response [15] and perturbation effects [16]. Using a semi-supervised approach

and a VAE, Wei and Ramsey were able to predict response to chemotherapy for some cancer

types [17].

Fig 1. Schematics for autoencoder and variational autoencoder. Both models are based on the encoder-decoder neural network structure to a learn

latent space. A) An autoencoder is a deterministic model where z is a mapping of the input data. B) A variational autoencoder is a probabilistic model

where the mapping z is generated by a probability distribution conditioned on the input data.

https://doi.org/10.1371/journal.pone.0292126.g001
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Despite these promising results, it is known that VAEs suffer from sensitivity to the hyper-

parameters, such as the learning rate, the number of hidden layers, the optimizer and the num-

ber of neurons in each layer [18–20]. Although VAEs are getting more and more widely-used,

there is a lack of guidelines for selecting training hyperparameters. In addition, there has been

no consistent comparison of different VAE models on their ability to learn a disentangled

latent space when applied to embed RNA sequencing data of cancer patients [21].

In this paper we study the capability of different VAE models to learn the latent representa-

tion of the data and their ability to disentangle this representation. We benchmark the perfor-

mance of six different VAE models and five different hyperparameters: dimensionality of the

latent space, learning rate, optimizer, initialization, and activation function, leading to a total

of 6,480 different VAE configurations. The performance was evaluated on the clustering qual-

ity of transcriptomic samples and the prediction of overall survival in the TCGA dataset which

comprises of patients with different cancer types. To assess the generalizability of the choice of

the hyperparameters, we evaluated all hyperparameter configurations on the Genotype-Tissue

Expression (GTEx) dataset. Moreover, for well-performing hyperparameter configurations,

we tested the disentanglement of the learned latent space. Finally, based on our benchmarks,

we provide recommendations on selecting VAE models and their hyperparameters when deal-

ing with transcriptomic data. Among the numerous VAE variants that have been proposed, we

decided to focus on six models, placing our emphasis on latent space disentanglement. Vanilla

VAE served as our baseline and we included other models that improve upon it on various

aspects: β-VAE [9], β−TCVAE [10] and DIP-VAE [11] modified the VAE loss function in dif-

ferent ways to force learning of disentangled representations. The categorical VAE takes a dif-

ferent approach and learns a discrete latent space, where samples can be easily classified to

distinct categories [22]. Finally, IWAE does not aim at interpretability, but rather at learning a

richer representation, which is achieved by maximizing a tighter bound of the marginal data

log-likelihood [23]. By covering these prominent directions in VAE research, our study com-

prehensively examines various strategies aimed at advancing the capabilities of VAEs. To help

in replicating the results or testing new models or metrics, we made the code used in this study

available on https://github.com/meltager/vae_benchmark.

Materials and methods

VAE models

Vanilla VAE. The VAE model aims to find a probabilistic distribution p(z|x) which maps

the input x to a set of latent variables z. Because p(z|x) is intractable in most cases, we follow

Kingma and Willing [3] and approximate it by a distribution q(z|x) with parameters ϕ which

is approximated by a neural network (encoder). A decoder neural network then tries to recon-

struct the input data from the latent variables by learning the distribution p(x|z) with parame-

ters θ [3]. VAE achieves this by maximizing the evidence lower bound (ELBO) which is a

lower bound of the data log-likelihood (p(x)) [24]. This leads to the following loss function

which is the negative of the ELBO [3]:

Lðy; �; xÞ ¼ � EqðzjxÞ½log pðxjzÞ� þ DKLðqðzjxÞ jj pðzÞÞ ð1Þ

Then, a stochastic gradient variational Bayes estimator [3] is used to minimize this loss with

respect to the parameters. The first term in Eq 1 corresponds to the reconstruction error

which directs the decoder to learn how to accurately reconstruct the input data. The second

term is the Kullback-Leibler (KL) divergence between the learned embedding distribution of

an input sample and the prior distribution p(z) which acts as a regularizer for the encoder.
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β-VAE. Higgins et al. introduced the idea of learning a disentangled representation using

an adaptation of a VAE called β-VAE. This work showed that adjusting the balance between

the reconstruction loss and the KL divergence terms can push the encoder to learn a disentan-

gled representation [9]. Thus, this model multiplies the KL term with a hyperparameter β,

such that the loss function becomes:

Lðy; �; xÞ ¼ � EqðzjxÞ½log pðxjzÞ� þ b DKLðqðzjxÞ jj pðzÞÞ ð2Þ

The loss function is similar to Eq 1 except for the β parameter. When setting β> 1, the

model is “encouraged” to learn a disentangled representation of the training data [9].

β-TCVAE. The β-Total Correlation VAE, or β-TCVAE for short, is an extension of the β-

VAE model. R. Chen et al. showed that decomposing the loss function of β-VAE (i.e. Eq 2),

and penalizing the total correlation between the latent variables, forces the model to find more

statistically independent latent variables [10]. Hence, the loss function becomes:

Lðy; �; x; a;b; gÞ ¼ � EqðzjxÞ½log pðxjzÞ� þ a DKLðqðz; xÞjjqðzÞpðxÞÞ

þb DKLðqðzÞjjPqðzÞÞ þ g SDKLðqðzÞjjpðzÞÞ
ð3Þ

Here, the KL term in Eqs 1 and 2 is decomposed into 3 different terms. The first term, pre-

ceded by α, is modeling the mutual information between the data variable and latent variables.

