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Abstract

Coprolites, or mummified feces, are valuable sources of information on ancient cultures as

they contain ancient DNA (aDNA). In this study, we analyzed ancient plant DNA isolated

from coprolites belonging to two pre-Columbian cultures (Huecoid and Saladoid) from Vie-

ques, Puerto Rico, using shotgun metagenomic sequencing to reconstruct diet and life-

styles. We also analyzed DNA sequences of putative phytopathogenic fungi, likely ingested

during food consumption, to further support dietary habits. Our findings show that pre-

Columbian Caribbean cultures had a diverse diet consisting of maize (Zea mays), sweet

potato (Ipomoea batatas), chili peppers (Capsicum annuum), peanuts (Arachis spp.),

papaya (Carica papaya), tomato (Solanum lycopersicum) and, very surprisingly cotton

(Gossypium barbadense) and tobacco (Nicotiana sylvestris). Modelling of putative phyto-

pathogenic fungi and plant interactions confirmed the potential consumption of these plants

as well as edible fungi, particularly Ustilago spp., which suggest the consumption of maize

and huitlacoche. These findings suggest that a variety of dietary, medicinal, and hallucino-

genic plants likely played an important role in ancient human subsistence and societal cus-

toms. We compared our results with coprolites found in Mexico and the United States, as

well as present-day faeces from Mexico, Peru, and the United States. The results suggest

that the diet of pre-Columbian cultures resembled that of present-day hunter-gatherers,

while agriculturalists exhibited a transitional state in dietary lifestyles between the pre-

Columbian cultures and larger scale farmers and United States individuals. Our study high-

lights differences in dietary patterns related to human lifestyles and provides insight into the

flora present in the pre-Columbian Caribbean area. Importantly, data from ancient fecal

specimens demonstrate the importance of ancient DNA studies to better understand pre-

Columbian populations.
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Introduction

The Huecoid and the Saladoid, two pre-Columbian indigenous cultures, migrated from differ-

ent regions of the Americas in independent migratory waves to settle in the Caribbean Islands

[1–3]. Since its discovery, it has been hypothesized that each culture was distinct based on

major differences in the pottery, lapidary and faunal cultural assemblage [3], and that both co-

habited the site of Sorcé, Vieques, Puerto Rico for more than 1,000 years [4]. A counter

hypothesis was presented in which the Huecoid materials belonged to the Saladoid tradition

[5]. While the Saladoid culture is believed to have migrated from the Orinoco River Valley of

Venezuela [6], and inhabited the island of Vieques around the sixth century B.C. [7], the Hue-

coid culture is believed to have originated on the eastern slopes of the Andean mountains of

present-day Bolivia and Peru [8], and to have arrived to Puerto Rico around the third century

B.C. In addition to differences in pottery and faunal materials, as well as migratory patterns, a

considerable amount of lapidary objects consisting of semiprecious stone ornaments, which

include jadeite condors distinguished the Huecoid culture and supports the proposed Andean

origin of this culture [9, 10]. In contrast, the Saladoid culture was characterized by polychro-

mic (white and orange over red) painted pottery tradition [6, 11], distinct faunal assemblage

and significant shell ornament industry.

Highly developed phytocultural practices that connected these pre-Columbian cultures in

the Caribbean to South America resulted in complex social systems [12]. Early European

chroniclers [13, 14], and more recently starch remains stored on plant-processing artifacts (as

well as human dental calculus) have shown a complex food system in the Caribbean [15, 16].

During the early ceramic age, the ancient South American and Caribbean Amerindians har-

vested a variety of plants including maize (Zea mays), sweet potato (Ipomoea batatas), com-

mon bean (Phaseolus vulgaris), manioc (Manihot esculenta), marunguey (Zamia spp.),

cocoyam (Xanthosoma sp.), and peanut (Arachis hypogaea) [15–17]. Minor dietary compo-

nents included achira (Cannaceae) and arrowroot (Maranta arundinacea) [18], while chili

peppers (Capsicum spp.) were used as a condiment. Many of these plants continued being

used during the Late Ceramic Age, although indigenous people included a larger repertoire of

plants (including fruits) [17, 19] and the importance of Cannaceae and Marantaceae increased.

While paleoethnobotanical data are corroborating the information given by the Spanish

chroniclers, significant gaps in knowledge of the pre-Columbian diet, and regional and tempo-

ral differences in dietary habits remain. The chroniclers described mainly the culture, flora

and fauna of Hispaniola, holding the notion that all the Caribbean islands were alike. Thus, the

information about Puerto Rico and other islands of the Caribbean is limited. In addition, the

Huecoid and Saladoid are early undescribed cultures since the chroniclers only described later

cultures. Information on consumed plants contributing to the diet of pre-Columbian and pres-

ent-day ethnic groups with contrasting geocultural regions and temporal scales is needed to

better understand diet as an important part of present culture and identity.

Mummified feces, or coprolites, recovered from archaeological sites have provided a wealth

of valuable information about pre-Columbian diets and the past environment in which theses

cultures lived [20]. For instance, micro- (e.g., pollen), and macroscopic remains (e.g., bones,

seeds, and fibers) recovered from coprolites have provided dietary and lifestyle information

[21, 22]. Similarly, the presence of pollen from famine foods in coprolites may suggest that the

individual may have lived in arid environments [20, 23]. In addition to micro- and macro-

scopic remains, DNA analysis has revealed the diet of extinct sloths [24, 25], dogs [26, 27],

moas [28, 29], and mummies [30, 31]. Moreover, the reconstruction of ancient human diets

has been possible in part by studies of the gut microbiome [32, 33], virome [34], parasitome

[35], and mycobiome [36] found in coprolites. Notably, ancient microbial communities
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detected in coprolites can also reflect the evolution of human lifestyles through time [23, 36–

38]. Other DNA sequences, such as those originating from plants, may provide a refined taxo-

nomic classification of edible plants, which, in turn, may aid in the reconstruction of ancient

dietary habits and lifestyles.

