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Abstract

Machine learning (ML) and deep learning (DL) models are being increasingly employed for

medical imagery analyses, with both approaches used to enhance the accuracy of classifi-

cation/prediction in the diagnoses of various cancers, tumors and bloodborne diseases. To

date however, no review of these techniques and their application(s) within the domain of

white blood cell (WBC) classification in blood smear images has been undertaken, repre-

senting a notable knowledge gap with respect to model selection and comparison. Accord-

ingly, the current study sought to comprehensively identify, explore and contrast ML and DL

methods for classifying WBCs. Following development and implementation of a formalized

review protocol, a cohort of 136 primary studies published between January 2006 and May

2023 were identified from the global literature, with the most widely used techniques and

best-performing WBC classification methods subsequently ascertained. Studies derived

from 26 countries, with highest numbers from high-income countries including the United

States (n = 32) and The Netherlands (n = 26). While WBC classification was originally rooted

in conventional ML, there has been a notable shift toward the use of DL, and particularly

convolutional neural networks (CNN), with 54.4% of identified studies (n = 74) including the

use of CNNs, and particularly in concurrence with larger datasets and bespoke features

e.g., parallel data pre-processing, feature selection, and extraction. While some conven-

tional ML models achieved up to 99% accuracy, accuracy was shown to decrease in concur-

rence with decreasing dataset size. Deep learning models exhibited improved performance

for more extensive datasets and exhibited higher levels of accuracy in concurrence with

increasingly large datasets. Availability of appropriate datasets remains a primary chal-

lenge, potentially resolvable using data augmentation techniques. Moreover, medical train-

ing of computer science researchers is recommended to improve current understanding of

leucocyte structure and subsequent selection of appropriate classification models. Likewise,

it is critical that future health professionals be made aware of the power, efficacy, precision

and applicability of computer science, soft computing and artificial intelligence contributions

to medicine, and particularly in areas like medical imaging.
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1. Introduction

White blood cells (WBCs) play a vital role in the human immune system. They identify and

neutralize pathogens including bacteria, viruses, and cancer cells. Classification of WBCs is

therefore vital for accurate and early diagnosis and treatment of a range of diseases and medi-

cal conditions [1]. Machine learning techniques, both traditional and deep, have been widely

adopted for myriad applications, including medical image analysis (MIA). MIA is critical in

modern healthcare systems, aiding medical professionals in making well-informed decisions.

It is currently used to diagnose brain tumors, lung cancer, anemia, leukemia, and malaria, via

a range of image modalities including Magnetic Resonance Imaging (MRI), Computed

Tomography (CT-Scans), Ultrasounds, Positron Emission Tomography (PET), Blood Smear

images, and hybrid modalities [2]. Accordingly, MIA has attracted significant attention from

computer vision experts, with traditional and deep machine learning techniques having been

applied in leukocyte segmentation, cancer detection, classification, medical image annotation,

and image retrieval in computer-aided diagnosis (CAD). The efficacy of these methods there-

fore directly influences clinical diagnosis and treatment strategies, highlighting the significance

of technological advancements, such as high-speed computational resources and improved

hardware and storage capabilities for CAD [3–5]. One of the primary application areas for

CAD systems using traditional machine learning and deep learning is segmentation and classi-

fication of leukocytes (WBCs). Leukocytes provide valuable information to medical profes-

sionals (doctors, hematologists, pathologists, and radiologists), for diagnosing various blood-

related issues, including Human Immunodeficiency Virus (HIV) and blood cancer (leukemia).

Changes in the WBC count and/or morphological cell alterations, for instance variations in

size, shape, and color observed in blood smear images, can provide valuable insights into vari-

ous health disorders [6–9].

Blood cells are categorized into three major types: WBCs (leukocytes), red blood cells

(erythrocytes), and platelets (thrombocytes). Leukocytes are subdivided into five types: mono-

cytes, lymphocytes, neutrophils, basophils, and eosinophils (Fig 1). Over the past two decades,

Fig 1. White blood cell categories [From 17] (a) Neutrophils (b) Lymphocytes (c) Monocytes (d) Eosinophils (e)

Basophils.

https://doi.org/10.1371/journal.pone.0292026.g001
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significant advances have been made in traditional ML and DL methods for classification and

segmentation of WBCs in microscopic blood smear images. Conventional methods depend on

manually analyzing these images using microscopy, which is typically slow, laborious and

error prone. Thus, development of automated and computer-aided systems has become crucial

in accurate, systematic, unbiased and rapid clinical diagnosis and effective treatment. Auto-

mated analysis of WBCs in blood smear images can significantly reduce the workload of hema-

tologists and provide fast, accurate, and efficient results to assist medical professionals in the

diagnostic process [10–13]. There are two overarching methods typically used to achieve auto-

mated WBC classification in blood smear images: traditional machine learning (ML) and deep

learning (DL) techniques. These techniques have the potential to make medical hematology

more efficient. A generalized overview of machine learning and deep learning techniques used

to classify WBCs is presented in Fig 2. The traditional machine learning process involves inter-

connected steps such as segmenting the region of interest and extracting features, followed by

optimal classification [14, 15]. The feature extraction phase in traditional machine learning

methods is challenging and directly impacts classification performance. More recently, deep

learning approaches are increasingly used due to higher performance and decreasing complex-

ity. Advanced deep learning methods with transfer learning have further improved implemen-

tation of automated systems for classification of WBCs. Notwithstanding the importance of

ML and DL in medical image analysis (MIA), a gap remains in white blood cell classification

via blood smear imagery; to date, no global review of these approaches is available in the pub-

lished scientific literature. Accordingly, the present study sought to comprehensively identify

and synthesize ML and DL methods, focusing on classifying five white blood cell types, and

present this in concurrence with an overview of recommended future work, challenges and

limitations associated with the identified approaches.

Fig 2. Neutrophil classification in blood smear images via (a) Traditional machine learning model (b) Advanced deep

learning model.

https://doi.org/10.1371/journal.pone.0292026.g002
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2. Review protocol

A well-organized and formally structured review process is essential to identify, scan, include/

exclude and synthesize targeted literature which satisfies preexisting search criteria and effec-

tively employs existing resources [16]. In the current review, the authors sought to incorporate

the most recent and relevant research articles based on manual and automatic searches to

identify all significant content. The approach was initiated by identifying pertinent research

questions. The two research questions (RQ) formulated in accordance with the PCC (Popula-

tion, Concept, Context) search framework are as follows:

i. How have systems been developed for classification of WBCs based on ML and DL?

ii. What are the applications of traditional machine learning and deep learning methods for
effectively classifying WBCs in blood smear images?

Relevant studies were identified using specific keywords extracted from the research ques-

tions (Table 1). These keywords covered various aspects, including segmentation, classification

and detection of WBCs. The study explored machine learning techniques, involving both tra-

ditional and advanced deep learning methods. The research recognized the importance of big

data and employed artificial intelligence (AI), as indicated by keywords like "Big data" and

"Artificial Intelligence" respectively. This careful selection of keywords ensured a focused and

comprehensive search across databases, resulting in retrieving relevant data for the study.

