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Abstract

The liver is the primary site for the metabolism and detoxification of many compounds,

including pharmaceuticals. Consequently, it is also the primary location for many adverse

reactions. As the liver is not readily accessible for sampling in humans; rodent or cell line

models are often used to evaluate potential toxic effects of a novel compound or candidate

drug. However, relating the results of animal and in vitro studies to relevant clinical out-

comes for the human in vivo situation still proves challenging. In this study, we incorporate

principles of transfer learning within a deep artificial neural network allowing us to leverage

the relative abundance of rat in vitro and in vivo exposure data from the Open TG-GATEs

data set to train a model to predict the expected pattern of human in vivo gene expression

following an exposure given measured human in vitro gene expression. We show that

domain adaptation has been successfully achieved, with the rat and human in vitro data no

longer being separable in the common latent space generated by the network. The network

produces physiologically plausible predictions of human in vivo gene expression pattern fol-

lowing an exposure to a previously unseen compound. Moreover, we show the integration

of the human in vitro data in the training of the domain adaptation network significantly

improves the temporal accuracy of the predicted rat in vivo gene expression pattern follow-

ing an exposure to a previously unseen compound. In this way, we demonstrate the

improvements in prediction accuracy that can be achieved by combining data from distinct

domains.
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Introduction

Drug-induced liver injury is a leading cause of the failure of novel candidate drugs during

end-stage clinical trials [1]. This drug-induced liver injury occurs despite the compound hav-

ing already successfully undergone a battery of costly and time-consuming tests prior to

human testing. The current gold standard for evaluating a compound for potential adverse

outcomes is the two-year rodent in vivo bioassay. However, a survey published in 2000

reported that just 43% of the toxic effects of pharmaceutical compounds in humans were cor-

rectly predicted by tests in rodents [2]. Moreover, the two-year rodent in vivo bioassay is

expensive, time-consuming, and necessitates the sacrifice of large numbers of animals to

screen a single compound. The apparent lack of sensitivity and specificity in predicting poten-

tial adverse outcomes in humans, coupled with growing ethical concerns surrounding animal

testing, has motivated the development of alternatives to the traditional rodent in vivo bioas-

says, most notably in vitro cellular models [3]. These in vitro toxicogenomics approaches often

use human cell lines, eliminating the need for animal testing while aiming to provide a more

relevant prediction of adverse effects for the human system.

Multiple studies have reported promising results in differentiating between subclasses of

carcinogenicity [4, 5] and predicting hepatotoxicity of a novel compound using genomic sig-

natures of human in vivo disease states [6–13]. Nevertheless, in vitro assays are not without

their limitations. These cell-line models lack the systemic interplay with other tissues that exist

in vivo. Consequently, the in vitro models may differ in functionality and metabolism from the

tissues they represent. Moreover, immortalised human cell lines, such as hepatic HepaRG and

HepG2 cells, are frequently used in toxicity testing as they continue to grow and divide indefi-

nitely in vitro [14]. However, these cell lines are often tumour-derived, and liver-specific meta-

bolic functions tend to vanish as culture time increases [15, 16]. Therefore, genomic signatures

obtained from these cell lines following exposure to a compound may not necessarily reflect

human in vivo disease states, particularly if we are trying to go beyond the simple classification

of potential toxicants and derive mechanistic insight into modes of action of toxicity. Conse-

quently, there is a need for new methods that can better relate the output from these in vitro
exposure assays to potentially relevant human in vivo disease states.

A recent study has reported notable success in applying deep learning architectures to

translate time series of hepatic gene expression following an exposure from one domain to

another, predicting both human in vitro and rat in vivo gene expression patterns in response

to a previously unseen compound given a measured time series of rat in vitro gene expression

[17]. However, training deep learning models require large volumes of data. While large data-

bases containing both rat in vitro and rat in vivo hepatic gene expression following exposures

to a vast array of compounds are available [18, 19], human in vivo data is comparatively sparse

as the liver is not readily accessible for sampling. Consequentially, insufficient human in vivo
data is available to effectively train a deep learning model such as those used by O’Donovan

et al. [17] for human in vivo gene expression predictions.