The second term, preceded by β, is modeling the dependence between the different latent vari-

ables and is called the total correlation (TC) term. The last term that is preceded by γ is used to

prevent each individual latent variable from diverging away from its prior. This work showed

that penalizing the total correlation term (i.e. setting β in Eq 3 to a large positive value) helps

the VAE to learn disentangled representations [10]. However, the effect of weighting the three

different terms in finding a disentangled latent space is hard to assess.

DIP-VAE. Disentangled Inferred Prior VAE (DIP-VAE) learns a disentangled represen-

tation by matching the covariance of the prior distribution and the latent distribution. Authors

argued that achieving a disentangled representation requires a disentangled prior [11]. The

model uses the following loss function:

Lðy; �; xÞ ¼ � EqðzjxÞ½log pðxjzÞ� þ DKLðqðzjxÞ jj pðzÞÞ þ l DðqðzÞjj pðzÞÞ ð4Þ

In the last term, D(.), denotes a distance metric between p(z) and the (intractable) q(z). The

authors modeled this distance as the squared difference between the two corresponding

covariance matrices. This means that DIP-VAE minimizes the covariance between latent fac-

tors, while β-TCVAE minimizes the correlation. This squared difference can in practice be

computed in two ways, leading to two sub-variants termed DIP-VAE I and DIP-VAE II (see

[11] for more details). Here, we used DIP-VAE II where the latter term is computed as shown

in Eq 5:

l DðqðzÞjj pðzÞÞ ¼ lodSi6¼j½CovqðzÞ½z��
2

ij þ ldSið½CovqðzÞ½z��ii � 1Þ
2

ð5Þ

The λd and λod variables are used to weigh the contribution of the disentanglement

objective.

IWAE. Importance Weighted AutoEncoder (IWAE) provided a tighter ELBO of the data

log-likelihood compared to the vanilla VAE [3]. This was achieved by drawing K samples

instead of one from the encoder network in order to perform the Monte Carlo estimate of the
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expectation term of Eq 1 [23]. Thus the loss function becomes:

L̂K ¼ � log
1

K

XK

i¼1

pðxjzÞ pðzÞ
qðzjxÞ

ð6Þ

Note that this loss cannot be decomposed to a reconstruction term and a KL divergence

term for K> 1.

Categorical VAE. Categorical VAE (CAT-VAE) made it possible to model a discrete

latent space, unlike vanilla VAE that consider continuous Gaussian latent space. CAT-VAE

introduced the Gumbel-softmax distribution that is a continuous distribution that approxi-

mates the categorical distribution [22]. CAT-VAE can incorporate label information, but for a

fair compression between the different models we did not use the labels of the samples in the

training of this model. The loss function of CAT-VAE for unlabeled data is shown in Eq 7,

where we marginalize over all possible labels y.

Lðy; �; xÞ ¼ Ez�qðy;zjxÞ½qðy; zjxÞ � log pðxjy; zÞ � log pðyÞ � log pðzÞ� ð7Þ

VAE hyperparameters

We studied the effect of hyperparameters on the training of the aforementioned models. We

focused on five types of hyperparameters, whose different settings were explored for every

VAE model. We set the latent dimensions to be either 10, 20, 30, 50, 100 or 200 factors. For the

learning rate we used 1e-1, 1e-2, 1e-3, 1e-4, 1e-5 and 1e-6 as step size. For the initialization of
weights of the encoder and the decoder, we compared the following methods: a standard nor-

mal (N(0, 1)), Uniform (U(0, 1)), Xavier normal, Xavier uniform [25] and Kaming uniform

[26]. We compared three optimizers: Adam [27], RMSprop [28] and Stochastic Gradient

Descent (SGD) [29]. Finally, we tested the effect of two activation functions on the neural net-

works: Rectified linear unit (ReLU) [30, 31] and Hyperbolic tangent (tanh).

Datasets

The models were trained on the TCGA RNA-seq gene expression dataset [14]. The data were

downloaded from [32]. This dataset contains log-transformed counts already filtered by

removing the lowly expressed genes, around 10% of the genes and batch corrected using the

EB++ algorithm which is a variation of the Empirical Bayes/ComBat algorithm to accommo-

date for platforms and protocol differences [33]. The samples that have a cancer type label in

the meta data were selected [34]. This gave us a total of 11,014 samples from 33 different cancer

types. The 5,000 most variable genes across all samples were selected based on the mean abso-

lute deviation (MAD). Each gene was centred and scaled to zero mean and unit variance using

z-score normalisation.

To assess the generalizability of the models’ hyperparameters, we retrained all models on

the GTEx RNA-seq dataset [35]. We used the gene expression V8 data that were downloaded

from [36]. These gene expression data were already batch corrected and were transformed to

Transcripts Per Million (TPM) counts. The data comprises 17,382 samples with 56,200 genes

representing 30 different tissue types. We followed the same procedure as the TCGA dataset in

selecting the top 5000 genes.

