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Abstract

Motor stereotypies are common in children with autism spectrum disorder (ASD), intellectual

disability, or sensory deprivation, as well as in typically developing children (“primary” ste-

reotypies, pCMS). The precise pathophysiological mechanism for motor stereotypies is

unknown, although genetic etiologies have been suggested. In this study, we perform

whole-exome DNA sequencing in 129 parent-child trios with pCMS and 853 control trios

(118 cases and 750 controls after quality control). We report an increased rate of de novo

predicted-damaging DNA coding variants in pCMS versus controls, identifying KDM5B as a

high-confidence risk gene and estimating 184 genes conferring risk. Genes harboring de

novo damaging variants in pCMS probands show significant overlap with those in Tourette

syndrome, ASD, and those in ASD probands with high versus low stereotypy scores. An

exploratory analysis of these pCMS gene expression patterns finds clustering within the cor-

tex and striatum during early mid-fetal development. Exploratory gene ontology and network

analyses highlight functional convergence in calcium ion transport, demethylation, cell sig-

naling, cell cycle and development. Continued sequencing of pCMS trios will identify addi-

tional risk genes and provide greater insights into biological mechanisms of stereotypies

across diagnostic boundaries.

Introduction

Motor stereotypies are rhythmic, repetitive, prolonged, fixed, patterned, non-goal-directed

movements that are often bilateral and temporarily stop with distraction. Complex motor ste-

reotypies (CMS) include hand flapping, finger wiggling, head nodding, and rocking; these are

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0291978 October 3, 2023 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Fernandez TV, Williams ZP, Kline T,

Rajendran S, Augustine F, Wright N, et al. (2023)

Primary complex motor stereotypies are

associated with de novo damaging DNA coding

mutations that identify KDM5B as a risk gene.

PLoS ONE 18(10): e0291978. https://doi.org/

10.1371/journal.pone.0291978

Editor: Claudia Brogna, Fondazione Policlinico

Universitario Gemelli IRCCS, ITALY

Received: April 13, 2023

Accepted: September 10, 2023

Published: October 3, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0291978

Copyright: © 2023 Fernandez et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in this study have been

submitted to the Dryad Digital Repository and

https://orcid.org/0000-0003-0830-022X
https://doi.org/10.1371/journal.pone.0291978
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291978&domain=pdf&date_stamp=2023-10-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291978&domain=pdf&date_stamp=2023-10-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291978&domain=pdf&date_stamp=2023-10-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291978&domain=pdf&date_stamp=2023-10-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291978&domain=pdf&date_stamp=2023-10-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0291978&domain=pdf&date_stamp=2023-10-03
https://doi.org/10.1371/journal.pone.0291978
https://doi.org/10.1371/journal.pone.0291978
https://doi.org/10.1371/journal.pone.0291978
http://creativecommons.org/licenses/by/4.0/


often accompanied by mouth opening, head posturing, jumping, pacing, and occasional vocal-

izations [1]. Movements occur for up to minutes in duration, multiple times per day, and tend

to be exacerbated by excitement, fatigue, stress, boredom, or being engrossed in an activity.

CMS are common in children with autism spectrum disorder (ASD), intellectual disability, or

sensory deprivation, as well as in typically developing children. A favored classification subdi-

vides by etiology into primary (otherwise typically developing) and secondary categories. In

both groups, stereotypies often result in social stigmatization, classroom disruption, and inter-

ference with academic activities.

In children with ASD, stereotypic behaviors (“secondary” stereotypies) occur in about 44%

of patients and are recognized as a core phenotype of the disorder [2]. The severity and fre-

quency of motor stereotypies is correlated with severity of illness, degree of intellectual disabil-

ity, and impairments in adaptive functioning and symbolic play [3–9]. They are often

associated with self-injurious behaviors [10, 11]. A wide range of medications have been tried

for treatment of stereotypies in ASD, but efficacy is inconsistent and inadequate, with potential

for long-term side effects [12].

Motor stereotypies also occur in otherwise typically developing children (“primary” stereo-

typies) [13–22]. Studies comparing primary and secondary stereotypies show that there is con-

siderable similarity in their phenomenology [23–25]. Primary CMS (pCMS) has a typical age

of onset before 3 years, and greater than 90% of children continue to experience CMS into

adolescence and adulthood [16, 26, 27]. The prevalence of pCMS is estimated to be 3–4% of

children in the U.S. [17, 26]. Similar to secondary stereotypies, medications are generally

regarded as ineffective for primary CMS [13, 27], but there is evidence to support the benefits

of cognitive behavioral therapy [28–30].

The precise pathophysiological mechanism for motor stereotypies remains obscure [31],

though investigators have hypothesized abnormalities within cortico-striatal-thalamo-cortical

pathways [32–38] and several neurotransmitter systems [33, 39–41]. A recent study reported

reduced functional connectivity between prefrontal cortical and striatal regions in pCMS [42].