In many situations, it may be too laborious, costly, or even infeasible to obtain sufficient

data to train a reliable predictor. Transfer learning is a branch of machine learning in which

knowledge gained from solving one problem is re-used while solving another similar problem

[20]. Multiple studies have applied a range of transfer learning or domain adaptation algo-

rithms to the cross-species prediction task [21–24] with mixed success. Transfer learning

approaches have been applied to translate gene expression measured at a single time point

from clinical in vitro models to primary human tumour profiles to better predict the mutation

status of the tumour [25] or predict a patient’s response to a particular treatment [26]. Ganin

et al. proposed a method to integrate domain adaptation and deep feature prediction in the
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context of a generalisable neural network architecture [27]. This method allows a predictor

model to be trained for an unlabelled target data set using a large, similarly distributed, labelled

data set. Ganin et al. showed their unsupervised domain adaptation method outperformed the

state-of-the-art in image processing and sentiment analysis of natural language [27].

In this study, we integrate domain adaptation within previously validated deep learning

architectures [17] using the method proposed by Ganin et al. We then apply the resulting

domain adaptation network to leverage a large publicly available data set of measured rat in
vitro and in vivo gene expression following an exposure to a range of compounds from Open

TG-GATEs to facilitate the training of a predictor model of human in vivo gene expression.

We also evaluate the impact of incorporating the human in vitro data in the rat in vitro to rat

in vivo prediction. Finally, we explore the potential of the reduced dimensional representation

of the data generated by the bottleneck architecture of our deep neural network to classify

compounds based on toxicity.

Materials and methods

Open TG-GATEs

Open TG-GATEs is a large publicly available toxicogenomics database containing gene expres-

sion profiles from in vitro assays in both primary rat and primary human hepatocytes and in
vivo rats following exposure to 170 compounds [18]. For the in vitro exposures, gene expres-

sion profiles were measured at three time points (2, 8, and 24 hours) following a single expo-

sure to a given compound at three dosages (low, medium, and high) plus control, with two

biological replicates for each compound-dose combination. For the rat in vivo experiments,

gene expression profiles were measured at four time points (3, 6, 9, and 24 hours) following a

single exposure to a compound at a low, medium, and high dosage plus a control (Fig 1). Gene

expression profiles for the rat in vitro and in vivo samples were generated using the Affymetrix

Rat Genome 230 2.0 Array, and human in vitro gene expression profiles were measured using

the Affymetrix Genome U133 Plus 2.0. Array data for rat and human in vitro and rat in vivo
exposures for all compounds were downloaded in the form of CEL files from the Open

TG-GATEs database (https://toxico.nibiohn.go.jp) and pre-processed using Affymetrix Power

Tools using the robust multi-array average normalisation method. Following normalisation,

compounds missing either time points or dosages were removed, leaving a data set of 45 com-

pounds with a complete set of measurements for use in this study (S1 Table in S2 File).

Learning examples

The rat in vitro and in vivo data form the source domain and will be used to train a predictor

model for the unlabelled human in vitro target domain (Fig 1). Learning examples for the

source domain are generated by pairing the time series of gene expression values for a specific

compound-dose combination for the rat in vitro data with a time series of gene expression val-

ues for the same compound-dose combination in the rat in vivo data, as described previously

[17]. To maintain the structure of the data in each domain (human and rat in vitro and rat in
vivo) one of the three rat in vivo replicates is discarded as described in [17]. As each rat in vitro
biological replicate for a given compound-dose combination is a valid match for both rat in
vivo replicates four learning examples can be generated for each compound-dose combination.

With 45 compounds, three dosages plus the control and the pairwise matching of replicates

720 labelled rat in vitro to in vivo learning examples are generated for the source domain. The

human in vitro data (the target domain) is processed in the same manner as the rat in vitro
data producing 720 unlabelled human in vitro learning examples.
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Gene sets. Microarray data measures the expression of more than 20,000 gene transcripts,

resulting in a high dimensional feature space. While Open TG-GATEs is a comparatively large

database of toxicogenomics data, the 720 labelled learning examples that can be generated

from the data are insufficient to effectively train a model that could predict genome-wide gene

expression. Consequently, it was decided to restrict our analyses to four subsets of genes

reported in literature as being associated with relevant toxicological outcomes [17] namely

gene sets linked to steatosis (developed in-house from the KEGG pathway hsa04932, S3

Table in S2 File), cholestasis [28–30], genotoxicity and carcinogenicity (GTX+C) [6, 7, 31],

and non-alcoholic fatty liver disease (NAFLD) [32]. All gene lists are filtered to contain only

known rat-human orthologs. Complete gene sets are listed in S2-S5 Tables in S2 File.