The next review phase after RQ development was identification of relevant articles/studies

via automated searching of electronic databases based on extracted keywords from RQs (Itera-

tive combinations of ((A1 –A4) x (B1 –B4)) from Table 1). Articles published from 2006 to

May 2023 were included for review. To align with the study’s emphasis on recent research

trends and technological progress, articles prior to 2006 were omitted. Research articles were

located from three repositories including Google Scholar, Scopus, and Web of Science. The

inclusion and exclusion criteria are presented in Table 2.

Overall, a total of 3750 articles from Google Scholar, Web of Science, and Scopus were iden-

tified (Fig 3). Following deduplication, this collection decreased to 2210 articles. Based on a

thorough evaluation of article titles, abstracts and included data (from methodology section

and Appendices), a further 2075 articles were excluded from further consideration. The final

article cohort includes only articles published in English between January 1st 2006 and May

31st 2023, and independently adjudged (2 x groups of 2 authors) by the author team as being

directly relevant to the topic (Table 2). Quality assessment of included research papers, while

not strictly considered necessary for scoping reviews, is critical in assessing literature consis-

tency, validity, and overall credibility [18]. Accordingly, the authors employed a non-summa-

tive 5-point quality system adapted from Wylde et al (2017). Our tool consisted of five items

used to assess 1. relevance to scoping review question (based on full paper review), 2. selection

bias (i.e., input data sources provided), 3. transferability (open-source data usage, open code),

4. bias due to missing data and/or lack of clarity, and 5. consideration of analytical

Table 1. Keywords used for iterative database searches.

Blood Cells

Leukocyte(s) classification A1 White blood cell(s) detection A2

White blood cell(s) classification A3 White blood cell(s) segmentation A4

Machine Learning

Machine learning B1 Deep learning B2

Big data B3 Artificial Intelligence B4

https://doi.org/10.1371/journal.pone.0292026.t001
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confounding, model overfitting and/or study limitations. Each item was rated as adequate,

inadequate or not reported, with only articles attributed as being “adequate” across all five cri-

teria adjudged to be acceptable quality for narrative inclusion and data synthesis.

3. Review of identified relevant literature

3.1 Study characteristics

Overall, 136 relevant studies were identified between January 2006 and May 2023, with the

research timeline, based on article number per annum, presented in Fig 4. As shown, the

annual number of publications remained relatively constant from 2006 to 2014, after which a

marked increase was observed, reaching a peak in 2019 (n = 32). Subsequently, there was a sig-

nificant decrease in publications after 2019, likely due to the COVID-19 pandemic and its

impact on data accessibility, in addition to a shift in research focus among researchers in the

realms of biomedical image analyses and classification algorithms.

Overall, 26 countries were represented by identified studies, with the highest number of

studies emanating from the United States (n = 32) and The Netherlands (n = 26) (Fig 5). High-

income countries were, perhaps unsurprisingly, well represented, likely due to the availability

of large datasets for training and testing, in addition to increasingly mature/well-funded

national healthcare systems. As shown (Fig 6), 8 overarching model architectures and methods

were employed for classification, including both traditional machine learning and deep learn-

ing models. Traditional machine learning models included Decision Trees (DT), K-means,

Naive Bayes Classifier (NBC), Nearest Neighbor Classifier (NNC), Support Vector Machines

(SVM), Artificial Neural Networks (ANN), and thresholding techniques. Within the deep

learning domain, convolutional neural networks were the most frequently employed approach,

likely due to their high performance and accuracy (compared and presented in Sections 3.2–

3.6).

Table 2. Inclusion and exclusion criteria delineated via the PCC (Population, Concept, Context) search

framework.

Inclusion Exclusion

Population

• Primary (peer-reviewed) original research articles

• Participants/cohorts with accessible medical

imagery (e.g., blood smear images, MRI, X-ray).

Population

• Academic reviews (including all review typologies),

book chapter(s), theses, conference presentations/

abstracts, editorials.

• Excluding individuals/imagery with lymphoma and

myeloma due to potential impacts on white blood cell

classification.

Concept

• Studies specifically addressing classification of

WBCs from human input data (See Contextual

inclusion criteria below)

Concept

• Studies not focused on white blood cell classification.

For example: General health trends, patient

demographics, or broader health outcomes without a

central focus on white blood cell classification.

Context

Language: Articles written in English.

Study period: Research published between 2006 and

May 2023.

• Research conducted in the domain of medical image

analysis (MIA).

• Studies utilizing imaging modalities, including

blood smear images, MRI, X-rays.

• Research applying machine and deep learning

techniques for white blood cell classification. For

example: SVM, Navie Bayes, Decision Tree, ANN,

CNN, Alexnet, ResNet family, GoogleNet etc.

Context

Language: Articles not written in English

Study period: Research published prior to January 1st

2006.

• Studies conducted outside the scope of medical image

analysis. For example vision transformers

https://doi.org/10.1371/journal.pone.0292026.t002
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In total, 27 datasets were specifically referenced across the identified relevant studies rang-

ing from 21 images [88] to 92,800 images [73] (Table 3), including ALL-IDB, one Private Data-

set [60], CellaVision, AA-IDB2, Hayatabad Medical Dataset, Isfahan Al-Zahra and Omid

Fig 3. PRISMA Flowchart detailing the current 3-phase scoping review protocol and literature identification

outcomes.

https://doi.org/10.1371/journal.pone.0292026.g003

Fig 4. Timeline of identified article numbers per annum, January 2006 –May 2023.

https://doi.org/10.1371/journal.pone.0292026.g004
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hospital, ALL-IDB2/Leishman stained peripheral blood smears, one Public Dataset [73],

BCCD, Kaggle, LISC and BCCD, Jiangxi Tecom Science Corporation/CellaVision/Bsisc/LISC,

KMC hospital Manipal India, Hybrid-Leukocyte database/e Hybrid-Slide database, Acquired

from Sixth People’s Hospital of Shenzhen, SMC-IDB/IUMS-IDB/ALL-IDB, and SBILab. The

full list of datasets along with the corresponding dataset size (number of images) is provided in

Table 3. Just two studies [6] specifically referred to the use of thin blood smear images, with

the remaining studies either expressly referring to the use of thick blood smears or not

Fig 5. Identified articles delineated by country of origin (based on first and corresponding authors and origin of

study dataset).

https://doi.org/10.1371/journal.pone.0292026.g005

Fig 6. Model architectures (dark blue) and methods (light blue) used for white blood cell classification. (Note–

Several comparative studies compared>1 method and/or developed ensemble architectures).

https://doi.org/10.1371/journal.pone.0292026.g006
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reporting on smear type; this is notable, as thick features have inherent advantages over thin

features in WBC classification outcomes.