Evaluation of the effect of hyperparameters

The network architecture was held fixed: The encoder and decoder were made from two fully-

connected layers as Hu and Greene showed that this design consistently outperformed archi-

tectures with different number of layers [37]. The whole design is following the design
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proposed by Way and Greene [13]. For the encoder, the first layer went from 5000 nodes to

512 nodes, and the second layer went from 512 nodes to the the number of nodes equal to the

selected dimension for the latent space. The decoder architecture was the reverse (latent

dimension to 512 nodes, and a second layer from 512 nodes to 5000 nodes).

For each of the six VAE variants, we ran an exhaustive grid search to evaluate all possible

combinations of latent dimensions, learning rate, optimizer, initialization and activation func-

tion, leading to a total of 1080 different setups per VAE variant. To account for variation stem-

ming from the random initialization of the weights and of the data splitting, each setup was

trained 10 times and we reported the mean and standard deviation of the final loss. During

each run, the TCGA dataset was randomly split into a training (70%) and a validation set

(30%) stratified per cancer type. We trained the models on the training data for 1000 epochs

and applied early stopping if the validation loss did not improve for longer than 3 epochs. The

mean validation loss over the 10 random restarts was used as the criterion for evaluating

hyperparameter combinations.

We evaluated the ability of the models to perform both unsupervised and supervised down-

stream tasks. We used clustering as unsupervised task to cluster the input data in the latent

space. To do so, for each hyperparameter combination, the whole dataset was embedded into

the latent space (z). Then, the embeddings were used to cluster the data using the Leiden com-

munity detection algorithm [38]. The neighbourhood graph for the Leiden algorithm was cre-

ated based on the default settings, using the 15 nearest neighbours found according to the

Euclidean distance. Then, the Adjusted Rand Index (ARI) was calculated between the found

clusters and the known cancer type labels [39].

For the supervised task, we conducted survival analysis using Cox proportional hazards

model [40]. For each hyperparameter configuration, embeddings served as input features for

the survival analysis. Age, gender, and cancer type were included as covariates in the analysis.

Gender and cancer type were represented as one-hot encoded features. The endpoint of the

analysis was the overall survival. To evaluate the relative fit of the different models, we utilized

Akaike’s Information Criterion (AIC) [41]. The AIC is calculated using the following equa-

tion:

AIC ¼ 2k � 2lnðL̂Þ ð8Þ

Where k is the number of estimated parameters by the Cox model, while L̂ is the model’s likeli-

hood. The AIC provides a measure that balances model fit and complexity. Lower AIC values

indicate a better model fit with less complexity.

After evaluating the impact of various hyperparameters on the TCGA dataset, we con-

ducted an additional experiment to validate and generalize the hyperparameter recommenda-

tions derived from our analysis. For this purpose, we used the GTEx dataset and ran all the

different configurations for VAE model only once. To ensure proper model assessment, the

GTEx dataset is split in a stratified manner by the sample tissue into training and validation

sets, allocating 70% and 30% of the samples, respectively.

Evaluation of disentanglement

We selected the recommended configurations for all VAE models (i.e. learning rate, optimizer,

initialization and activation) derived from the hyperparameter evaluations (see Results). To

evaluate the impact of the latent dimension size on disentanglement, we retrained all recom-

mended VAE models and repeated the experiments using latent dimension sizes ranging from

10 to 200. We assessed disentanglement based on three different criteria. First, to assess the

separability and informativeness of the learned latent variables of these configurations, we
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employed the Weighted SEParability and INformativeness (WSEPIN) metric [8]. This metric

quantifies the extent to which the latent factors (z) are separable from one another while also

retaining meaningful information about the input data (x). The calculation of WSEPIN is

based on the following equation:

WSEPIN ¼
XL� 1

i¼0

riIðx; zijz6¼iÞ ð9Þ

where

ri ¼
Iðx; ziÞ

PL� 1

j¼0
Iðx; zjÞ

ð10Þ

While I(x, zi) is the mutual information between x and zi. It is worth noting that the higher the

value of I(x, zi|z6¼i) the more disentangled zi.
Second, we evaluated the ability of these configurations to encode specific data features of

interest, solely using one or two latent variables, by calculating the Spearman correlation

between a latent variable and a data feature using Eq 11.

rrz ;ry ¼
Covðrz; ryÞ
srzsry

ð11Þ

Where rz and ry are the ranked latent variables and data features respectively, while srz and sry

are the standard deviation of the ranked latent variables and data features respectively. We set

the threshold of correlation at ρ = 0.1 which is approximately equivalent to the statistical signif-

icance threshold for the correlation using an alpha of 0.05.

Data features tested were: age, days to metastasis event, immune infiltration [42], and the

presence of either of the mutation signatures SBS 1,2,5,13,15 and 40 determined with exome

sequencing [43]. In addition to the three aforementioned features, we also evaluated the disen-

tanglement of gender by calculating its correlation with latent variables using a logit model.