Fig 1. Overview of toxicogenomics data from TG-GATEs included in this study. Overview of toxicogenomics

measurements available from the TG-GATEs database used in this study. Gene expression profiles were measured for primary

rat and primary human hepatocytes exposed in vitro at three time points (2, 8, and 24 hours) following exposure to 45

compounds at three dosages (low, medium, and high) plus a control. Two biological replicates were performed for each

compound-dosage combination. Gene expression profiles were measured at four time points (3, 6, 9, and 24 hours) for rat

hepatic tissue exposed in vivo to 45 compounds at three dosages (low, medium, and high) plus a control. Three biological

replicates are conducted for each rat in vivo exposure. The model is trained to predict in vivo gene expression profile following

exposure to a compound given a time series of in vitro data using the rat data (labelled source domain) and through the use of

domain adaptation the model can also be used to predict human in vivo gene expression given a measured time series of

human in vitro gene expression (unlabelled target domain).

https://doi.org/10.1371/journal.pone.0292030.g001
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Model. Previous work has demonstrated the ability of deep artificial neural networks

(ANNs) with a bottleneck architecture to outperform classical machine learning techniques in

translating time series of gene expression from rat to human and from in vitro to in vivo in rats

[17]. Here, Ganin et al.’s unsupervised domain adaptation [26] is applied to the previously vali-

dated ANN architecture to train a model to predict human in vivo gene expression from mea-

sured human in vitro gene expression (target domain) using a large labelled data set of rat in
vitro and in vivo gene expression following exposure to a variety of compounds (source

domain). Domain adaptation is achieved through the introduction of a domain classification

arm from a central hidden layer (Fig 2). The network is trained to maximise the loss in predict-

ing the domain label of the input data (rat or human in vitro). The inclusion of a gradient

reversal layer, which leaves the input unchanged during forward propagation but reverses the

gradient during backpropagation by multiplying the gradient by a negative scalar, allows the

domain classifier to be trained in tandem with the in vivo prediction using the standard back-

propagation algorithm [33]. Through tuning of both the learning rate and the rate at which

human data is introduced into the model (lambda), the network constructs a common latent

space for the rat and human in vitro data which is indiscriminate to the domain of the data.

The structure of the deep neural network was optimised using a grid search. The final net-

work consists of five hidden layers containing 135, 96, 64, 120, 190 nodes respectively (Fig 2).

All layers use rectified linear unit (ReLU) activation [34], except for the output layer, which

uses sigmoid activation. A single domain classification layer consisting of eight nodes was

introduced at the central hidden layer (Fig 2). The gradient reversal parameter lambda

increases at a logarithmic rate during training from zero to one, as in the original publication

[27]. The domain classification error was calculated using SoftMax cross entropy [27]. The

prediction error was calculated as the sum of absolute errors between the measured rat in vivo
gene expression and the model-predicted gene expression pattern.

The model was trained using Momentum [35], a stochastic-gradient descent algorithm that

accelerates convergence to an optimum solution by accumulating gradients from previous

steps.

Experimental setup. In order to assess how well the model would perform for a previ-

ously unseen compound, while still maximising the number of learning examples available for

training, leave-one-compound-out cross-validation was used. All sixteen instances for a given

compound were removed from the source and target domain. The model was trained on the

remaining data. The excluded instances were then used to validate the prediction accuracy of

the model. This procedure was repeated for all 45 compounds.

When training the network with domain adaptation, the error term was composed of the

sum of the prediction error and domain classification error. The network was also trained

without adaptation, in which case the error term consists of just the prediction error. The vali-

dation error for each compound-dose combination is the mean absolute error between the

model-predicted time series of gene expression and the measured time series of rat in vivo
gene expression for each gene in the gene set. The overall performance of the model was

assessed using the average validation error over all compound-dose instances.