3.2 White blood cell classification using conventional machine learning

Various studies have explored conventional machine learning methods for WBC classification,

which for the purpose of clarity, the authors have organized into pre-processing-based tech-

niques (Section 3.3.1), feature extraction (Section 3.3.2), and classification (Section 3.3.3). A

total of 39 studies were identified, with 13 papers (33.3%) focused on pre-processing tech-

niques, 15 papers (38.5%) delving into feature extraction methods, and 11 papers (28.2%)

emphasizing classification techniques for WBC classification. This distribution of approaches

and objectives is evident in Tables 4–7, highlighting diverse emphases on these sub-processes

within the conventional machine learning domain for classifying WBCs.

3.2.1 Pre-processing-based ML techniques. Pre-processing-based techniques include

methods that manipulate and enhance raw data prior to further analysis. In the context of

WBC classification, these techniques play a critical role in refining images to enable accurate

categorization. Rosyadi et al. [19] used optical microscopy to generate blood samples images,

with their method comprising four stages: image pre-processing, segmentation, feature extrac-

tion, and classification. In the first phase of image pre-processing, images were transformed

Table 3. Identified white blood cell datasets used for classification studies 2006–2023.

Dataset No of Images

ALL-IDB [57] 130

Private Dataset [60] 70

CellaVision [47] 100

AA-IDB2 [8] 108

Hayatabad Medical Dataset [63] 1030

Isfahan Al-Zahra and Omid hospital [64] 312

Private Dataset [66] 431

ALL-IDB2/ Leishman-stained peripheral blood smears [59] 160/160

CellaVision [31] 450

Public Dataset [73] 92,800

BCCD [41] 12,444

Kaggle [42] 12,444

BCCD [33] 12,500

BCCD [76] 375

Kaggle/LISC [77] 12,500/400

LISC and BCCD [78] 6250

Jiangxi Tecom Science Corporation/ CellaVision/ Bsisc/ LISC [79] 300/ 100/ 268/ 257

KMC hospital, Manipal, India [80] 280

ALL-IDB [85] 108

Hybrid-Leukocyte database/ e Hybrid-Slide database [86] 891/ 377

Acquired from Sixth People’s Hospital of Shenzhen [88] 21

Kaggle [89] 12,494

SMC-IDB/ IUMS-IDB/ ALL-IDB [92] 367/ 195/ 108

BCCD [94] 12447

SBILab [97] 76

BCCD [101] 2487

Kaggle [103] 12,444

https://doi.org/10.1371/journal.pone.0292026.t003
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from RGB to grayscale and binary images. Subsequently, in the second phase, resizing, crop-

ping, and edge detection were applied to all images. Five geometrical features were considered

in the feature extraction phase that represent important geometric characteristics of the seg-

mented cells: normalized area, solidity, eccentricity, circularity, and normalized perimeter.

These characteristics help differentiate various types of WBCs and enable accurate classifica-

tion through K-means clustering. The study focus was analysis of each feature for accuracy.

Table 4. WBC nuclei detection accuracy, specificity and sensitivity in blood smear images (n = 10).

Author Year Method Accuracy (%) Specificity (%) Sensitivity (%)

Safuan et al. [56] 2018 Otsu thresholding and watershed marker 98.87 96.87 99.1

Huang et al. [57] 2012 Otsu thresholding 98 - -

Danyali et al. [58] 2015 Fuzzy divergence threshold 98

Manik et al. [59] 2016 Adaptive thresholding 98.9

Li et al. [60] 2016 Dual thresholding 97.85

Wang et al. [61] 2106 Spectral and morphologic 90

Negm et al. [62] 2018 K-mean clustering 99.15 99.52 99.34

Khosroseresliki et al. [45] 2017 Simple thresholding 93.7 - -

Bouchet et al. [46] 2019 Fuzzy set algorithm 99.3 - -

Jha et al. [47] 2019 Hybrid model based on Mutual Information 98.7 98 98

https://doi.org/10.1371/journal.pone.0292026.t004

Table 7. Artificial Neural Network (ANN) accuracy, specificity and sensitivity for WBC classification (n = 7).

Author Year Method Accuracy (%) Sensitivity (%) Specificity (%)

Hegde et al. [70] 2019 ANN 99 99.4 99.18

Manik et al. [59] 2016 ANN 98.9 - -

Su MC et al. [71] 2014 ANN 99.11 97.3 98.2

Lee et al. [31] 2014 Hybrid Neural Network based Classifier 91 - -

Rawat et al. [36] 2018 K-Means, ensemble artificial neural network (EANN) 95 - -

Nazlibilek et al. [37] 2014 Neural Network Classifier 95 - -

Sadeghian et al. [72] 2009 ANN 78 - -

https://doi.org/10.1371/journal.pone.0292026.t007

Table 5. Support Vector Machine accuracy, specificity and sensitivity for WBC classification (n = 4).

Author Year Method Accuracy (%) Sensitivity (%) Specificity (%)

Duan et al. [8] 2019 Support Vector Machine 98.3 - -

Sajjad et al. [6] 2016 Support Vector Machine 98.6 96.2 98.5

Amin et al. [63] 2015 K-means and SVM 97 84.3 97.3

Again et al. [64] 2018 Support Vector Machine 94 95.77 97.87

https://doi.org/10.1371/journal.pone.0292026.t005

Table 6. Conventional machine learning approaches for WBC classification (n = 6).

Author Year Method Accuracy (%) Sensitivity (%) Specificity (%)

Gautam et al. [20] 2016 Naïve Bayesian classifier 80.88 - -

Tantikitti et al. [65] 2015 Decision Tree 92.2 -

Rawat et al. [66] 2017 PCA-SVM 94.6 97 88

Shaikhina et al. [67] 2019 Decision Tree and RF 85 81.8 88.9

Abdeldaim et al. [68] 2018 K-NN 98.6 - -

Mathur et al. [69] 2013 Naïve Bayesian Classifier 92.72 90 -

https://doi.org/10.1371/journal.pone.0292026.t006
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After experimentation, it was concluded that the circularity feature was most significant as it

achieved the highest accuracy (67%), with the eccentricity feature having the lowest accuracy

of 43%.

Gautam et al. [20] also presented a technique initiated via pre-processing of microscopic

images. Pre-processing involved conversion of RGB (Red, Green, Blue) images to grayscale,

contrast stretching, and histogram equalization. Subsequently, they applied segmentation

through Otsu’s thresholding method, followed by geometrical feature extraction, including

perimeter, area, eccentricity, and circularity. Finally, a Naïve Bayes classifier was used for clas-

sification with the maximum likelihood method, achieving 80.88% accuracy. Savkare et al. [21]

presented an alternative method for blood cell segmentation; their pre-processing approach

employed median and Laplacian filters to enhance image quality. After pre-processing, images

were transformed from RGB to HSV (Hue, Saturation, Value) color space. Subsequently, K-

mean clustering was applied for segmentation of blood cells. Furthermore, they used morpho-

logical operation and a watershed algorithm to refine cell separation. The proposed method

through K-mean clustering acquired an accuracy of 95.5%.