We determined how many of these 10 data features were encoded by each model, i.e. how

many features are correlated with at least one latent factor. Then we measured whether these

features are encoded in a disentangled representation, which we defined as being correlated

with only one or two latent factors.

Third, the Robust Mutual Information Gap (RMIG) metric was employed to quantify the

interpretability of the latent space factors [8]. This metric allowed us to assess the interpretabil-

ity of the latent variables in relation to the data features of interest. The calculation of RMIG is

based on the following equation:

RMIGðykÞ ¼ Iðzi1; ykÞ � Iðzi2; ykÞ ð12Þ

where yk are the data features, while zi1 and zi2 are the factors with the highest and second

highest mutual information with yk. To facilitate the interpretation of the RMIG measure,

authors normalized it by dividing the RMIG score by the entropy of the corresponding data

feature H(yk) [8]. This made the normalized RMIG score range from 0 to 1, where the higher

the value the more the feature is disentangled. We calculated the normalized RMIG score for

each data feature across the different configurations employed in the disentanglement

experiment.
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Results

The validation loss does not always reflect downstream performance

We tested the performance of six different VAE models, while varying five different hyper-

parameters on the TCGA RNA-seq data. To evaluate the learned latent space, we passed all

data points through the encoder of each trained model to extract the corresponding embed-

dings and used them on both unsupervised and supervised downstream tasks. For clustering

as an unsupervised task, we clustered the embeddings using the Leiden algorithm [38]. The

models were then evaluated on whether their resulting clustering overlaps with the different

cancer types using ARI as evaluation measure. Fig 2A and S1–S5 Figs show that despite the

correlation between loss and ARI (Spearman |ρ| = 0.53 for vanilla VAE, S2 Table), models with

the same loss can have different ARI values. For example, Fig 2C & 2D show the learned

embeddings of two hyperparameter combinations that had both a loss of value 1. One of the

models generates a clustering resulting in an ARI� 0.01 (Fig 2C), while the clustering as a

result of the other model has an ARI� 0.72 (Fig 2D).

For the supervised task, we used the latent features learned by each model to fit a Cox pro-

portional hazards model, aiming to predict overall survival. Fig 2B and S1–S5 Figs, show the

correlation between the validation loss and the AIC (Spearman |ρ| = 0.48 for vanilla VAE, S2

Table). We observed a similar pattern when comparing the validation loss with the ARI, where

different models exhibited the same validation loss but distinct AIC values. On the other hand,

the supervised and unsupervised performance of different hyperparameter settings was highly

concordant (Spearman ρ = -0.82) (S6 Fig). Together, these results imply that the validation loss

of the VAE does not always reflect the performance of the downstream tasks.

β-TCVAE and DIP-VAE are the best performing models

To assess the performance of the different VAE models, we evaluated the scores of the down-

stream tasks across the different hyperparameter configurations. Overall, the top performance

in both unsupervised and supervised tasks was comparable for all VAE models, as shown in

Fig 3. This indicates that each of the six models can achieve similar performance when the

hyperparameters are properly tuned. However, we observed variations in median performance

across models when considering all parameters. We found that β-TCVAE and DIP-VAE mod-

els performed better than the rest on average in both downstream tasks.

Choice of hyperparameters affects the VAE performance

Next, we tested the effect of each of the five different hyperparameters individually on the per-

formance of different VAE models in terms of the ARI scores. First, we analysed the effect of

the number of latent dimensions on the VAE performance (Fig 4A). A small number of latent

dimensions compared to the expected number of clusters (i.e. 33 clusters) resulted in lower

performances, mid-range values(those that are greater than or equal to the number of clusters,

i.e. 50—100) performed well across all models. When examining the effect of the learning rate

on the performance, we found that the smallest and the largest learning rates are not perform-

ing as well as mid-range learning rates (i.e. 1e-3, 1e-4) see Fig 4B. Moreover, training β-

TCVAE with a large learning rate failed because the optimization diverged regardless of the

choices for the remaining hyperparameters.

In addition, we found that the choice of weight initialization method did not affect perfor-

mance with the exception of U(0,1) which clearly underperformed the other methods (Fig

4C). For the choice of the optimizer we found that the SGD optimizer on-average results in

lower performance, while the Adam optimizer is on average slightly better than RMSprop, see
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Fig 4D. Finally, for the choice of the activation function we found that the top performance for

each activation function is comparable, while on-average tanh gave a slightly better perfor-

mance (Fig 4E).