Latent space classification

The bottleneck structure of the neural network generates a reduced dimensional representa-

tion of the time series of both rat and human in vitro gene expression data. For example, the

GTX+C gene set consists of 76 genes measured at three time points in vitro, resulting in a

228-dimensional feature space in the input layer which is reduced to 64 dimensions in the

third hidden layer. In recent years, a number of studies have evaluated the reduced
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Fig 2. Schema of the implemented unsupervised domain adaptation network. Domain labels are appended to the measured time series of rat (source

domain) and human (target domain) in vitro gene expression to form the input for the model. The bottleneck architecture of the deep neural network

finds a reduced dimension representation of the data. A one-layer classifier is trained to predict the domain labels (rat or human) from the

64-dimensional latent space. The inclusion of a gradient reversal layer in this domain classifier multiples the gradient by a negative scalar in the

backpropagation step. Thereby maximising the loss in predicting the domain label. Resulting in domain adaptation as the model cannot discriminate

between the source and target domains. Simultaneously the model is trained to reconstruct in vivo gene expression patterns using the measured time

series of rat in vitro gene expression. The network architecture was optimised using a grid search to find a well-performing network. The final network,

depicted above, contains five layers consisting of 135, 90, 64, 120, and 190 nodes respectively, with a domain classification layer containing eight nodes.

All layers use ReLU activation, except for the output layer, which uses sigmoid activation.

https://doi.org/10.1371/journal.pone.0292030.g002
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dimensional latent spaces generated by variational autoencoders or non-negative matrix fac-

torisation as novel methods for classification in high dimensional genomic data. These low-

dimension latent space representations have been successfully utilised to identify subclasses of

tumours from RNASeq data [36], predicting drug responses [37], and de-convoluting cell

composition of samples [38]. As a result, we decided to explore the 64-dimensional embedding

of the rat and human in vitro gene expression data in common latent space as a potential

method for the classification of toxicity of a novel compound under the assumption that com-

pounds that trigger similar responses in gene expression would cluster together in the com-

pressed latent space. Of the 45 compounds included in this study, the carcinogenicity status

(yes/no) is known for 25 compounds [39]. A linear support vector machine (SVM), weighted

to account for the unequal number of class labels (19 carcinogenic versus just 6 non-carcino-

genic), was trained to discriminate between known carcinogenic and non-carcinogenic com-

pounds using the 64-dimensional embedding of the rat and human in vitro gene expression

for the low, medium, and high dosages for the labelled compounds during leave-out-out cross-

validation. The accuracy of the classification predictions was assessed using the prediction for

the labelled leave-one-out compound. This process was repeated to train a predictor of geno-

toxicity using the 32 compounds for which genotoxicity labels are available [39]. A list of

carcinogenicity and genotoxicity labels used for the compounds can be found in S1 Table in

S2 File [39].

Data availability

• All data analysed during the current study are available from the Open TG-GATEs database

(https://toxico.nibiohn.go.jp).

• All model scripts are publicly available via a GitHub repository at https://github.com/

shauna-odonovan.

• A minimal formatted dataset to reproduce the analysis presented in this study can be found

at https://tue.data.surfsara.nl/index.php/s/ABfvy3so7UaOO8V.

Results

Domain adaptation

Fig 3 demonstrates the effect of domain adaptation on the training of our network. Each row

visualises the rat (blue) and human (red) in vitro gene expression data along the first two prin-

cipal components for the embeddings for the first three layers of the network.

The encoding of the rat and human data for the network trained without domain adapta-

tion is depicted in the first column. For this network, the rat and human data are clearly sepa-

rable along the first principle component in each layer, which captures at least 90% of the

variance in the data. The second column details the encoding of the rat and human data in the

same network trained with domain adaptation. While the rat and human data are still separa-

ble along the first principal component in the first layer, the first principal component explains

just 36.9% of the total variance. In the second layer, the border between the rat and human

data along the first and second principal components becomes less distinct, with the first com-

ponent accounting for just 18.3% of the total variance in the data. In the third layer, it is no

longer possible to differentiate between the rat and human in vitro gene expression instances

in the 64-dimensional latent space. The domain classifier predicts the data domain using the