3.2.2 Feature extraction-based ML techniques. Typically, a differential counting method

of WBCs is used to assess a patient’s immune system. This method involves using flow cytome-

try and fluorescent markers, which may disturb the cell due to repetitive sample preparation.

Accordingly, label-free techniques that use imaging flow cytometry and ML algorithms to clas-

sify unstained WBCs are considered a more effective approach. Toh et al. [22] previously

reported a mean F1-score of 97% across B and T subtypes, with each individual subtype

achieving a distinct F1 score of 78%. Tsai et al. [23] proposed a multi-class support vector

machine (SVM) approach to hierarchically identify and categorize blood cell images; segmen-

tation was implemented on digital images to retrieve geometric features from each segment,

enabling identification and classification of different blood cell types. The experimental out-

comes were compared with manual results, revealing that the proposed method significantly

outperformed manual classification with an accuracy of 95.3%. Likewise, Şengür et al. [24] pre-

sented a model combining image processing (IP) and ML techniques for WBC classification.

Shape-based features and deep features were utilized to describe WBCs, with a long-short-

term memory (LSTM) model applied to a dataset comprising 349 blood smear images with

10-fold cross-validation, from which 35 geometric and statistical features were extracted. More

recently, Elen and Turan [25] compared six ML techniques (decision tree classifier, Random

Forest, K-Nearest Neighbor, Multinomial Logistic Regression, Naïve Bayes, and SVM) for

WBC categorization. Using shape-based features, an accuracy of 80% was achieved, while deep

features achieved 82.9% accuracy. Overall, Multinomial Logistic Regression returned the high-

est precision rate of 95%, followed by Random Forest.

Huang et al. [26] presented a technique for WBC segmentation, delineating their approach

into three phases: nucleus segmentation and recognition, feature extraction, and classification.

A leukocyte (WBC) nucleus enhancer (LNE) was used to enhance the contrast of nucleus col-

ors for segmentation, after which, multiple levels of Otsu’s thresholding were applied, effec-

tively preserving only the WBCs and suppressing other cell types. During the feature

extraction phase, a gray-level co-occurrence matrix was employed from which 80 texture fea-

tures were extracted. Subsequently, they incorporated shape-based features, including com-

pactness and roughness, after which Principal Component Analysis (PCA) was used to reduce

feature dimensions. Classification was achieved using a genetic-based parameter selector

(GBPS) with 50X cross-validation, resulting in 95% classification accuracy. Yampri et al. [27]

also segmented out the WBCs via automatic thresholding (i.e., segregation of cell nucleus from

cytoplasm) and feature extraction. Eigen cells were used to remove segments by applying the

following approach: conversion of cell image to vector, computation of mean and covariance
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of vector, computation of eigen values and eigen vectors. Principle component analysis (PCA)

was used to transform high dimensional eigen space to significantly lower dimensional space,

with 92% classification accuracy achieved.

3.2.3 Classification-based (focused) ML techniques. Tavakoli et al. [28] developed a

three-phase ML method for improved WBC classification delineated as follows: nuclei/cyto-

plasm detection, extract features, and classification. A novel process was designed to segment

the entire nucleus, while cytoplasm segmentation involves location detection inside the convex

region. In the next phase, four unique colors and three shape features were extracted, and

finally, in the last phase, SVM was used for WBC classification. Overall, 94.2% accuracy was

achieved on the BCCD dataset, 92.2% with LISC dataset, and 94.65% with the Raabin-WBC

datasets, however, hyperparameter issues were encountered.

An innovative "Computer-aided diagnostic system" method was proposed by Malkawu et al

in 2020 with this process utilizing a hybrid approach, whereby CNN was employed as a feature

extractor. The performance of several classifiers was measured, with Random Forest (RF) out-

performing other classifiers based on a 98.7% accuracy [29]. A similar multi-approach (i.e.,

comparison of several ML algorithms) by Gupta et al. [30] presents an optimized form of the

Binary Bat algorithm inspired by bat echolocation techniques. Using OBBA (Table 3),

dimensionality reduction was achieved by eliminating�11 similar features. Four classifiers

(KNN, Logistic Regression, RF, and DT) were applied for WBC classification, demonstrating

highest performance, with a mean accuracy of 97.3%, thereby surpassing other optimizers like

the Optimized Crow Search Algorithm (OCSA), which attained an accuracy of 92.8% and the

Optimized Cuttlefish Algorithm (OCFA), with an accuracy of 95.2%.

Lee [31] proposed an innovative approach to image segmentation based on grey-level

thresholding, based on previous findings that cell-type specific reaction of the cells produces

adequate evidence to allow precise classification. This method was tested on a dataset compris-

ing 1149 WBCs from 13 altered, clinically significant categories. Cells were randomly selected

from 20 blood smear images obtained from leukemia patients, with cell sorting based on quan-

titative volumes in the segmented images producing a classification accuracy of 82.6%.

3.3 White blood cell classification using deep learning techniques. Wibawa et al. [32]

proposed a DL model for classifying two WBC types, comparing the results with conventional

machine learning methods (support vector machines), using nine features for classification.

The authors report that deep learning significantly exceeded conventional ML methods,

achieving highest accuracy of 95.5%. Toğaçar [33] introduced a WBC classification approach

based on the coefficient and ridge feature selection method utilizing a CNN model with Goo-

gleNet and ResNet50 for feature extraction. They achieved 97.95% accuracy for WBC classifi-

cation and counting. Likewise, CNN was employed to identify and classify segmented WBC

images as being “granular” or “non-granular”. Subsequently, granular cells were further cate-

gorized into eosinophils and neutrophils, while non-granular cells were classified as lympho-

cytes and monocytes [34]. To enhance dataset robustness, augmentation approaches were

implemented, resulting in improved accuracy for both binary and multi-classification of blood

cell subtypes, leading to 98.51% precision for binary WBC classification and 97.7% precision

for subtype classification.

Lippeveld et al. [35] employed a relatively small dataset to examine human blood samples

using image flow cytometry, with two models used to identify eight WBC types and eosino-

phils exclusively. ML models were applied to both datasets to classify human blood cells with

5-fold cross validation. Random Forest (RF) and Gradient Boosting (GB) were used for the

first model, while deep learning CNN architecture (ResNet and DeepFlow (DF)) were

employed for the second model. On the WBC dataset, results demonstrated a relatively bal-

anced accuracy of 77.8% and 70%, while similarly for the eosinophil dataset, a balanced
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accuracy of 87.1% and 85.6% was achieved. DF outperformed the RN architecture on the

WBC dataset, acquiring a classification accuracy of 70.3% compared to RN’s 64.9%.