Finally, we checked the effect of the five different hyperparameters on the viability of the

VAE model configuration, i.e. whether the training managed to converge to a solution or

(some of) the weight values diverged to infinity. The main cause of failure is the exploding gra-

dient problem, where the network derivatives are getting very large (i.e. explode) leading to an

Fig 2. Validation loss does not reflect downstream performance. Plotting the 90th percentile (i.e., excluding the highest 10%) of the of the validation

loss (y−axis) for the different vanilla VAE hyperparameters configurations vs: A) the ARI (x−axis, the higher the better) and B) the AIC (x−axis, the

lower the better). The figure shows a correlation between the validation loss and ARI & AIC, however, different configurations with the same validation

loss can have different scores. The blue line shows the regression line and its thickness indicates the 95% confidence interval. The dots are colored after

the latent space dimensions variable. C/D) UMAP visualization of the TCGA data embedded into the learned latent space for a Vanilla VAE

configuration. C) For a configuration with a validation loss� 1 and an ARI score� 0 (good model fit, poor clustering ability). D) For a configuration

with a validation loss� 1 and an ARI score of� 0.72 (good model fit, and good clustering performance).

https://doi.org/10.1371/journal.pone.0292126.g002
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overflow in network update weights, hence failure in updating weights and training of the net-

work. Fig 5 shows all combinations of the different VAE models and hyperparameters and

whether they succeeded or not. We found that most failures are coming from the β-TCVAE

and DIP-VAE models indicating that these two models are more sensitive to the hyperpara-

meter selection. Contrarily, Categorical VAE never failed in any hyperparameter combination.

The learning rate selection is one of the main causes of failure, the smaller the learning rate the

Fig 3. Performance of VAE models in downstream tasks. A) Clustering performance (ARI, y−axis, the higher the

better) in the latent space of each model (x−axis) compared to the true cancer type on the TCGA dataset. Each

box represents the distribution of scores obtained for different hyperparameter settings within a specific VAE model.

The middle line corresponds to the mean, while the edges of the box represent the first and third quartiles. B) As in A)

but for the supervised task of predicting overall survival. Performance is measured by the AIC (y−axis, the lower the

better) and the dashed red line indicates the baseline model performance using the covariates only (i.e., age, gender

and cancer types).

https://doi.org/10.1371/journal.pone.0292126.g003
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less probable the model to fail. The selection of optimizer and initialization method is less cru-

cial to training failure, while the choice of latent dimension size and activation function has

minimal impact on the model’s failure rate.

Selection of hyperparameters generalizes to GTEx dataset

To assess whether the hyperparameters settings associated with good performance on the

TCGA data generalize to other datasets, we evaluated their performance on the GTEx dataset.

Here we tested whether clustering the samples overlaps with the known tissue types (measured

Fig 4. Effect of hyperparameters on different VAE models performance. Each boxplot shows the clustering

performance (ARI, x−axis) of fixing a hyperparameter while varying all others for each VAE model (y−axis). The five

panels show the five different hyperparameters tested: A) Effect of latent dimensions, B) Effect of learning rate, C)

Effect of initialization method, D) Effect of optimizer selection, E) Effect of activation layer.

https://doi.org/10.1371/journal.pone.0292126.g004
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by the ARI). For each VAE model, all configurations were retrained on the GTEx data. The

results, presented in Fig 6A, exhibit a clear resemblance to those obtained when testing on the

TCGA dataset (Fig 3A). Notably, the β-TCVAE and DIP-VAE models consistently outper-

formed other models on average. Furthermore, we investigated the impact of different hyper-

parameters (see S7 Fig). The observed effects align with those observed in the TCGA analysis,

except for the selection of the optimizer. Interestingly, using the SGD optimizer did not result

in a decline in the average performance of the VAEs in the GTEx dataset. To assess the concor-

dance between models performance on TCGA and GTEx, we plotted the ARI scores obtained

on TCGA against those obtained on GTEx (Fig 6B). The effect of hyperparameters on cluster-

ing performance is significantly correlated between both datasets with ρ = 0.7. The consistent

patterns observed across diverse datasets provide compelling evidence supporting the gener-

alizability of the hyperparameter recommendations for RNA-seq datasets.

Latent space disentanglement is not trivial to achieve in an unsupervised

manner

Based on our benchmark results, we selected the recommended configuration for training

VAE models on this dataset. Hereto we used 1e-3 for learning rate, Kaming uniform

Fig 5. Viability of different hyperparameter combinations for the different VAE models. Columns represent the different hyperparameters. Each

bar within a column represents a specific setting of a hyperparameter. The blue color indicates the number of successful configurations, while the red

color represents the number of failed configurations. The vertical axis displays the distribution of failed configurations for each specific setting among

the 6,480 tested configurations.

https://doi.org/10.1371/journal.pone.0292126.g005
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Fig 6. Clustering performance in the GTEx dataset. A) Clustering performance (ARI, y−axis, the higher the better)

in the latent space of each model (x−axis) compared to the known tissue type. Each box represents the distribution of

scores obtained for different hyperparameter settings within a specific VAE model. The middle line corresponds to the

mean, while the edges of the box represent the first and third quartiles. B) Clustering performance (ARI) between the

different VAE configurations in the TCGA (x−axis) and the GTEx(y−axis). Dots are colored after the different model

and each dot represents a different hyperparameter configuration.

https://doi.org/10.1371/journal.pone.0292126.g006
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initialization, Adam as the optimizer and tanh as the activation function. Based on the pro-

posed definitions of disentanglement, the results are highly dependent on the size of the latent

dimension, thus we tested different latent dimension sizes with the aforementioned

configuration.