Our study presents data on plant DNA extracted from coprolites (mummified feces) recov-

ered from Vieques, Puerto Rico, which are approximately 1500 years old. Our goal was to

reconstruct the diet and surrounding flora of the pre-Columbian Huecoid and Saladoid cul-

tures using this plant DNA data. To better understand how diet varied across different geocul-

tural regions and historical periods, we also analyzed coprolites from other cultures, including

the Loma San Gabriel culture in La Cueva de los Muertos Chiquitos (Rio Zape, Mexico), the

Ancestral Puebloans in the Arid West Cave (Arizona, USA), and the Boomerang Shelter

(Utah, USA). Additionally, we included data obtained from present-day fecal samples from

various indigenous groups, such as the Matses (hunter-gatherers from the Peruvian Amazon),

traditional Tunapuco (agriculturalists from the Peruvian Andean highlands), and Mazahua

(farmers from Mexico), as well as urban-industrial individuals from the United States. To fur-

ther support our analysis of dietary habits, we investigated DNA sequences from phytopatho-

genic fungi, which can be ingested along with the corresponding plant species. Overall, our

study aimed to use plant and fungal DNA extracted from coprolites to shed light on the

ancient dietary habits of pre-Columbian cultures of Puerto Rico, and to identify any differ-

ences in diet across different geocultural and historical periods.

Materials and methods

Archaeological samples and site

Coprolites from the Huecoid and Saladoid cultures from La Hueca archeological site in Sorcé,

Vieques (18º 05’ 56” Latitude North and 65º 29’ 34” Longitude West), a semi-arid island

located about 13 km southeast of the main island of Puerto Rico were used. Archaeologists

Luis Chanlatte and Yvonne Narganes conducted the excavations on private land with the own-

er’s approval and followed all relevant regulations. In total, ten coprolites from the two pre-

Columbian cultures were used: six of the coprolites corresponded to the Huecoid culture and

four of the coprolites corresponded to the Saladoid culture. Detailed information about the

samples is presented in S1 Table. The collection is deposited at the Center for Archaeological

Research at the University of Puerto Rico, San Juan, Puerto Rico. Specimen registration num-

bers have been previously described [35]. Coprolite age was estimated using radiocarbon dat-

ing from associated archeological material (charcoal and shells) [8]. All samples were carbon-

dated at Teledyne Isotopes (Westwood, NJ) and BETA Analytic, Inc. (Miami, FL) using a stan-

dard protocol. Radiocarbon dating estimates for the Huecoid coprolite samples ranged from

245 to 600 A.D., whereas the Saladoid coprolites ranged from 230 to 395 A.D. [34]. Coprolites

have yielded well-preserved gut microbiome DNA [34, 35] as well as human and plant DNA.

DNA extraction and contamination prevention

DNA was extracted from all coprolite samples as previously described [34]. Briefly, ten copro-

lites from the Huecoid (n = 6) and Saladoid (n = 4) cultures were processed in a class II biolog-

ical safety cabinet exclusively dedicated to ancient DNA following strict procedures: protective

clothes, disinfection of surfaces, sterilization of instruments, and ultraviolet radiation. The

class II biosafety cabinet was cleaned with 70% ethanol and exposed to ultraviolet radiation for

30 minutes before and after use. To avoid modern exogenous contamination, DNA extraction

was performed using only the inner core of each coprolite after the removal of the exterior por-

tion using sterile and flamed scalpels. Total DNA was extracted using the PowerSoil DNA
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extraction kit (Mo Bio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s

instructions. The inner core of the coprolites was pulverized using a sterile mortar and pestle

and hydrated overnight in sterile C1 solution at 4 ˚C. Because of low concentrations of DNA,

samples were then pooled into one composite sample per culture using standard glycogen pre-

cipitation protocols (Thermo Scientific).

Metagenomic library construction and shotgun sequencing

Whole-genome amplification from small quantities of DNA was performed using a REPLI-g

Midi kit (Qiagen). Amplified DNA was purified using the PowerClean DNAClean-Up Kit

(MO BIO Laboratories) and sample concentrations were calculated using the Qubit1 dsDNA

HS Assay Kit (Life Technologies). Library preparation was completed using the Nextera DNA

Sample Preparation kit (Illumina) according to the manufacturer’s recommendations. Librar-

ies concentrations were evaluated using the Qubit1 dsDNA HS Assay Kit (Life Technologies)

and the average library size was quantified using Experion (Bio-Rad). Libraries were then

pooled in equimolar ratios and shotgun sequenced on the Illumina Miseq sequencing platform

at MR DNA Research lab (Shallowater, TX) [34].

Comparison with other coprolite and present-day fecal sequences

Publicly available sequence data were obtained from the NCBI’s Sequence Read Archive (SRA)

using the SRA Toolkit (v2.10.4). Archaeological samples constitute sequencing data from 13

coprolites, including coprolites from the Loma San Gabriel culture in La Cueva de Los Muer-

tos Chiquitos (n = 8, Rio Zape, Mexico; under BioProject ID: PRJEB31971, PRJEB33577, and

PRJEB35362) [23, 39, 40]; from the Ancestral Puebloans from the Arid West Cave (n = 3, Ari-

zona, USA; BioProject ID: PRJNA561510) [23]; and from the Ancestral Puebloans from the

Boomerang Shelter (n = 2, Utah, USA; BioProject ID: PRJNA561510) [23] (Table 1).

Present-day samples comprised published sequence data from 86 extant stools, including

feces from the Matses hunter-gatherers (n = 24, Peru, BioProject ID: PRJNA268964) [41]; the

Tunapuco farmers (n = 12, BioProject ID: PRJNA268964); the Mazahua farmers (n = 22,

Mexico, BioProject ID: PRJNA561510) [23]; and United States individuals from the Human

Microbiome Project (n = 28, USA, BioProject ID: PRJNA48479) [42] (Table 2). All samples

were computationally analyzed along with the data from our study [43].