Rawat et al. [36] introduced another deep learning method employing the DenseNet121

model for classification of several WBC types—The proposed model was estimated, with an

accuracy of 98.84%. Results indicate that the DenseNet121 model with a batch size of 8 exhib-

ited the highest overall performance. The dataset, consisting of 12,444 images, was obtained

from Kaggle. Nazlibilek et al. [37] proposed a DL-based method that leveraged image variation

operations and generative adversarial networks (GAN) for accurately classifying WBCs into

five distinct types. Likewise, Sadeghian et al. [38] developed a two-stage model comprising an

initial alteration using a pre-trained model, followed by the integration of a ML classifier. They

employed the BCCD dataset, a downscaled blood cell detection dataset, and achieved a preci-

sion of 97.03%. Likewise, Sadeghian et al. [38] developed a two-stage model comprising an ini-

tial alteration using a pre-trained model, followed by the integration of a ML classifier. They

reported 97.03% classification accuracy on the BCCD dataset, a downscaled blood cell detec-

tion dataset. Macawile et al. [39], utilized Convolutional Neural Networks (CNNs) to effec-

tively classify and count WBCs in microscopic blood images. Among the proposed models

AlexNet, GoogleNet, and ResNet-101. AlexNet performed better than the other two. It demon-

strated an overall accuracy of 96.63%, albeit with a relatively lower sensitivity rate of 89.18%.

Liang et al. [40] introduced an innovative approach that merges convolutional neural net-

works (CNNs) with recurrent neural networks (RNNs). This fusion, termed the CNN-RNN

framework, enhances understanding of image content and structured feature learning,

enabling end-to-end training for comprehensive medical image data analysis. They applied

transfer learning, adapting pre-trained weight parameters from the ImageNet dataset for the

CNN segment. Additionally, a customized loss function was integrated to expedite training

and achieve precise weight parameter convergence. Experimental results indicate a classifica-

tion accuracy of 90.79%. More recently, Sharma et al. [41] presented yet another CNN-based

classification methodology, achieving an impressive 96% accuracy for binary classification and

87% accuracy for multiclass classification.

Togacar et al. [42] employed a very different DL approach to WBC classification by using a

computer-aided automated approach. Utilizing Regionally Based Helixal Neural Networks,

their study effectively classified and differentiated WBCs, achieving an objectively high level of

classification accuracy (99.52%). Toğaçar et al. [33] also introduced a method composed of

three essential phases. In the initial stage, CNN models specifically AlexNet, GoogleNet, and

ResNet-50 are utilized as feature extractors. Subsequently, the features extracted from these

CNN model layers are fused. In the second phase, the technique incorporates feature selection

methods, including MIC and Ridge Regression. In the third phase, these selected features are

amalgamated. The overlapping features derived from the MIC and Ridge Regression tech-

niques are then classified using the QDA method. This integrated approach achieves a remark-

able overall success rate of 97.95% in classifying WBCs.

Mohamed [43] introduced an alternative method for the identification and classification of

blood cells based on CNN. The study presented two distinct approaches for classifying WBCs.

In the initial approach, CNN was employed with transfer learning, utilizing pre-trained weight

parameters applied to the images. In contrast, the second approach utilized Support Vector

Machines (SVM) for the classification process. The classification results demonstrated a

remarkable 98.4% accuracy for CNN and 90.6% accuracy for SVM. The classification results of

CNN are higher compared to SVM. Yao et al. [44] introduced a CNN-based approach for the

classification of WBCs. In their method, CNN integrated an optimizer to adaptively adjust

parameters such as the learning rate, leveraging the efficient net architecture. The utilization of
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the optimizer responded to changes in loss and accuracy. Their proposed model demonstrated

exceptional performance, achieving an impressive accuracy of 90%.

Khosrosereshki et al. [45] developed an R-CNN-based model to identify neutrophils, eosin-

ophils, monocytes, and lymphocytes, with two models employed, namely Faster RCNN and

Yolov4. Faster RCNN obtained an accuracy of 96.25%, while Yolov4 was slightly lower at 95%.

Likewise, Bouchet et al. [46] utilized the Inception Recurrent Residual Convolutional Neural

Network (IRRCNN) model, an advanced hybrid architecture based on residual networks and

RCNN principles. The proposed IRRCNN demonstrated exceptional accuracy in experiments,

achieving a 100% accuracy rate for WBC classification.

Jha et al. [47] developed a leukemia detection module specifically designed for blood smear

images with their multi-phase detection process comprising pre-processing, segmentation, fea-

ture extraction, and classification. The segmentation step utilizes a hybrid model based on

Mutual Information (MI), which combines results from the active contour model and fuzzy C

means algorithm. Subsequently, statistical and Local Directional Pattern (LDP) features are

extracted from the segmented images. These features are then fed into a novel Deep CNN clas-

sifier based on the proposed Chronological Sine Cosine Algorithm (SCA) for classification

purposes. Testing used blood smear images from the AA-IDB2 database, with simulation

results indicating that the developed classifier achieved an accuracy of 98.7%.

Ullah et al. [48] introduced a 3D-CNN feature-based CBVR system that is highly efficient

and effective for retrieving similar content from vast video data repositories. After an in-depth

exploration of its effectiveness in representing sequential frames, they selected middle layer

features of a 3D-CNN model. Leveraging a mechanism for selecting convolutional features,

only the active feature maps from the CNN layer that correspond to the ongoing event in the

frame sequence are chosen. To condense the size of the extracted high-dimensional features

for streamlined retrieval and expedited storage, they introduced the concept of hashing. These

high-dimensional features are represented in compact binary codes through PCA, ensuring

efficient search and reduced storage requirements for WBCs classification. For the classifica-

tion of WBCs, the achieved accuracy is 85%.

Imran et al. [49] conducted a study involving the utilization of a four-hidden-layer feed-for-

ward DNN and CNN. The research also extensively examines the impact of Mel-Frequency

Cepstral Coefficients (MFCC) and Filter Bank Energies (FBE)features trained with various

context sizes on two deep learning models, evaluated under normal, slow, and fast speaking

rates. Micro-level analysis of results was conducted, revealing that the four-hidden-layer CNN

slightly outperforms the DNN in classifying WBCs. The CNN achieved an accuracy of 83% in

classifying WBCs. Kastrati et al. [50] introduced a convolutional neural network with three

hidden layers, each having 1024 neurons, showcasing excellent performance in white blood

cell classification on the INFUSE dataset, achieving accuracy of 78.10%.

Ullah et al. [51] introduced an innovative conflux Long Short-Term Memory (LSTM) net-

work for WBC classification. The framework involves four stages: 1) frame-level feature

extraction, 2) feature propagation through the conflux LSTM network 3) pattern acquisition

and correlation computation, and 4) action classification. The process begins with extracting

deep features using a pre-trained VGG19 CNN model from frame sequences for each view.