First, we assessed the separability and informativeness of the learned latent variables by

computing the WSEPIN metric for all the recommended VAE configurations, Fig 7. We

observed that the majority of models achieved low WSEPIN scores when the latent dimension

varied between 10 and 30. Interestingly, all models achieved zero WSEPIN with latent dimen-

sion sizes ranging from 50 to 200. Notably, DIP-VAE and CAT-VAE consistently achieved the

lowest scores across different configurations, while the best WSEPIN achieved with β-VAE

when configured with 10 latent dimensions.

Next, we calculated the Spearman correlation for each latent space factor of the vanilla VAE

and β-VAE trained with 10 latent dimensions to each of the data features individually, Fig 8.

The vanilla VAE exhibits correlations between all data features and latent space factors, except

for gender, where no significant correlation was found using the logit model. However, none

of these features were disentangled using the vanilla VAE. Notably, latent space factor 7

showed correlations with all data features.

Analogously, the β-VAE resulted in a correlation also between all data features but two of

these features were disentangled (Fig 8B). Days to metastasis is correlated with latent space fac-

tor 7 solely. SBS40 is correlated with latent space factor 1 and 5 only. Summarizing the β-VAE

with 10 latent dimensions disentangled 2 data features.

Table 1 shows the disentanglement performances for each VAE model with different latent

dimension sizes. The results show that the smaller the latent dimension the better the perfor-

mance in the disentanglement task. As the number of latent dimensions used for VAE’s

Fig 7. Comparison of VAE models with varying latent dimension sizes based on the WSEPIN metric. The figure shows the WSEPIN score on

the y−axis, while the bars are colored after the different latent dimensions. Numbers over each bar is the approximated WSEPIN score achieved.

https://doi.org/10.1371/journal.pone.0292126.g007
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increases, more latent space factors start to correlate with the same feature, impacting a mod-

el’s disentanglement performance. However, some models can perform better than others for

the same latent dimension size. For example, the β-VAE and DIP-VAE models that use 10

latent dimensions show the highest number of disentangled latent factors. Only the IWAE

model achieved data feature disentanglement when using 200 dimensions for the latent space.

Finally, we evaluated the interpretability of the latent space using the normalized RMIG

metric with respect to the data features. Fig 9A displays the normalized RMIG score for the

models when using a 10-dimensional latent space. Generally, all models achieved a low nor-

malized RMIG score, which indicates that none of the latent factors uniquely capture informa-

tion about data features. β-VAE could learn a disentangled representation for SBS40, which

confirms the results we showed earlier using the Spearman correlation. Similarly, for the

20-dimensional latent space configuration (Fig 9B). Although β-VAE and IWAE learn a more

disentangled representation for the data features compared to other models, it should be noted

that all the scores remained below 0.1 on the normalized RMIG scale, indicating that the fea-

tures are not completely disentangled. This observation is further supported by calculating the

normalized RMIG scores for the 50–200 dimensional latent space, as shown in S8 Fig. Notably,

these results confirm our previous findings; that VAE models could not correlate with gender

Fig 8. Heatmap showing the Spearman correlation of the latent variables from a 10-dimensional latent space for the vanilla VAE and β-VAE with

the features. The red highlighting boxes show the disentangled features achieved by a model. A) Vanilla VAE could not disentangle any feature. B) β-

VAE disentangled metastasis and SBS40.

https://doi.org/10.1371/journal.pone.0292126.g008

Table 1. Number of disentangled data features for different VAE models having different latent dimensions.

Model

Latent Dim. 10 20 30 50 100 200

Vanilla VAE 0 1 0 0 0 0

β-VAE 2 1 0 0 0 0

β-TCVAE 2 1 1 1 0 0

DIP-VAE 1 0 1 0 0 0

IWAE 2 1 1 1 0 0

CAT-VAE 1 1 0 0 0 0

https://doi.org/10.1371/journal.pone.0292126.t001
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when using a 10 dimensional latent space, while vanilla VAE, β-VAE and CAT-VAE can

barely disentangle gender when using 20 dimensional latent space.

From these results we conclude that the disentanglement task is in general difficult for all

VAE models and that when selecting the latent dimension size there is a trade-off between

disentanglement and downstream performance.

Discussion

This paper studies settings of different VAE models when applied to cluster cancer patients

from their RNAseq profile. We found that the validation loss is not always reflective of the per-

formance on downstream tasks that uses the latent space embeddings. Nevertheless, we

showed that all VAE variants have the ability to learn a representation of the data that facili-

tated the downstream tasks either of clustering cancer patients or predicting the overall sur-

vival. Despite the fact that β-TCVAE and DIP-VAE models had an on-average better

performance than others, we can not conclude that they outperform the other models, as all

the models could reach a comparable performance based on specific hyperparameter settings.

Also, the viability of these two models is too sensitive and susceptible to the hyperparameter

selection.

There are multiple possible reasons for the observed inconsistency between the validation

loss and the downstream tasks performance. One of them could be the usage of mean square

error (MSE) as reconstruction loss, which overemphasizes the effect of outlier samples. These

outlier samples could be due to personal/biological differences or technical ones. RNA-seq

technologies suffer from different types of technical noise and artifacts [44], that means some

samples could be distorted. These distorted samples do not belong to the actual manifold of

the data. Then, the squaring factor in the MSE magnifies these errors, making the VAE tries to

adopt to these distorted samples. One potential approach to mitigate the impact of MSE is to

exert more efforts in filtering the samples, excluding all unwanted heterogeneities [45].