Bioinformatics and statistical analysis

Read processing and quality control. Raw paired-end reads were trimmed and filtered

from adapters and low-quality reads (Phred score < 20) through trim-galore using default

parameters as implemented in the metaWRAP Read_qc module (v1.2.4) [44]. Contaminating

human DNA sequences were then removed from the metagenomic datasets through align-

ment of reads to the Homo sapiens reference genome (build Hg38) using the BMTagger

approach implemented in the metaWRAP Read_qc module [44]. The human origin of the

Table 1. Description of the archaeological samples analyzed in this study.

Pre-Columbian culture Archaeological site Geographical regions Coprolite C-14 data (range) Reference

Huecoid La Hueca Sorcé Vieques, Puerto Rico 1500 BP This study, [34, 35]

Saladoid La Hueca, Sorcé Vieques, Puerto Rico 1500 BP This study, [34, 35]

Loma San Gabriel La Cueva de los Muertos Chiquitos, Rio Zape Durango, Mexico 1300 BP [39, 40]

Puebloans Arid West Cave Arizona, United States 2500–1500 BP [23]

Puebloans Boomerang Shelter Utah, United States 2000–1000 BP [23]

https://doi.org/10.1371/journal.pone.0292077.t001
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coprolites was evaluated through the detection of human-specific Bacteroides by PCR, as pre-

sented in previous studies from our laboratory [33]. Quality control improvement on sequenc-

ing reads was assessed using FastQC [45]. Pre-processed reads were considered for all

downstream analyses.

Metagenomic profiling. Taxonomic assignment of high-quality sequencing reads was

performed through Kaiju as implemented in command-line (v1.5.0) [46] using the following

parameters: −a greedy −E 0.05 for e-value filtering. Kaiju classified reads using a subset of the

NCBI BLAST non-redundant (nr) reference database (argument -nr_euk) comprising anno-

tated protein-coding genes from bacteria, archaea, viruses, and fungi (accessed on 25 May

2020). Taxon IDs from plant sequences from the NCBI nr database were also included. It has

been shown that a database comprising all domains of life is better suited for taxonomic profil-

ing of microbial eukaryotes [47].

Functional ecological guilds. Ecological functions (trophic and guilds) of fungal genera

were parsed using FUNGuild (v.1.2) (https://github.com/UMNFuN/FUNGuild) [48]. Fungal

genera that classified within the plant pathogen functional guild were considered for further

analysis.

Source tracking of microbial communities. The proportion of DNA reads from each

potential source contributing to the Huecoid and Saladoid sink coprolite samples was esti-

mated using Meta-SourceTracker (mSourceTracker) [49]. Publicly available shotgun libraries

from human feces, coprolites, and human skin were downloaded from the Sequence Read

Archive (SRA) using SRA Toolkit (v2.10.4) and the soil metagenomes were downloaded from

MG-RAST using grabseqs [50]. These reference metagenomes were selected as potential

sources and contaminants (i.e., soil and skin) for coprolite samples. The environmental source

samples included: 58 non-industrial human feces, 28 industrial feces, 13 coprolites, 16 human

skin, and 16 soil samples. All samples were processed using the metagenome classifier Kaiju

and then combined using the mSourceTracker script kaiju_table_to_OTU_table.py. The

resulting table for the Eukaryotic domain was converted to HDF5 biom format using the

biom-format python package (v.2.1.10) and then used as an input for mSourceTracker.

Plant-pathogen interaction network. We used the rglobi (global biotic interactions) R

package to extract all the interactions between the plants and phytopathogenic fungi (queried

as “Fungi”) in the dataset using the get_interactions_by_taxa function. In addition, we

retrieved plant disease data from the American Phytopathological Society website (https://

www.apsnet.org/edcenter/resources/commonnames/Pages/default.aspx). We only retained

potential phytopathogenic fungi that were identified through Kaiju in our dataset. Pathogen-

host interaction network was constructed from a taxonomic table by generating a directional

data frame of pathogen-host interactions as identified using rglobi and plant disease data. We

then imported the dataset table into Cytoscape to build a directed network. For the resulting

network, we calculated the degree of connectivity, and the eigenvector centrality using

CytoNCA, to assess the importance of each node.

Statistical analysis and visualization. Sequencing data were primarily analyzed and visu-

alized using the R statistical environment, version v4.1.3 (R Foundation for Statistical

Table 2. Description of the published present-day samples analyzed in this study.

Present-day culture N Subsistence strategy Geographical region Reference

Matses 24 Hunter-gatherers Peru [41]

Tunapuco 12 Agriculturalists Peru [41]

Mazahua 22 Agriculturalists Mexico [23]

United States 28 Urban-industrial United States [42]

https://doi.org/10.1371/journal.pone.0292077.t002
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Computing). For beta diversity, dimensional reduction of Aitchison distances was visualized

in a principal coordinates analysis (PCoA) using the phyloseq R package (v.1.38.0) [51]. Statis-

tical differences in beta diversity were tested through Permutational Multivariate Analysis of

Variance (PERMANOVA) using the adonis function in the phyloseq R package. A hierarchical

clustering dendrogram based on Bray-Curtis dissimilarity distances was constructed on plant

abundance per sample using the Ward’s clustering algorithm in the vegan R package (v. 2.5.7)

[52]. Maps and piedonut plots were generated using the R packages sf (v.1.0.7), webr (v.0.1.6),

and ggplot2 (v. 3.3.5).

Results

General patterns of plant DNA in coprolites from the Huecoid and

Saladoid

We studied ten coprolites recovered from an archaeological site in Vieques, Puerto Rico in an

attempt to reconstruct dietary habits of the pre-Columbian Huecoid and Saladoid cultures.

We analyzed DNA sequences from plants and their potential phytopathogenic fungi using

shotgun metagenomic sequencing, which may contain fewer biases in ancient microbiome

reconstruction compared to amplicon-based sequencing [53]. Following bioinformatic pro-

cessing, plant sequence reads were classified into one phylum, one class, five orders, five fami-

lies, eight genera, and nine species (Table 3). Six of the taxa have not been previously detected

in paleoethnobotanical studies and thus are putative taxonomic assignments. In addition, the

putative plant sequences identified could be a closely related plant taxon.