Extracted features then undergo conflux LSTM processing to learn unique view-specific pat-

terns. Interview correlations are computed by utilizing pairwise dot products from LSTM out-

puts across views, thus acquiring interdependent patterns. The VGG19 CNN model achieved a

classification accuracy of 88.9%. Meanwhile, Banik et al. [52] recently presented a CNN)-based

WBC image classifier which merges features from both the initial and final convolutional lay-

ers, while utilizing input image propagation through a convolutional layer to enhance perfor-

mance. A dropout layer is added to counter overfitting, resulting in a classification accuracy of
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98.61%. Another CNN-based approach has been developed by Ku et al. [53] who propose an

automated system for leucocyte classification using a dual-stage CNN. A dataset of 2,174 patch

images was collected for training and testing purposes, with the dual-stage CNN used to clas-

sify images into 4 classes, achieving an overall accuracy of 97.06%.

Karthikeyan et al. [54] introduced the Leishman-stained function deep classification

(LSM-TIDC) model for WBC classification. Interestingly, the LSM-TIDC method explores the

potential of interpolation and Leishman-stained function without the need for explicit seg-

mentation, which if successfully implemented, effectively eliminates false regions in multiple

input images. Following image pre-processing, relevant features are extracted through multi-

directional feature extraction, with a system then developed, utilizing a transformation invari-

ant model to extract nuclei and subsequently employing convolutional and pooling character-

istics for cell classification. Method testing was conducted on the Kaggle dataset, and

classification accuracy of 94.42% was achieved.

Acevedo et al. [55] used a large dataset of 17,092 peripheral blood cell images across eight

classes gathered using the CellaVision DM96 analyzer. Pathologist-verified ground truth data

were used to train two CNN architectures: Vgg-16 and Inceptionv3. In the first setup, net-

works acted as feature extractors for an SVM, achieving test accuracies of 86% (Vgg-16) and

90% (Inceptionv3). In the second setup, fine-tuning resulted in “end-to-end” models, yielding

96% accuracy (Vgg-16) and 95% accuracy (Inceptionv3).

Upon comparing the identified 136 relevant studies, as a general observation, detection of

WBCs through conventional methods (ML) tends to focus on cell segmentation after data pre-

processing, with segmented data then typically employed for feature extraction in WBC classi-

fication. Accordingly, the traditional ML methods were associated with better results as accu-

rate identification of WBCs is impractical in the absence of efficient segmentation, thus

resulting in higher levels of classification accuracy (Tables 4–8). Research teams employed a

range of methods for data segmentation and obtained a range of classification accuracies;

while some conventional models achieved up to 99% accuracy, accuracy was shown to

decrease in concurrence with decreasing dataset size (e.g., Lippeveld et al. [35]). Deep learning

models exhibited improved performance for more extensive datasets and exhibited higher lev-

els of accuracy in concurrence with increasingly large datasets (Table 6). Several authors

implemented a combination of different datasets, to probe the accuracy of their models on

unknown datasets (i.e., blind testing). Deep learning models have represented a significant

breakthrough in myriad domains and as shown in the identified literature, the use of tradi-

tional machine learning models within biomedical applications in general, and WBC classifi-

cation in particular is undoubtedly shifting toward the use of deep learning models based on

dataset size. However, deep learning algorithms (and associated research) are now in a signifi-

cantly more advanced phase, with proven capacity to solve increasingly complex problems

with higher performance. Notwithstanding, there is a clear gap in the use of the latest advances

in deep learning, including the use of transfer knowledge and meta-learning processes.

Comparative analysis of deep learning models applied to various large datasets revealed

remarkably high levels of achieved accuracy across various studies (Table 9). Baghel et al. [97]

demonstrated a high level of efficacy associated with the use of CNNs, achieving an accuracy

of 98.51%, while Riaz et al. [117] used a Convolutional Generative Adversarial Network

(GAN) to obtain a classification accuracy of 99.9% on the Catholic University of Korea dataset.

Mosabbir et al. [118] addressed the challenging National Institutes of Health (NIH) dataset

using CNN, attaining an accuracy of 97.92%. Tusneem et al. [119] also used CNN and demon-

strated its strength, with a 99.7% classification accuracy. Kakumani et al. [120] utilized a pre-

trained InceptionV3 model on the Kaggle dataset and achieved 99.76% classification accuracy.
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4. Limitations of previous studies and future challenges

ML/DL researchers have made significant advances in increasingly accurate classification of

WBCs in recent years. Among all techniques based on SVM, Sajjad et al. [6] achieved maxi-

mum accuracy, sensitivity, and specificity of 98.6%, 96.2%, and 98.5%. Using KNN, Abdeldaim

et al. [68] achieved maximum accuracy of 98.6%. Similarly, using ANN, Hegde et al. [70]

acquired accuracy, sensitivity, and specificity of 99%, 99.4%, and 99.18%, respectively. Using

DL methods, Loey et al. achieved maximum precision and sensitivity of 100% each and

Table 8. Deep learning model accuracy, specificity and sensitivity for WBC classification (n = 36).

Author Year Method Accuracy (%) Sensitivity (%) Specificity (%)

Macawile et al.

[39]

2018 AlexNet 96.63 98.85 99.61

Liang et al. [73] 2018 CNN + RNN 91 - -

Sharma et al. [41] 2019 CNN 97 94 98

Togacar et al. [42] 2019 CNN 97.78 - -

Mohamed et al. [74] 2020 Pre-trained Deep

Learning Models

97.03 71 91

Ergen et al. [33] 2020 CNN, Feature Selection 97.95 98 97.75

Zhao et al. [75] 2021 TWO-DCNN 96 - -

Cinar et al. [76] 2021 Alexnet- GoogleNet-SVM 99.73,

98.23

98.75 -

Wang et al. [77] 2019 CNN Architecture SSD and YOLOv3 90.09 - -

Kutlu et al. [14] 2020 R-CNN 97.52 88.9 -

Fan et al. [78] 2019 ResNet50 98 - -

Hegde et al. [79] 2019 Pre-trained AlexNet model 98.9 98.6 98.7

Acevedo et al. [80] 2019 Pre trained CNN 96.2 - -

Qin et al. [81] 2018 Deep Residual Learning 76.84 - -

Tiwari et al. [82] 2018 Double CNN model 97 83 -

Hung et al. [83] 2017 AlexNet and Fast R CNN Model 72 - -

Naz et al. [84] 2017 CNN, faster R CNN 94.71 95.42 99.27

Vogado et al. [85] 2018 CNN with SVM 99.20 99.2 -

Habibzadeh et al. [86] 2018 ResNet and Inception 99.46 99.89 -

Song et al. [87] 2014 CNN 94.5 87.26 -

Fatih et al. [88] 2019 MRMR feature selection -ELM and CNN 97.37 - -

Rehman et al. [89] 2018 Deep CNN 97.78 - -

Bani-Hani et al. [90] 2018 CNN with the optimized genetic method 91 91 97

Di Ruberto et al. [91] 2020 Pre trained AlexNet 97.93 99.6 -

Loey et al. [92] 2020 Pre trained CNN AlexNet 100 100 98.2

Ma et al. [93] 2020 Generative Adversarial Network and residual neural network 91.7 92 -