Moreover, we evaluate the mean squared error independently for each gene, without taking

gene-gene correlations into account. Although this is a standard practice in the literature,

explicitly modelling these correlations might lead to a more meaningful evaluation of recon-

struction error. Of course, this would significantly increase the complexity and training time

of the model, especially for high-dimensional datasets. Also, we think that using a

Fig 9. Heatmap showing the normalized RMIG score calculated for different VAE models on data features. A) Using 10 dimensional latent space,

β-VAE can learn a more disentangled representation compared to other models. B) Using 20 dimensional latent space, βVAE and IWAE could

disentangle some features compared to other models.

https://doi.org/10.1371/journal.pone.0292126.g009

PLOS ONE Benchmarking VAEs on transcriptomics data

PLOS ONE | https://doi.org/10.1371/journal.pone.0292126 October 5, 2023 16 / 22

https://doi.org/10.1371/journal.pone.0292126.g009
https://doi.org/10.1371/journal.pone.0292126


reconstruction loss function that is less susceptible to outliers as Huber loss [46, 47] or quantile

loss [48], will help in better approximating the true manifold.

Another possible explanation could be posterior collapse, a common issue with VAE train-

ing [49]. Posterior collapse occurs when the posterior distribution of one or more of the latent

variables (q(z|x)) becomes equal to its prior (p(z)). In other words, the encoder output is ran-

dom and does not depend on the input sample, so that the collapsed latent features do not

encode any meaningful information about the input. When this occurs during training, a flexi-

ble-enough decoder can still learn to (partially) reconstruct the input by ignoring the collapsed

latent features and/or by overfitting to the encoder’s output. This leads to a relatively low

reconstruction loss, despite the fact that the latent features are not a meaningful representation

of the data.

One of the main contributions of this paper is that we can provide recommendations on

hyperparameters settings when dealing with bulk RNA data. These recommendations are

driven from the TCGA dataset and confirmed on the GTEx dataset. Our results show that the

selection of hyperparameters greatly influences the performance of the VAE, although this

might not be surprising. Considering the expected number of clusters for each dataset, we set

the number of latent dimensions to be greater than or equal to the number of expected clus-

ters. For the datasets investigated in this study, we recommend using a latent space of 50—100

dimensions. This recommended range strikes a balance between capturing the complexity of

the data and mitigating the risks of overfitting or underrepresentation. Nevertheless, we found

that learning disentangled representations in an unsupervised manner is very hard when using

those many latent factors and a smaller latent dimension size is preferred if interpretation is

important. For the learning rate, we recommend using learning rates between 1e-3 and 1e-4.

Large learning rates push a model over the optimum resulting in an oscillating behavior or

even make the training fail, whereas low learning rates slow down the learning process tremen-

dously and can get more easily stuck in local minima. For the initialization methods, the uni-

form methods are not favorable in the deep learning field as the gradient is the same for many

nodes, which makes it hard during the training for weight update [50, 51]. The other weight

initialization strategies that we tested, included Kaming uniform (default in PyTorch) and

Xavier normal (default in Keras) initialization distributions, all these settings resulted in a

comparable performance. The SGD optimizer is found to underperform in the other settings

on the TCGA dataset. The Adam optimizer is becoming a de facto standard, and is widely used

in the deep learning, as it is faster and requires less memory to run. Our results show that the

Adam optimizer outperforms SGD, and does slightly better than RMSprop. These results are

in line with the results by Kingma and Ba for image data [27]. The usage of tanh as the activa-

tion function demonstrated, on average, better performance compared to using ReLU,

although the top achieved performances were comparable. However, it is important to note

that in deeper networks, the usage of ReLU has been shown to be more favorable due to its

reduced susceptibility to gradient vanishing and its ability to yield improved performance [31,

52, 53]. In our work, which employed a relatively shallow network architecture with only two

layers for the encoder and decoder, we did not encounter the issues typically associated with

using the tanh activation function.

Interpretation of machine learning and deep learning models is crucial for their eventual

adoption into clinical practice, but this still remains challenging. If (some of) the learned latent

factors directly correspond to specific interesting aspects of the data, such as biological pro-

cesses or important covariates, it would improve the interpretability and therefore the value

and potential usage of the VAE models. Our experiments in measuring the disentanglement of

the latent factors showed that all VAE models only moderately capture the characteristics

tested in the TCGA dataset and that disentanglement often comes at the cost of less good
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clustering in z-space. Surprisingly, even models specifically designed for learning disentangled

representations showed limitations in achieving full disentanglement. The various metrics

used in our study consistently indicated that none of the models achieved decent disentangle-

ment of the tested features, as evidenced by low WESPIN scores (less than 0.15) and low nor-

malized RMIG scores (less than 0.1). The correlation plots demonstrated that the VAEs

learned complex and entangled representations of the data, which contributed to their perfor-

mance in downstream tasks but hindered their ability to encode or disentangle specific fea-

tures. In our experiments, VAE models were able to correlate the same latent factors for both

SBS2 and SBS13 which are known to occur in the same samples. These mutational signatures

are connected to the activity of the AID/APOBEC family of cytidine deaminases and the activ-

ity of the APOBEC enzyme [54, 55]. Again our results align with the theoretical proof of the

impossibility of achieving complete disentanglement with completely unsupervised learning

[6].