Starchy tubers, legumes, pseudograins, fruits, and a hallucinogenic plant

were likely part of the Huecoid and Saladoid vegetal diet and culture

Plant sequencing reads in this study revealed a variety of food plants in the Huecoid and Sala-

doid coprolites. We found a high abundance of maize (Zea mays; relative abundance = 48.4%)

followed by chili pepper (Capsicum annuum; 29.0%), sweet potato (Ipomoea batatas; 6.5%),

wild peanut (Arachis duranensis; 6.5%), domesticated peanut (Arachis hypogaea; 3.2%), cotton

(Gossypium barbadense; 3.2%) and tomato (Solanum lycopersicum; 3.2%) in the Huecoid

Table 3. Description of the identified taxa from DNA sequencing of the Huecoid and Saladoid coprolites.

Order Family Genus Species Common name Possible Origina Uses

Poales Poaceae Zea Zea mays Maize Mesoamerica Foodstuff

Brassicales Caricaceae Carica* Carica papaya Papaya Tropical America Foodstuff

Fabales Fabaceae Arachis* Arachis hypogaea Domesticated

peanut

Brazilian–Paraguayan Center Foodstuff

Fabales Fabaceae Arachis* Arachis duranensis Wild peanut Brazilian–Paraguayan Center Foodstuff

Solanales Solanaceae Ipomoea Ipomoea batatas Sweet potato Central America Foodstuff

Solanales Solanaceae Capsicum Capsicum annuum Chili pepper South America, northern Peru Condiment and medicinal

Solanales Solanaceae Nicotiana* Nicotiana sylvestris Tobacco Probably Mexico, Central America Narcotic and

hallucinogenic

Solanales Solanaceae Solanum* Solanum lycopersicum Tomato Western South America Foodstuff

Malvales Malvaceae Gossypium* Gossypium
barbadense

Cotton Northwestern Peru and southwestern Ecuador

[54]

Fiber and oil

*Putative taxonomic assignment of plant sequences in the present dataset.
a Data obtained from [55].

https://doi.org/10.1371/journal.pone.0292077.t003
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coprolite sample. Notably, we observed less plant DNA sequences Saladoid coprolite sample

compared to the Huecoid coprolite sample. Specifically, plant sequence reads identified in the

Saladoid coprolite sample included chili pepper (Capsicum annuum; 63.2%), tobacco (Nicoti-
ana sylvestris; 21.1%), papaya (Carica papaya; 15.8%), and tomato (Solanum lycopersicum,

5.0%). Sequencing reads of chili peppers and tomato were shared between the Huecoid and

Saladoid coprolite samples, while seven plant taxa were only identified in one sample (Fig 1A).

Using network analysis, we examined the relationship between fungal pathogens and plant

hosts in the coprolites of the Huecoid and Saladoid cultures, considering previous archaeolog-

ical findings. Due to the limited taxa in the Saladoid coprolite sample, we merged the two ethnic

groups and created clusters in the network model. The maize node had the highest degree of

connectivity (degree = 16) and eigenvector centrality (eigenvalue = 0.39), indicating that maize

could potentially host many fungi and plays a critical role in connecting other nodes. The

tobacco node had the second highest degree of connectivity (degree = 13), followed by sweet

potato (degree = 9), and peanuts (degree = 7). However, sweet potato had a higher eigenvector

centrality (eigenvalue = 0.35) than tobacco (eigenvalue = 0.34), suggesting that sweet potato is

more influential in the network. Plants with the lowest degree of connectivity and eigenvector

centrality were Papaya (degree = 3, eigenvalue = 0.12), tomato (degree = 4, eigenvalue = 0.08),

chili pepper (degree = 2, eigenvalue = 0.08), and cotton (degree = 1, eigenvalue = 0) (Fig 1B).

Phytocultural practices of ancient cultures may be different from those of

present-day cultures

For comparative purposes, we analyzed publicly available coprolite sequence data from Rio

Zape Cave (Mexico), Boomerang Shelter (United States), and Arid West Cave (United States)

as well as present-day feces from the Matses hunter-gatherers (Peru), Tunapuco (Peru) and

Mazahuas (Mexico) agricultural communities, and industrial populations (from the United

States). We quantified Bray-Curtis dissimilarity and Aitchison distances to investigate differ-

ences in the plant beta diversity across the samples. Hierarchical cluster analysis based on

Bray-Curtis dissimilarity, and the plant relative abundance of each sample reflected two main

clusters; combining present-day feces from Mazahua and United States (Cluster 1); and copro-

lites from Ancestral Puebloans, Loma San Gabriel, Huecoid and Saladoid as well as present-

day feces from Matses and Tunapuco (Cluster 2) (Fig 2A). PCoA based on Aitchison distances

and relative abundance of plant families showed significant segregation (PERMANOVA,

R2 = 0.27 and p-value = 0.001) in the plants across samples from the Amerindian groups (Fig

2B), suggesting differences in community structure. The PCoA axis 1 (PC1) explained 22.2%

of the variance, which correlated with a gradient in human lifestyles. For instance, the pre-

Columbian cultures and present-day hunter-gatherers were located on the left, the Tunapuco

agriculturalists in the middle and the Mazahua farmers and United States individuals on the

right (Fig 2B). Thus, despite differences in geography, coprolites from Arid West, Boomerang

Shelter, Loma San Gabriel, Huecoid, and Saladoid were more similar to each other, and to

present-day feces from Matses hunter-gatherers than to present-day feces from Mazahua and

the United States (Fig 2B). However, the Tunapuco feces showed a transitional state between

the coprolites and present-day feces from hunter-gatherers, and the present-day feces from the

Mazahua farmers and individuals from the United States. The findings indicate a shift in

behaviors leading to modifications in dietary patterns (Fig 2B).