encoding of the rat or human data from this third layer. S1 Fig in S1 File illustrates the progress
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Fig 3. Visualisation of the effect of domain adaptation on the embedding of rat and human data in the network. Visualisation of the embedding of

the rat (blue) and human (red) in vitro gene expression data in the first three hidden layers of the fully trained network. The first column depicts the

embedding of the rat and human in vitro data for the network trained without domain adaptation. The second column shows the embedding of the rat

and human data for the same network architecture trained with domain adaptation. The first row shows the embedding of each dose-compound

combination for both the rat and human in vitro data in the first layer of the network, consisting of 135 nodes, projected along the first two principal

components of the data. The second and third rows depict the embedding of the rat and human data in the second and third layers of the network

respectively. The rat and human data remain disjoint in the first three layers of the network trained without domain adaptation (column one). When
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of the domain adaptation during training, showing that at the mid-way point of training the

domain adaptation has effectively merged the rat and human data.

Human in vivo predictions

The model utilises in vitro and in vivo gene expression data from rats to predict time series of

human in vivo gene expression given a measured time series of human in vitro gene expression

following exposure. The network’s human in vivo predictions differ in gene expression pattern

from the human in vitro input and the corresponding measured rat in vivo gene expression

pattern for a given dose-compound combination, as demonstrated in Fig 4. In addition, the

model-predicted gene expression patterns for a given gene are different for different dosages

and compounds, as shown in Fig 4 for a sample gene NR0B2, a transcription regulator

involved in the regulation of NPAS2-mediated hepatic lipid metabolism that has been associ-

ated with hepatic genotoxicity. The model predictions for all 76 genes from the GTX+C gene

set following exposure to the previously unseen compounds hexachlorobenzene and omepra-

zole are shown in S2 and S3 Figs in S1 File No time series of in vivo human hepatic gene

expression data following exposure to any of the compounds included in this study could be

obtained to validate the model predictions.

Rat in vivo predictions

Fig 5 depicts the model predictions for rat in vivo gene expression patterns for a selection of

genes from the GTX+C gene set for a medium dosage of the previously unseen compound

hexachlorobenzene. As before, the measured time series of rat in vitro gene expression (model

input) is shown in red and the biological replicates of measured rat in vivo gene expression are

in blue. While the network trained without domain adaptation predicts the general trend of

the rat in vivo gene expression over the four time points (dashed yellow line), the network

trained with domain adaptation captures more of the finer details in the gene expression pat-

tern, out-performing the model trained without domain adaptation (solid yellow line) (Fig 5).

Comparing the average mean absolute error in predicting rat in vivo gene expression for

the network model trained with and without domain adaptation indicates that the model

trained with domain adaptation produces more accurate predictions of rat in vivo gene expres-

sion for each of the four toxicologically relevant gene sets (Table 1). In fact, the average mean

absolute error is significantly lower for the predictions made using the UDA model than using

the model without domain adaptation for the Cholestasis, NAFLD, and GTX+C gene sets (p-

values< 0.05, using a two-tailed paired t-test).

Latent space classification

The training accuracy in predicting carcinogenicity using the latent space embedding of rat

and human in vitro gene expression for genes in the GTX+C gene set of 85.2% indicates that a

complete linear separation between carcinogenic and non-carcinogenic compounds within

the 64-dimensional latent space of the network is not possible. The accuracy in predicting

carcinogenicity for a previously unseen compound using the network trained with domain

adaptation is 67.3%. Moreover, the specificity and sensitivity of the method (31.9% and 78.5%

respectively) indicate a high false positive rate (Table 2). Predicting genotoxicity labels for a

the network was trained with domain adaptation the embedding of the rat and human data begin to overlap in the second layer, and are no longer

differentiable in the third layer.

https://doi.org/10.1371/journal.pone.0292030.g003
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compound using the latent space proves to be a more challenging task. The training accuracy

drops to 78.5% for the embedding trained with domain adaptation and 73.3% for the network

trained without domain adaptation. The accuracy in predicting genotoxicity status of a previ-

ously unseen compound is just 51%.

Discussion

In recent years toxicogenomic assays have achieved notable success in predicting the hepato-

toxicity of a novel compound [4–13]. However, relating changes in gene expression profiles

from these rodent and cell line assays to relevant human outcomes still proves challenging.