Although the promise of disentanglement with VAEs seems unfulfilled, there are three

promising alternatives to force models to learn disentangled representations. The first uses

semi-supervised VAE models, where known values of the factors to be disentangled are used

to guide the VAE training [56, 57]. The second, stemming from computational neuroscience,

imposes biologically-inspired constraints on the weights that enhance selectivity of neurons

thereby leading to disentanglement [58, 59]. The third approach relies on the existence of

another observed variable, which can be harvested to transform the VAE into non-linear Inde-

pendent Component Analysis [60]. For example, for the TCGA data this additional variable

can be the mutation or methylation profiles of the tumor samples. Further research is needed

to validate the utility of these ideas on -omics data.

One limitation of our study is that not all hyperparameters combinations were tested for all

models. The effect of hyperparameters weighting the disentanglement terms differs between

the different VAE models. We did not study the effect of these hyperparameters on the down-

stream task as well as the disentanglement task. We decided not to do so because this would

result in a unfair (unsystematic) comparison between models. Yet, an important hyperpara-

meter, the number of nodes in a hidden layer, we also did not further explore merely because

this would increase the space of models immensely.

In conclusion, we benchmarked several VAE variants on transcriptomics data and studied

their learned latent spaces in terms of downstream tasks and disentanglement. Despite a gen-

eral difficulty to achieve good disentanglement, we found that β-TCVAE and DIP-VAE tend

to perform best in both tasks, although their training can more easily become unstable when

using inappropriate hyperparameters.

Supporting information

S1 Fig. β-VAE validation loss vs downstream tasks performance. Scatter plot for the 90th

percentile of the validation loss of different hyperparameters configurations of β-VAE vs A)

ARI, B) AIC. Each dot is a different configuration, and they are colored after the latent space

dimensions variable.

(TIF)

S2 Fig. β-TCVAE validation loss vs downstream tasks performance. Scatter plot for the 90th

percentile of the validation loss of different hyperparameters configurations of β-TCVAE vs A)

ARI, B) AIC. Each dot is a different configuration, and they are colored after the latent space

dimensions variable.

(TIF)
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S3 Fig. DIP-VAE validation loss vs downstream tasks performance. Scatter plot for the

85th percentile of the validation loss of different hyperparameters configurations of DIP-

VAE vs A)ARI, B) AIC. The selection of the 85th percentile was motivated by the observation

that this particular model tends to generate a higher number of outliers compared to others.

Each dot is a different configuration, and they are colored after the latent space dimensions

variable.

(TIF)

S4 Fig. IWAE validation loss vs downstream tasks performance. Scatter plot for the 90th

percentile of the validation loss of different hyperparameters configurations of IWAE vs A)

ARI, B)AIC. Each dot is a different configuration, and they are colored after the latent space

dimensions variable.

(TIF)

S5 Fig. CAT-VAE validation loss vs downstream tasks. Scatter plot for the 90th percentile of

the validation loss of different hyperparameters configurations of CAT-VAE vs A)ARI, B)AIC.

Each dot is a different configuration, and they are colored after the latent space dimensions

variable.

(TIF)

S6 Fig. Vanilla VAE downstream tasks performance agreement. Scatter plot for the cluster-

ing performance measured in ARI (y−axis, the higher the better) and survival analysis perfor-

mance measured in AIC (x−axis, the lower the better). The figure demonstrates the

concordance between these two measures, indicating that models with higher ARI tend to

have lower AIC. The top left quarter of the plot represents the best performing models across

both clustering and survival analysis tasks. Blue line represents the lowess curve fitting for the

data.

(TIF)

S7 Fig. Effect of hyperparameters on different VAE models measured on the GTEx dataset.

Each boxplot shows the clustering performance (ARI, x−axis) of fixing a hyperparameter

while varying all others for each VAE model (y−axis). The five panels show the five different

hyperparameters tested: A) Effect of latent dimensions, B) Effect of learning rate, C) Effect of

initialization method, D) Effect of optimizer selection, E) Effect of activation layer. The figure

shows analogous effect to that found on TCGA dataset.

(TIF)

S8 Fig. Heatmap showing the normalized RMIG score calculated for different VAE models

on data features. A) Using 30 dimensional latent space. B) Using 50 dimensional latent space.

C) Using 100 dimensional latent space. D) Using 200 dimensional latent space.

(TIF)

S1 Table. VAE models hyperparameters. A listing of the hyperparameters that were held

constant throughout the study. The values were set according to the implementation of

https://github.com/AntixK/PyTorch-VAE.

(PDF)

S2 Table. Spearman correlation between different models validation loss and ARI, AIC.

The absolute rounded Spearman correlation between all the different configurations tested for

each model and both ARI and AIC values achieved by this model in the downstream task.

(PDF)
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