Discussion

Through the integration of molecular data, pathogen-host interaction modeling, and pub-

lished literature, we present the first attempt to reconstruct the plant-based diets of pre-
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Fig 1. Piedonut diagram for plant distribution and directed network analysis of pathogen-host interactions of the pre-Columbian

Huecoid and Saladoid cultures. Panel (A) Inner pie chart represents the percentage of plants identified by culture, whereas the outer

donut shows the distribution of the plants. Panel (B) Pathogen-host interaction network constructed using the rglobi (global biotic

interactions) database. Relationships between fungal pathogens and plant hosts are represented as directed edges from source (fungi) to

target (plants). Each node represents either plant (green) or fungal (blue) taxa. Plant node size represents indegree and plant node

transparency depicts the Eigenvector centrality.

https://doi.org/10.1371/journal.pone.0292077.g001
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Fig 2. Composition and structure of plants differentiate the ethnic groups according to dietary lifestyles. Panel (A) Bray-Curtis distance dendrogram

constructed on plant family abundance showing hierarchical clustering/relationships between similar samples. Panel (B) Principal component analysis of

Aitchison distances showing that plant families-diversity segregated pre-Columbian ethnic groups and hunter-gatherers from present-day large-scale farmers

and industrialized individuals, whereas the agriculturalists showed a transitional state. Each color code represents the ethnicity of each group, whereas the

circle and triangles symbols represent plant communities of each sample in ancient and present-day ethnic groups, respectively. Adonis test was performed

on Aitchison distances.

https://doi.org/10.1371/journal.pone.0292077.g002

PLOS ONE The edible flora and associated phythopathogens in pre-Columbian coprolites

PLOS ONE | https://doi.org/10.1371/journal.pone.0292077 October 11, 2023 9 / 21

https://doi.org/10.1371/journal.pone.0292077.g002
https://doi.org/10.1371/journal.pone.0292077


Columbian cultures in Puerto Rico using preserved ancient plant and phytopathogen DNA

sequences. We analyzed plant sequence reads obtained from coprolites of the Huecoid and Sal-

adoid cultures and confirmed the identity of plant DNA using phytopathogenic fungi DNA

that may have impacted their horticultural ecosystem. We also compared our results with pre-

viously published coprolite sequence data from Mexico and the United States, as well as pres-

ent-day fecal samples from Mexico, Peru, and the United States, to investigate the phyto-

cultural diversity between ancient and present-day populations in various social environments.

Our study provides insights into the lifestyle and dietary habits of the Huecoid and Saladoid

cultures, which have contributed to the cultural identity of present-day Caribbeans, by identi-

fying the plants used for consumption by these pre-Columbian groups. Furthermore, our find-

ings suggest that the incorporation of native plant sequences into DNA databases is crucial to

use DNA-based approaches for reconstructing dietary habits. Although historical records of

the plants used in the Huecoid and Saladoid cultures are scarce, it is possible that closely

related plant phyla and families served as food for these ethnic groups and could be extinct,

replaced, and forgotten due to the introduction of other crops resulting from the colonization

of the Americas.

Overcoming challenges with contamination

Sample contamination with modern exogenous DNA is a major challenge in the analysis of

ancient DNA from coprolites [56, 57]. We used SourceTracker to test for contamination and

verify the authenticity of coprolite DNA, and found that unknown sources contributed the

highest number of eukaryotic sequences (S1 Fig). This may suggest either that no soil contami-

nation affected the results, or that other sources not included in the mSourceTracker analysis

may have contributed to the results in the present study. Moreover, the high proportion of

unknown sources contributing taxa is consistent with previous studies on coprolites and mum-

mies [30, 38]. Interestingly, we also found that published metagenomes of coprolites were the

main known sources contributing to the Huecoid coprolite samples, suggesting that the Hue-

coid eukaryote sequences are endogenous to the coprolite sample. In contrast, soil was the pri-

marily source contributing to the Saladoid coprolite, followed by coprolite samples. This may

suggest that the coprolite samples were possibly contaminated with soil as a result of being

exposed to the environment, or vigorously washing edible plants was potentially not practiced

by pre-Columbian cultures. Another plausible explanation may rely on soil as an important

microbial seeding source (possible geophagy) [58]. Geophagy (ingestion of soil intentionally or

unintentionally), has been used by humans to protect them from dietary chemicals and patho-

gens [59]. It has been observed in many different cultures around the world [59], and archaeo-

logical evidence suggests that geophagy dates back to Homo habilis [60, 61].

Evidence of various food items

Earlier research has revealed a wide range of plants that were processed using lithic artifacts

such as burén, stones, and shells, as evidenced by the presence of preserved starch grains [19].

This suggests a sophisticated food system, which is in contrast to historical accounts that

emphasize the indigenous cultures’ dependance on manioc [62–65]. Consistent with this early

archaeobotanical study, we identified DNA sequences from a diversity of plants, including a

starchy tuber (sweet potato), legume (peanut), solanaceous fruit (chili peppers and tomato),

caricaceous fruit (papaya), pseudograin (maize), and other crops (tobacco and cotton). Such

plants identified in the Huecoid and Saladoid coprolites analyzed suggest a variety of dietary,

medicinal, and hallucinogenic plants as part of these pre-Columbian cultures diet and culture.

Although very useful and insightful, the results and conclusions in the present study are
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limited by the fact that there are relatively few available plant genomes sequenced and available

in the current databases. As the number of genome sequences increases, sequences obtained

from coprolites will probably be more defined.