Here, we applied transfer learning to leverage a large publicly available database of in vitro and

in vivo gene expression in rats to train a deep learning model to predict human in vivo gene

expression. We demonstrate that this method has successfully achieved domain adaptation,

with the rat and human data being indiscriminate in the network latent space. Moreover, the

Fig 4. Input data and model predictions for time series of the gene NR0B2 for multiple doses of hexachlorobenzene and omeprazole. The first row

depicts the measured time series of rat in vitro gene expression (red) and both measured biological replicates of rat in vivo gene expression for the gene

NR0B2 following exposure to a low (columns 1 and 2) and medium (column 3) dose of hexachlorobenzene (HCB) and a medium (columns 4 and 5)

and high dose (column 6) of omeprazole (OPZ). The model prediction of the time series of rat in vivo gene expression of NR0B2 for each exposure are

shown in yellow. The second row displays the corresponding measured time series of NR0B2 in primary human hepatocytes exposed in vitro and the

model predicted time series of NR0B2 for the human in vivo system.

https://doi.org/10.1371/journal.pone.0292030.g004
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inclusion of the human in vitro data significantly improved the accuracy of the rat in vivo gene

expression predictions.

Incorporating human in vitro gene expression data in the domain adaptation network sig-

nificantly improves the accuracy of the rat in vivo gene expression predictions for three of the

Fig 5. Data and model predictions for a medium dosage of the validation compound hexachlorobenzene for the UDA network trained with

domain adaptation for the GTX/C gene set. The figure shows the time series of rat in vitro gene expression (red), the input to the model, and both rat

in vivo biological replicates (blue) measured following an exposure to a medium dosage of hexachlorobenzene for a selection of genes from the GTX/C

gene set. The model predictions of rat in vivo gene expression pattern for each gene in shown in yellow. The solid yellow line shows predictions of rat in
vivo gene expression patterns for the network trained with domain adaptation. The dashed yellow lines indicate the predicted rat in vivo gene

expression patterns for the same network trained without domain adaptation. The rat in vivo prediction for the model trained with domain adaptation

outperforms those when the model is trained without domain adaptation. When the biological replicates have a similar gene expression pattern the

model performs well (Ccna2, Nr0b2, Rbpms, Ccne1). Given the instance matching used to generate machine learning examples in this study, when the

biological replicates have contradictory gene expression patterns the model predictions are inaccurate (Afp, Gstk1).

https://doi.org/10.1371/journal.pone.0292030.g005

Table 1. Average mean absolute error from leave one out cross validation for the model trained with and without domain adaptation predicting rat in vivo gene

expression the four toxicologically relevant gene sets identified from literature.

Gene set Number of genes with domain adaptation without domain adaptation p-value

Cholestasis 18 0.0401 ± 0.0106 0.0409 ± 0.0109 0.0000915*
NAFLD 22 0.0369 ± 0.0071 0.0372 ± 0.007 0.0339*
Steatosis 50 0.0378 ± 0.0055 0.0379 ± 0.0064 0.615

GTX/C 76 0.0337 ± 0.0087 0.0371 ± 0.224 0.00003*

The table shows the average validation error (± one standard deviation) for the network model trained with (column 3) and without domain adaptation (column 4) for

each of the four toxicologically relevant genes sets identified from literature. The validation error is the mean absolute error between the measured time series of rat in
vivo gene expression and the model predicted rat in vivo gene expression pattern using leave-one-out cross validation for the 45 compounds included in this study. The

fifth column provides the p-value indicating if the difference in average mean absolute error between the network trained with domain adaptation and without domain

adaptation are statistically significant, measured using a two-tailed paired t-test. The model trained with domain adaptation has a lower average mean absolute error

than the model trained without domain adaptation for all gene sets included in these analyses, the error has significantly decreased for the Cholestasis, NAFLD, and

GTX+C gene sets. Column 2 indicates the number of genes included in each gene set.

https://doi.org/10.1371/journal.pone.0292030.t001
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four toxicologically relevant gene sets included in this analysis, illustrated in Fig 5. While the

network trained without domain adaptation predicts the general trend in the gene expression

pattern (Fig 5, dashed yellow lines Ccena2, Nr0b2, Rbpms, and Afp) the improvement in pre-

diction accuracy for the network trained with domain adaptation is evident, with the solid yel-

low lines more closely predicting the dynamics in measured time series of gene expression.