Baydilli et al. [94] 2020 Capsule Networks 96.86 92.5 98.6

Tobias et al. [95] 2020 Faster Residual Neural Network 83.25 - -

Kassani et al. [96] 2019 Hybrid DL based model 96.17 95.17 98.58

Baghel et al. [97] 2022 CNN 98.51 98.4 -

Shahzad et al. [98] 2022 CNN 98.44 99.96 99.98

C. Cheuque et al. [99] 2022 Multilevel CNN 98.4 98.3 -

Hosseini et al. [100] 2022 Convolutional Neural Network 97 94 98

Ramya et al. [101] 2022 CNN-PSO 99.2 94.56 98.78

Khalil et al. [102] 2022 CNN 98 - -

Sharma et al. [103] 2022 DenseNet121 98.84 98.85 99.61

https://doi.org/10.1371/journal.pone.0292026.t008
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specificity of 98.2%; However, while many researchers achieved close to maximum perfor-

mance, several limitations and constraints have been associated with previous and current

techniques. Accordingly, the research community faces several fundamental obstacles in the

field of MIA that must be accepted and resolved. These include the lack of easily accessible,

large, high-quality datasets, a shortage of dedicated medical professionals, and the complexity

of Transfer Learning and Deep Learning methods. Several DML strategies, mathematical and

theoretical foundations are also a source of several challenges [96, 104], with unsupervised or

semi-supervised systems needed to address these issues [105]. Moreover, TML and DL-based

MIA applications and systems still have significant work to adopt “real-time application”.

4.1 Lack of publicly accessible datasets

The lack of publicly accessible datasets represents the primary issue affecting medical image

analysis. Scientists need to inspire health organizations to address this problem, it would be

beneficial if high-quality data were available to researchers. Initiatives promoting open data

availability from various health organizations worldwide should also be encouraged. However,

authorization should also be required (e.g., hospital data and conditional access to datasets).

When data are readily available in large quantities, just like in other fields such as environmen-

tal science, weather forecasting, and bioinformatics, the issue becomes more relevant for

research (e.g., video summarization [106], IoT [107], energy management [108], and so on).

Acquiring very large, high-quality datasets with accurate labeling is crucial for MIA

applications.

4.2 Generalization skills for trained predictors

Another very significant challenge associated with MIA and WBC identification and classifica-

tion is the availability of appropriately trained predictors. A perfect learning method that bal-

ances computational efficiency with generalization capacity is required to solve this issue. To

build a model with impressive generalization capabilities, a learning approach that incorpo-

rates true or random labels is necessary. This approach provides efficient training algorithms

and practical tools to handle available datasets using accurate or arbitrary labels. Many MIA

tasks, including identifying brain tumors, lung cancer, breast cancer, and leucocytes, have

shown significant empirical success. Despite the inherent challenges posed by non-convex

optimization, basic techniques such as stochastic gradient descent (SGD) can efficiently dis-

cover viable solutions, effectively minimizing training errors. More interestingly, the networks

created in this manner have strong generalization capabilities [109], even when there are far

more parameters than training data [110]. Only reducing the training error during model

training is insufficient. The choice of global minima greatly impacts the generalization

Table 9. Comparative analysis of best performing (based on reported accuracy) deep learning models (n = 8).

Author Year Dataset No of Images Method Accuracy (%)

Baghel et al. [97] 2022 Private dataset - CNN 98.51

Cheuque et al. [99] 2022 Private dataset - Multilevel CNN 98.4

Ramya et al. [101] 2022 Merged LISC and BCCD - CNN-PSO 99.2

Sharma et al. [103] 2022 Kaggle 12,444 DenseNet121 98.8

Riaz et al. [117] 2023 Catholic University of Korea /Public dataset 5000 deep convolutional generative adversarial network 99.9

Mosabbir et al. [118] 2023 National Institutes of Health (NIH) dataset 27,558 CNN 97.9

Tusneem et al. [119] 2023 AML Cytomorphology LMU 18,365 CNN 99.7

Kakumani et al. [120] 2023 Kaggle 12,515 Pre-trained inception v3 99.7

https://doi.org/10.1371/journal.pone.0292026.t009
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behavior of the predictor. It is crucial to select the appropriate algorithm to minimize training

errors for better results. Different initialization, update, learning rate, and halting conditions for

optimization algorithms will result in global minima with various degrees of generalizability.

4.3 Reliable methods for real-world scenarios

TML and DL approaches provide reliability to real-world health diagnosis systems [111]. How-

ever, MIA and leukocyte classification models requires expertise and technical skill. In the

future, researchers should prioritize crafting accurate and trustworthy procedures applicable

in real-world healthcare situations, eliminating the necessity for medical specialists. Real-

world health diagnosis systems greatly gain from the dependability of Machine Learning (ML)

and Deep Learning (DL) approaches [111]. Yet, constructing exact models for Medical Image

Analysis (MIA) and leukocyte classification necessitates a high degree of expertise and techni-

cal proficiency. As research advances, it becomes crucial for researchers to tackle the task of

developing reliable procedures that can smoothly integrate into real-world healthcare environ-

ments, reducing the reliance on specialized medical professionals. This involves tackling issues

related to model generalization, data variability, interpretability, and ensuring consistent per-

formance across diverse patient populations and clinical scenarios.

5. Future research directions

The biomedical engineering and research community should dedicate substantial effort to

support MIA, particularly leukocyte examination in blood images, due to the significant chal-

lenges faced by the MIA community, as detailed in section V.

i. Data augmentation methods to complete the dataset deficit.

This work addresses the issue of limited dataset availability in MIA and leucocyte classifica-

tion. We present data augmentation approach and leverage transfer learning algorithms to

enhance the identification of WBCs.

ii. Technical skills and medical experience required.

TML and DL models have shown significant potential for computer-aided MIA-based diag-

nostic applications, and popular open-source frameworks like TensorFlow, Caffe, and Keras

offer access to these advanced models [121]. Developing effective machine learning models for

medical image analysis (MIA) requires careful consideration and expertise in the clinical and

medical domains. It is essential to choose and train the suitable model to achieve accurate and

reliable results in MIA applications.

iii. Resource-aware DL models for classifying leukocytes.

Medical Image Analysis (MIA) with the adoption of advanced DL models like GANs,

R-CNN, Fast R-CNN, and faster R-CNN, along with the integration of TML and DL methods.