Tobacco

Tobacco originates in the New World, particularly in Central and South America [66]. It has

been reported that indigenous cultures from the 16th century would consume tobacco for hal-

lucinogenic, as well as medicinal purposes as it would alleviate pain and induce sleep [66]. It

has also been hypothesized that tobacco was consumed in social activities [66]. Consumption

of tobacco comes from chroniclers dealing with pre-Columbian cultures, such as the Aztecs

[66], the Maya [67] and indigenous people from La Hispaniola [13, 14]. Traces of nicotine

were detected in a Late Mayan period flask (Campeche, Mexico) dating around 700 AD by

using chromatography and mass spectrometry, indicating the ancient use of tobacco in the

Mayan culture [67]. The Mayan flask may have been used for tobacco enema preparations,

likely for rituals and medicinal purposes [68]. However, limited records exist on tobacco con-

sumption by other pre-Columbian cultures. Nevertheless, information from specific pre-

Columbian cultures may provide insights into tobacco consumption in the Huecoid and Sala-

doid cultures. As such, there are several plausible practices that may explain the presence of

tobacco sequences in the Huecoid and Saladoid coprolite samples. First, tobacco may be

chewed, and although we could not find any references of this practice in pre-Columbian rec-

ords, there is a likelihood that tobacco could have been consumed in this manner. An alterna-

tive explanation for the presence of tobacco sequences in the coprolite samples include the use

of wood or ceramic inhalers, where pulverized tobacco (and other herbs, or mixtures) can be

placed. The inhaler is then inserted in the nostrils of the recipient and a second person would

blow into the inhaler to force the powder deep into the nostrils. Tobacco could also have been

used as an additive for food and drink [67].

Sweet potato and legumes

Sweet potato and legumes (including common beans) played an important function in the

agricultural economies of ancient Puerto Rico [18]. We identified DNA sequences likely corre-

sponding to sweet potato and legumes in the Huecoid coprolite sample. Pre-Columbian cul-

tures relied on specific food items such as sweet potato, which would be consumed with fruits,

vegetables, meat, fish [5, 17], mollusks, and crustaceans. In addition to sweet potato sequences,

we observed Fabaceae sequences (putatively assigned as peanut), suggesting that it may have

been a component of the Huecoid diet. Indeed, peanuts are native to the New World, originat-

ing in South America, and new species continue to be discovered [69]. Sweet potato and

legumes have also been found on lithic and shell artifacts, and dental calculus from Puerto

Rico and other regions of the Caribbean [18, 19, 70, 71], suggesting the consumption of these

plant items by pre-Columbian cultures. Legumes persisted in the ancient Caribbean diet of

pre-Columbian cultures from the early ceramic age to the early colonial period, whereas the

sweet potato was a key starchy crop during the pre- and post-Columbian eras [18]. The low

abundance of sweet potato sequences in the Huecoid coprolite sample may be a result of food

traces from a previous meal that were obscured by the abundant foods of the latest meal [21],

or the sporadic consumption of this item.

Maize

Maize (Zea Mays), a plant domesticated in Mesoamerica [72, 73], was introduced from the cir-

cum-Caribbean region (Central America and the northern countries of South America) to
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Puerto Rico probably during the archaic age approximately 5,000 B.P [74]. Early European

chroniclers indicate that indigenous cultures cultivated maize twice a year and consumed it

tender, as well as raw, and roasted. They also included maize in certain stews, and would also

consume it ground and with water [13]. Maize could be ground or pounded and further

baked, grilled, or toasted by these pre-Columbian cultures to possibly prepare bread [15, 75].

While maize has been previously considered a restricted crop [17, 76], evidence of human iso-

tope and pre-Columbian dental calculus from Puerto Rico and the Caribbean suggest that

maize was frequently consumed [15, 77]. Such findings were further extended by Pagan and

Mickleburgh, who suggested that maize was the most ubiquitous edible crop of the insular

Caribbean [18]. Overall, these results suggest that maize had an important role in pre-Colum-

bian dietary habits. We detected a high abundance of maize in the Huecoid coprolite sample,

suggesting that maize was an important crop in this culture, likely consumed daily, which is

consistent with previous paleomicrobiological findings [32]. In addition, the analysis of starch

residues in lithic tools from two Huecoid settlements in Puerto Rico demonstrated that the

Huecoid culture maintained and used this plant [19]. The detection of certain plants, like

maize, exclusively in the Huecoid culture may further support differences in cultural back-

grounds observed in archeological records, as well as microbiome, virome and mycobiome

analyses. However, perhaps the Saladoid culture consumed maize sporadically and thus,

sequences were not detected in these particular coprolite samples. Moreover, the presence of

Ustilago spp. sequence reads, a fungal genus known to infect maize, in the coprolites not only

provided further evidence of maize consumption, but possibly point to the consumption of

huitlacoche (musuro or sara musuru in quechua) [78], a common fungal phytopathogen that

is prized as a delicacy, even by today’s cultures.

Chili peppers

Chili peppers have been used for food, medicinal and religious purposes throughout the Amer-

icas [55]. Paleo-biolinguistics along with genetic and archaeobotanical evidence have shown

that domesticated chili pepper originated in central-east Mexico approximately 6,500 years

ago [79]. Chili peppers are not frequently found in the archaeological record likely due to poor

starch or capsain resiliency over time [80]. However, starches of chili pepper have been

detected in food-processing tools of the early southern Caribbean and the late pre-Columbian

period of the northern Caribbean [18, 70], and were likely consumed as a condiment, stimu-

lant and medicine in the pre-Columbian era [13, 14]. We identified sequencing reads match-

ing chili peppers in both the Huecoid and Saladoid coprolites. Notably, it has been shown that

chili peppers and maize occurred together in food-processing tools, suggesting a preferred

food-complex [80]. Consistent with these observations, we found a high abundance of maize

and chili pepper DNA sequences in the Huecoid coprolite sample.

Unexpected findings and absence of expected sequences

Tomato. Tomato is currently divided into S. lycopersicum var. lycopersicum and S. lycoper-
sicum var. cerasiforme, and S. pimpinellifolium is considered the most closely related wild spe-

cies of tomato [81]. The roles of some of these species in the domestication of tomato remain

unclear and a matter of further investigation as some consider that S. l. cerasiforme is an ances-

tor of tomato, while others consider that S. l. cerasiforme is a combination of S. pimpinellifo-
lium and S. l. lycopersicum [81]. While it remains unclear if the domestication of tomato

occurred in the Andean region or Mesoamerica, one study suggested that pre-domestication

occurred in the Andean region, and domestication occurred in Mesoamerica [81]. The

PLOS ONE The edible flora and associated phythopathogens in pre-Columbian coprolites

PLOS ONE | https://doi.org/10.1371/journal.pone.0292077 October 11, 2023 12 / 21

https://doi.org/10.1371/journal.pone.0292077


presence of Solanum spp. (tomato) DNA sequences was somehow unexpected; however, this

food item may have been brought along with other food crops from South America.