The network trained without domain adaptation was optimised solely to predict the time series

of rat in vivo gene expression. Therefore, it was somewhat unexpected that training the net-

work to predict both the rat in vivo gene expression and the domain label would result in a sig-

nificantly improved prediction of rat in vivo gene expression. We postulate that incorporating

the human in vitro data introduces additional, relevant information, serving as a form of regu-

lation for the rat in vitro to rat in vivo prediction task preventing overfitting.

The deep learning network produces physiologically plausible predictions of human in vivo
gene expression given a measured time series of human in vitro gene expression following

exposure to a previously unseen compound. However, given the invasive nature of sampling

the liver, no relevant measured time series of human in vivo gene expression data could be

obtained to validate our model predictions. Nevertheless, the model predicted human in vivo
gene expression patterns differ from the time series of human in vitro gene expression. Dem-

onstrating that the model is not simply reproducing the input it receives. Moreover, the

human in vivo predictions also differ from the rat in vivo predictions for the same gene, indi-

cating that the model is not simply predicting the same output for both the rat and human. In

addition, the predicted human in vivo gene expression pattern for a given gene alters for differ-

ent exposure conditions (dosages and compounds), demonstrating that the model is not pre-

dicting the same human in vivo gene expression pattern in all instances for a given gene. While

we do not have the data to validate the quality of our human in vivo predictions, Ganin et al.’s

method for domain adaptation was shown to outperform the state-of-the-art algorithms in

image recognition and natural language processing In the future, should relevant human in
vivo data become available our model predictions could be validated. Moreover, Ganin et al.’s

method can be easily generalised to semi-supervised learning, allowing even sparse human in
vivo data to be integrated into training to improve human in vivo predictions [27].

Recent studies have reported some success in separating subclasses of tumours from the

latent space embedding of tumour-derived RNA-Seq data [36] or identifying processes

involved in rare diseases from a reduced dimension latent space trained using large publicly

Table 2. Training and validation accuracy in classifying carcinogenicity and genotoxicity of a compound from latent space embedding of rat and human in vitro
gene expression data.

GTX+C gene set Training accuracy Validation accuracy sensitivity specificity

Carcinogenicity (n = 15)

With domain adaptation 0.0852 0.673 0.785 0.319

Without domain adaptation 0.807 0.590 0.741 0.111

Genotocxicity (n = 31)

With domain adaptation 0.785 0.510 0.299 0.638

Without domain adaptation 0.733 0.559 0.222 0.763

The first section of the above table lists the training and validation accuracies for a linear support vector machine trained to predict carcinogenicity status of a previously

unseen compound using the 64 dimensional embedding of the rat and human in vitro gene expression from the third hidden layer of the neural network trained for the

GTX+C gene set using leave-one-out cross validation. The linear SVM was trained to predict carcinogenicity for the latent space from the latent space embedding

networks trained both with domain adaptation (row 1) and without domain adaptation (row 2). The lower section presents the training and validation errors for the

linear SVM trained to predicting genotoxicity from the latent space embeddings of the rat and human in vitro gene expression data.

https://doi.org/10.1371/journal.pone.0292030.t002
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available databases of gene expression data [40]. While our network was trained to predict

time series of rat in vitro gene expression and not carcinogenicity or genotoxicity status, we

hypothesised that compounds that induce a carcinogenic or genotoxic phenotype would trig-

ger similar temporal gene expression responses and would therefore cluster together in the

reduced dimension common latent space. Consequently, the embedding of the rat and human

in vitro gene expression data in the 64-dimensional common latent space was explored as a

potential method for the classification of toxicity of a novel compound. Our analysis indicated

it was not possible to get a complete linear separation between carcinogenic and non-carcino-

genic compounds in the common latent space generated by our model, with an accuracy of

just 67.3% in predicting the carcinogenicity status of a previously unseen compound. The

latent space classification falls short of existing classification methods which achieve over 80%

accuracy in classifying carcinogenicity in combination with the Ames mutagenicity assay [6].