These models have shown superior performance in tasks like brain tumor detection, leukocyte

classification, breast cancer diagnosis, and various other MIA applications. However, their big-

gest concerns are the significant memory needs and computational costs. Therefore, it is nec-

essary to investigate the computationally and environmentally friendly TML and DL models

for leukocyte analysis in blood images.

iv. Models for the detection and classification of leukocytes

DNNs provide a superior alternative to conventional learning techniques. The end-to-end

models, especially CNNs, stem from their efficient process and the capability to classify leuco-

cytes into five classes. These models compete with complex MIA models built on DNN based

on data-driven learning methodologies. WBC detection and categorization in images can also

be accomplished using a variety of end-to-end designs [122–124].

v. TML AND DL universal evaluation in MIA
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The MIA research community often relies on subjective evaluation methods, which can be

challenging, inefficient, and prone to errors. Therefore, comprehensive evaluation techniques

that can automatically assess the effectiveness of Traditional Machine Learning (TML) and

Deep Learning (DL) models for MIA from various views.

vi. Vision Transformers and Vision Formation Models

While Vision Transformers (ViTs) were not included in the current review, they represent

a likely cutting-edge approach for the future of white blood cell (WBC) classification (and

other forms of imagery analyses), employing an advanced self-attention mechanism to extract

crucial features from input images. Additionally, ViTs leverage transfer learning by incorpo-

rating pre-trained model weights, further boosting their performance. This dual approach

meticulously captures subtle features, significantly enhancing the precision and accuracy of

WBC classification—a major advancement in the realm of medical imaging. Likewise, vision

foundation models are powerful generative deep learning models trained on large datasets for

classification, segmentation, and detection, and will likely become a frequently employed

approach for medical imaging in future.

6. Conclusion

We provide a comprehensive review of the TML and DL techniques applied to WBCs classifi-

cation. We thoroughly explored and compared various methods for WBC categorization in

this context. The data for this research is compiled from 136 primary papers published

between 2006 and 2023. These papers encompass TML and DL methodologies for leukocyte

classification and their applications in medical diagnosis. The comprehensive analysis of these

studies reveals the significant contributions of TML and DL techniques to MIA. The main

objective of this work is to identify and synthesize the myriad TML and DL applications in

MIA, particularly in the domain of leucocyte classification in blood smear images. This

research aims to provide valuable insights into the complex characteristics of TML and DL in

MIA by thoroughly analyzing existing literature. Based on literature review outcomes, Deep

Learning models like CNNs for image classification and GANs for data augmentation should

be increasingly employed to negate the limitations (e.g., time) and human biases/inaccuracies

associated with manual classification used. The study’s results emphasize the importance of

conducting more research on using TML and DL methods effectively in MIA and classifying

leucocytes in blood smear images. Besides leucocyte classification, this study explored applica-

tions for advanced DL models. Collecting all these data in this study will help the research

industry by indicating where they should focus their future investigation of TML and DL mod-

els for MIA. These methods have the potential to lead to significant advancements in speech

analysis, natural language processing (NLP), and medical imaging in the future. In addition to

WBCs, TML and DL approaches are employed to identify and categorize various MIA

domains, such as the analysis of MRI, CT, X-ray, and ultrasound images. Blood smear images

are a growing field in MIA that has drawn attention from the research community over the

past three decades. Additionally, we recognized the problems, instructions, and solutions for

the developments of TML and DL models in MIA, notably for classifying WBCs in blood

smear images. The potential of TML and DL approaches will be used to expand our research

to include different MIA domains, including MRI, CT, Ultrasound, and X-ray images.
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24. Şengür, Akbulut Y., Budak Ü and Cömert Z, "White Blood Cell Classification Based on Shape and

Deep Features," 2019 International Artificial Intelligence and Data Processing Symposium (IDAP),

2019, pp. 1–4, https://doi.org/10.1109/IDAP.2019.8875945

25. Elen A. and Turan M. K., “Classifying WBCs using machine learning algorithms,” Uluslar. Muhendis.

Arast. Ve Gelistirme Derg., pp. 141–152, 2019.

26. Huang D.-C. and Hung K.-D., “Leukocyte nucleus segmentation and recognition in color blood-smear

images,” in 2012 IEEE International Instrumentation and Measurement Technology Conference Pro-

ceedings, Graz, Austria, May 2012, pp. 171–176. https://doi.org/10.1109/I2MTC.2012.6229443

27. Yampri P., Pintavirooj C., Daochai S., and Teartulakarn S., “White Blood Cell Classification based on

the Combination of Eigen Cell and Parametric Feature Detection,” in 2006 1ST IEEE Conference on

Industrial Electronics and Applications, Singapore, May 2006, pp. 1–4. https://doi.org/10.1109/ICIEA.

2006.257341

28. Tavakoli Sajad, et al. "New segmentation and feature extraction algorithm for classification of WBCs in

peripheral smear images." Scientific Reports 11.1 (2021): 1–13.

29. Malkawi Areej, et al. "WBCs classification using convolutional neural network hybrid system." 2020

IEEE 5th Middle East and Africa conference on biomedical engineering (MECBME). IEEE, 2020.

30. Gupta D., Arora J., Agrawal U., Khanna A., de Albuquerque V.H.C., Optimized Binary Bat Algorithm

for classification of WBCs, Measurement (2019), https://doi.org/10.1016/j.measurement.2019.01.002.

PLOS ONE Classification of white blood cells from blood smear imagery using machine and deep learning models

PLOS ONE | https://doi.org/10.1371/journal.pone.0292026 June 17, 2024 20 / 25

https://doi.org/10.1007/s10916-018-0912-y
http://www.ncbi.nlm.nih.gov/pubmed/29455440
https://www.kaggle.com/datasets/paultimothymooney/blood-cells
https://doi.org/10.1016/j.jval.2013.12.011
https://doi.org/10.1016/j.jval.2013.12.011
http://www.ncbi.nlm.nih.gov/pubmed/24636373
https://doi.org/10.1109/INAES.2016.7821942
https://doi.org/10.1109/INAES.2016.7821942
https://doi.org/10.1109/TENCON.2016.7848161
https://doi.org/10.1109/INFOP.2015.7489435
https://doi.org/10.1016/j.ebiom.2019.08.027
https://doi.org/10.1016/j.ebiom.2019.08.027
http://www.ncbi.nlm.nih.gov/pubmed/31466916
https://doi.org/10.1109/ISM.2011.29
https://doi.org/10.1109/IDAP.2019.8875945
https://doi.org/10.1109/I2MTC.2012.6229443
https://doi.org/10.1109/ICIEA.2006.257341
https://doi.org/10.1109/ICIEA.2006.257341
https://doi.org/10.1016/j.measurement.2019.01.002
https://doi.org/10.1371/journal.pone.0292026


31. Lee H. and Chen Y.-P.-P., ‘‘Cell morphology based classification for red cells in blood smear images,”

Pattern Recognit. Lett., vol. 49, pp. 155–161, Nov. 2014.

32. Wibawa Made Satria. "A comparison study between deep learning and conventional machine learning

on WBCs classification." 2018 International Conference on Orange Technologies (ICOT). IEEE,

2018.
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