Cotton. The presence of Gossypium spp. (cotton) sequences was unexpected since it is a

non-edible crop used for textile throughout the ages. However, a possible explanation might

be the use of the seeds as either additives or as source of oils to be used in some manner;

although cotton oils are known for their bitter flavors. Nonetheless, this finding opens up

more questions than it answers. Current cotton oils are not likely to have DNA present, but

that is because of the highly processed nature of these oils. These ethnic groups may have

found the ground seeds were a food additive to their diet in some manner. Other possible

explanation is that indigenous women ingested cotton fibers during the weaving process by

using the saliva to prepare the raw yarn. In fact, cellulose fibers of cotton have been found in

dental calculus from the Late Woodland period (900–1100 AD) of the Danbury site (Ohio),

suggesting the processing of cotton fibers for textiles and likely fishing nets using the mouth

[82]. Cotton fibers have been found to contain ample concentrations of DNA [83]. Addition-

ally, cotton processing and textile crafting was (and still is in many cultures) a female-only

activity; thus, a likely scenario is that these coprolites were deposited by female members of the

ethnic groups.

Cassava. Many archaeological narratives of the Caribbean suggest that the subsistence

strategies of the Huecoid and Saladoid cultures were primarily based on cassava/yucca/manioc

(Manihot esculenta) [62–64]. Cassava can be “sweet” or “bitter”, with the later retaining its

toxic liquid if not extracted [84, 85]. While “sweet” cassava has been selected to be non-toxic

and can be consumed either boiled or roasted, most cultivated types are “bitter” and retain the

toxicity and as such require processing to extract the toxic liquid [84, 85]. The chroniclers

widely described the “bitter” cassava in the Antilles and reported it consumption by indige-

nous people after a long preparation process that includes grating and squeezing the cassava

pulp with a sebucán to extract the toxic liquid, followed by a drying stage to produce flat tortas

[14]. The chroniclers also reported that “sweet” cassava was not observed in the Antilles but on

the mainland. The absence of cassava DNA sequences in the coprolite samples may suggest the

extensive pretreatment of Manihot spp. to remove toxins contained in the liquid. Indeed, cer-

tain methods of food preparation, are known to degrade dietary DNA [34, 86], which could

then be further degraded by enzymes and microbes during digestion [87], as well as by tapho-

nomic processes. Alternatively, the absence of some plants DNA could also explain seasonal

variation [26], or sporadic consumption of certain food items, such as cassava.

The importance of cassava has been debated over the years. One study including the analy-

sis of Huecoid lithic tools from La Hueca, Vieques, showed the recovery of ancient cassava

starches from a single tool [19]. In contrast, sweet potato, and other plants (including maize),

were identified in several lithic tools, suggesting that cassava was only part of a diverse spec-

trum of plants contributing to the diet [19]. Although archaeological narratives suggest that

cassava was introduced to Puerto Rico by the Saladoid, cassava starch grains were undetected

in twenty-four tools corresponding to this culture [88, 89]. Similarly, cassava starches were

unidentified in “burenes” (tools often associated with the cooking of cassava) from the Sala-

doid culture, where sweet potato and other plant remains (maize and beans and others) have

been frequently found.

Spatiotemporal dietary variations

Pre-Columbian cultures and present-day hunter-gatherers showed contrasting diets compared

to present-day agriculturalists and urban-industrial individuals. Plant communities among the

ethnic groups were significantly segregated based on ethnicity and lifestyles, as shown by
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hierarchical clustering and PCoA. Since the pre-Columbian cultures inhabited regions similar

to those of their present-day counterparts, it is unlikely that changes in dietary habits are due

to geography. Clustering of plant communities based on lifestyles (i.e., hunter-gatherer, agri-

culturalist and urban-industrial) suggested changes in dietary habits in response to transitions

in human lifestyles. In fact, the diet of past populations is known to differ greatly from that of

modern populations depending on the environment, socioeconomic status, and available

resources [90]. During the Neolithic Era, human dietary lifestyles transitioned from game

meat and gathering of unprocessed fruits from the environment (i.e., hunter-gatherers) [91],

into one based on agriculture and animal domestication (farming). However, a westernized

diet was adopted with the industrial revolution, characterized by being high in fats and includ-

ing simple carbohydrates [92, 93].

Ancestral Puebloans (the Anasazi) were a prehistoric culture from the Colorado Plateau,

which include the States of Colorado, New Mexico, Arizona, and Utah. Macro-remains analy-

sis of coprolites from the Arid West (Arizona) and the Boomerang Shelter (Utah) have shown

that maize-derived foods (including huitlacoche) [23, 94], and prickly pear fruit (Opuntia) are

abundant components of the Ancestral Pueblo diet [23]. In contrast, coprolites from the Loma

San Gabriel culture, a prehistoric population from Rio Zape Valley in Durango, Mexico,

showed that they subsisted mainly on Agave and maize [21, 95]. Other plants that supple-

mented their diet included squash (Cucurbita spp.) and beans (Phaseolus spp.). In agreement

with previous studies, our study showed that the Huecoid and Saladoid plant diet consisted of

starchy tubers, maize, and legumes, supplemented with fruits. It is well known that food

sources can vary due to differing geographical and cultural characteristics. However, the Hue-

coid and Saladoid shared food sources with the Ancestral Pueblo culture and the Loma San

Gabriel culture, which may explain the clustering patterns. Nonetheless, this study is biased

towards domesticated taxa, whose sequences are available in databases. Thus, food sources

identified in geographically disparate pre-Columbian cultures could be showing the impor-

tance of domesticated crops in human diets after being adopted by these cultures. Notably, the

presence of certain plant sequences may also correspond to what was consumed a short period

prior to fecal deposition. Despite the fact that coprolites provide relevant information about

diet, food plant DNA in each coprolite likely reflects a few previous meals prior to defecation.