Classifying genotoxicity proved to be more difficult, with the SVM trained on the latent space

representation achieving an accuracy of just 51% in predicting the genotoxicity status for a

previously unseen compound. As it currently stands, the reduced dimensional common latent

space generated by our models does not appear to be a viable novel method for the classifica-

tion of compound toxicity. However, our network has been trained using just 720 learning

examples of gene expression for just 76 genes (GTX+C gene set). Green and Way trained their

variational autoencoder to reconstruct transcriptomic profiles of 5,000 genes using RNASeq

data for 10,459 tumour and tumour-adjacent normal samples from The Cancer Genome Atlas

[36]. In future work, the classification accuracy of the reduced dimensional latent space could

be improved by integrating gene expression data from other data sets, increasing the number

of learning examples and, consequently, the number of genes that can be included.

The open TG-GATEs dataset was selected for this study as it is a comparatively large dataset

containing gene expression profiles for in vitro and in vivo rat as well as human in vitro follow-

ing exposure to a range of compounds. In order to maximise the number of learning examples

available to train our model we elected to consolidate data from the 45 available compounds.

While supplementing the data set with data from other sources would have further increased

the number of learning examples, it would also introduce additional variation between the

data due to differing experimental protocols that may negatively impact the domain adapta-

tion. Consequently, we decided to restrict our analysis to just the TG-GATEs data set. Never-

theless, the addition of gene expression profiles from other toxicological databases, such as

DrugMatrix [19], may improve the accuracy of the model predictions of gene expression and

classification of compounds using the reduced dimensional common latent space. The UDA

approach proposed by Gannin et al. provides a highly flexible way to achieve domain adapta-

tion within the context of a generalisable neural network architecture and has been successfully

applied to a number of challenges including image processing [41] and natural language pro-

cessing [27]. In this study, we apply UDA to gene expression data from different species. In Fig

3 we show that without domain adaptation the rat and human data cannot be combined and

occupy distinct regions of the latent space, however when the network is trained with domain

adaptation the rat and human data are indiscriminable. Moreover, we show that the incorpo-

ration of human data significantly improves the temporal accuracy of the rat in vivo gene

expression prediction. In the future this generalisable UDA architecture could prove to be a

valuable tool for the improved integration of data from multiple sources or data platforms, cor-

recting for batch effects or variation in experimental protocol between the data sets. UDA may

also facilitate the training of predictor models for limited data sets of human in vivo data by

leveraging larger, publicly available data sets from in vitro and animal studies.

The domain adaptation network was trained using Momentum, a stochastic gradient

descent algorithm. The gradient reversal parameter (lambda) increased from 0 to 1 at a
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logarithmic rate, as suggested by Ganin et al. [27]. When optimising the network architecture

it was observed that the domain classifier is highly susceptible to mode collapse, whereby the

network maximises the loss in predicting the domain of the input data by simply predicting

human for every case. This may be due to the limited number of learning examples, as mode

collapse was more prevalent when training the network for the larger gene sets. The frequency

of mode collapse was reduced by placing a lesser weight on the domain classification error dur-

ing the early phase of training. In instances when mode collapse occurred, the network was

retrained. We implement the domain adversarial training of a neural network as proposed by

Ganin et al. which necessitated the introduction of a gradient reversal layer to allow the maxi-

misation of loss in the domain prediction to be trained in tandem with the in vivo prediction.

As we use data with binary labels (rat or human) we hypothesise that minimising the loss on

predicting the incorrect domain label would achieve the same effect on training the network as

maximising the loss on predicting the correct domain label without the need for the gradient

reversal layer.

To conclude, we have successfully applied domain adaptation in the context of a deep neu-

ral network; merging rat and human gene expression data to facilitate the prediction of human

in vivo gene expression using a large, labelled set of rat data. Incorporation of the human in
vitro gene expression data when training the network significantly improves the accuracy of

the predictions of rat in vivo gene expression patterns following exposure to a previously

unseen compound. The ability of the reduced dimensional common latent space generated by

our network to discriminate between sub-classes of toxicity was comparable to existing meth-

ods for compound classification. In future work, we anticipate that with sufficient learning

examples the reduced dimension latent space trained in our network would outperform exist-

ing methods for compound toxicity classification.
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