Interestingly, the present-day Matses also seems to be more similar to the Ancestral Pueblo-

ans, Loma San Gabriel, Huecoid and Saladoid pre-Columbian cultures, despite differences in

culture and temporal scales. The Matses hunter-gatherers have a diet mainly composed of

gathered tubers (Manihot spp.) and plantains (Musa spp.) [41]. On the other hand, the Tuna-

puco dietary lifestyle suggests a state of transition from hunter-gathering to agriculture. Pota-

toes (Solanum tuberosum spp.), oca (Oxalis tuberosa), and mashua (Tropaeolum tuberosum)

are part of every meal of these extant agriculturalists from the Peruvian highlands [41]. In con-

trast, the Mazahua farmers from Mexico had a greater resemblance to the United States indi-

viduals, likely due to a higher agricultural production in the Mazahua community compared

to the Tunapuco agriculturalists. The present-day Mazahua farmers base their diet on maize,

secondarily on wheat and edible mushrooms [23, 96]. Individuals from the United States

exhibit the typical western diet composed of processed foods and dairy products [42].

Although rare or limited, the Tunapuco consume dairy and processed foods [41]. In addition,

rice and bread are the main food supplementing the Tunapuco diet, while wheat contributes

the majority of the Mazahua calories after maize. Similar dietary components among the

Mazahua and United States feces, and to a lesser extent the Tunapuco, may have resulted in

the clustering patterns observed for the Mazahua and United States and the transitional state

of the Tunapuco. These results are partially supported by a recent study showing the segrega-

tion of pre-Columbian and present-day populations based on their gut mycobiome [36].
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Studies have shown that dietary lifestyles strongly shape the composition of the gut micro-

biome of traditional populations, which differs from that of industrialized populations [41,

97–104].

The detection of plant DNA in coprolites may be biased towards foods that are consumed

raw or lightly cooked, as cooking and food preparation can result in the liberation of DNA

form cells. Additionally, plant materials that have been metabolized during digestion may be

difficult to identify [105, 106]. Furthermore, the degradation of DNA by nucleases during

digestion can also affect the results. Maize was commonly identified in the Huecoid coprolites

likely due to non-digestible fibers that are resistant to digestion [107]. Identifying certain plant

sequences can be challenging due to limitations in current DNA databases that primarily

include plants of commercial and economic importance. Taphonomic processes that damage

ancient DNA can also aggravate and restrict the matching of ancient DNA sequences to those

available in existing databases. It is important to note that a match or close hit between

sequences does not necessarily imply similarities across the species being compared, but rather

that the ancient DNA sequence could represent a taxon that is not represented in the database

[26].

Conclusions

We conducted DNA sequence analyses of plant sequencing reads from coprolites, which

revealed the presence of a variety of plants in the Huecoid and Saladoid cultures of the Carib-

bean, as well as in ancient and present-day America. Our study supports archaeological rec-

ords that suggest that these cultures consumed maize (Zea mays), sweet potato (Ipomoea
batatas), chili pepper (Capsicum annuum), papaya (Carica papaya), peanut (Arachis spp.),

tobacco (Nicotiana sylvestris), tomato (Solanum lycopersicum), and surprisingly, cotton (Gossy-
pium barbadense). However, it is important to note that coprolites reflect a limited range of

potential plants ingested, and the detection of plant sequences in a single culture may suggest

preferences for certain plants, occasional consumption, degradation due to specific food prep-

aration practices, or taphonomic processes.

Our analyses are limited by the current DNA sequence databases, which are focused mostly

on commercially important crops. Expansion of these databases to include plants that are not

necessarily of economic importance might allow us to better understand ancient dietary habits,

as well as those of extant remote populations. By examining plant and fungi sequences, our

data aids in the reconstruction of the dietary habits and lifestyles of the Huecoid and Saladoid

cultures, and opens the opportunity to further understand the diets and lifestyles of other pre-

Columbian groups in America.
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S1 Fig. Source proportion estimates for the Huecoid and Saladoid coprolite samples (sink)

using reference datasets of environmental samples (source). Meta-SourceTracker showed

the proportion of Eukaryote domain sequencing data that each environmental source sample

contributed to the Huecoid and Saladoid coprolite sink samples. Overall, mSourceTracker

showed that unknown sources contributed the highest proportions of Eukaryote reads in the

Huecoid (0.41%) and Saladoid (0.68%) coprolites. Besides unknown sources, mSourceTracker

estimated that a high proportion of the eukaryote reads of the Huecoid coprolite sink sample

came from well-preserved coprolite source samples (0.33%). Conversely, a high proportion of
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eukaryotes exhibited soil (0.24%) and coprolite (0.07%) origin in the Saladoid coprolite sink

sample.
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de las Antillas Menores. Montréal; 1983. pp. 73–95. https://www.academia.edu/38449483/Sorc%C3%

A9_Vieques_cl%C3%ADmax_cultural_del_igneri_y_su_participaci%C3%B3n_en_los_procesos_

socioculturales_antillanos

11. Narganes-Storde YM. La lapidaria de la Hueca, Vieques, Puerto Rico,. Proceedings of the 15th Congress

of the International Association for Caribbean Archaeology. San Juan, Puerto Rico; 1995. pp. 141–151.
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13. Las Casas FB de. Apologética historia de las Indias. Nueva Bibl Autores Esp Ribadeneira Madr. 1909

[cited 14 Apr 2023]. https://www.cervantesvirtual.com/obra-visor/historia-de-las-indias-tomo-1—0/html/

14. Fernández de Oviedo y Valdés G. Historia general y natural de las Indias, islas y tierra-firme del mar
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