A genetic etiology for stereotypies has been suggested in primary and secondary categories,

although the specific gene(s) contributing to this movement disorder remain unclear. With

respect to secondary stereotypies in ASD, family studies have demonstrated that these repeti-

tive behaviors are highly heritable, with a genetic etiology that is likely independent from other

core diagnostic features [43]. While there are no studies of recurrence risk or twin concor-

dance reported for pCMS, a positive family history is reported in 25–40%, while remaining

cases appear to be sporadic [16, 27, 44].

Considering these findings, we conducted the first pilot genetic study of pCMS in 129 typi-

cally developing children and their parents. We hypothesized that pCMS may represent a

more genetically homogenous group of individuals versus those with secondary stereotypies,

thereby facilitating genetic discovery and insight into the biology of stereotypies more gener-

ally [48, 49]. We studied rare de novo, or spontaneous, germline DNA mutations in these indi-

viduals. In disorders such as autism, obsessive-compulsive disorder, and Tourette syndrome

[45–47], this approach has proven invaluable for identifying genetic variants of large effect,

high confidence risk genes, and enriched biological functions. Using whole-exome DNA

sequencing, we identified an enrichment of de novo predicted-damaging coding mutations in

pCMS and identified one high-confidence risk gene, Lysine Demethylase 5B (KDM5B) in our

cohort. By further analysis of de novo damaging mutations in pCMS, we predict that there are

approximately 184 pCMS risk genes and that sequencing more pCMS parent-child trios is a

definite path toward discovering these genes. In this pilot study, we see a significant overlap

between genes harboring de novo damaging mutations in pCMS and those in ASD as well as

Tourette syndrome, a neurodevelopmental movement disorder characterized by motor and
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vocal tics. This overlap occurred despite excluding subjects with ASD or tics. Furthermore,

owing to the two de novo damaging KDM5B mutations in our pCMS cohort, there is signifi-

cant genetic overlap with ASD probands with highest stereotypy scores, but not those with low

scores. Exploratory systems analyses of genes harboring de novo damaging mutations in

pCMS show these genes to have peak expression in the cortex and striatum during early mid-

fetal development. Finally, exploratory gene ontology analysis highlights functional conver-

gence in calcium ion signaling, demethylation, cell signaling, cell cycle and development.

Materials and methods

Fig 1 provides an overview of the study methods.

Subjects and assessment measures

This protocol was approved by the Johns Hopkins Medicine Institutional Review Board. Chil-

dren with primary complex motor stereotypies (pCMS) were recruited from either the Johns

Hopkins Pediatric Neurology Movement Disorder Outpatient Clinic (HSS, Director), or via

email (singerlab@jhmi.edu). All participants verbally consented and provided signed parental

consent. Using standardized forms via telephone, the study coordinator completed a brief

screening general history, obtained baseline data about each child’s stereotypies, and com-

pleted an Autism Spectrum Screening Questionnaire (ASSQ). The presence of stereotypic

movements was confirmed, either via direct observation in clinic or by video review (HSS). If

the subject passed the screening assessment, additional data was collected on the child and

both parents via RedCap, an electronic web-based application for data capture and online

questionnaires. The latter included the Stereotypy Severity Scale (Motor and Impairment

scores) and comorbidity measures (Multidimensional Anxiety Scale for Children—MASC;

ADHD-Rating Scale IV; Conner’s Parent Rating Scale—CPRS; Repetitive Behavior Scale-

Revised—RBS-R; Children’s Yale-Brown Obsessive-Compulsive Scale—CYBOCS; and Social

Responsiveness Scale—SRS) (see S1 File).

For this pilot study, we prioritized the study of “simplex” pCMS (children without known

family history of affected first or second-degree relatives) to increase the likelihood of detecting

de novo DNA sequence variants. Eligibility required participants to have: (a) confirmed com-

plex motor stereotypies; (b) onset before age 3 years; (c) temporary suspension of movements

by an external stimulus or distraction. Exclusion criteria included: (a) a total score >13 on the

ASSQ or a prior autism spectrum disorder diagnosis; (b) historical evidence supporting the

absence of intellectual disability; (c) seizures or a known neurological disorder; and (d) the

presence of motor/vocal tics. The presence of inattentiveness, hyperactivity, or impulsivity

(i.e., ADHD symptoms) and/or obsessive-compulsive behaviors were not exclusionary.

DNA whole-exome sequencing (WES)

DNA was collected from all children meeting eligibility criteria and from their parents, using

the Oragene OG-500 collection kit and standard extraction protocols (DNA Genotek, Ottowa,

Ontario, Canada). Exome capture and sequencing were performed at the Yale Center for

Genome Analysis (YCGA), using the NimbleGen SeqCap EZExomeV2 capture library (Roche

NimbleGen, Madison, WI, USA) and the Illumina HiSeq 2500 platform (Illumina, San Diego,

CA, USA). WES data from 853 unaffected parent-child trios (2,559 samples total) were

obtained from the Simons Simplex Collection via the NIH Data Archive (https://ndar.nih.gov/

edit_collection.html?id=2042). These children and their parents have no evidence of autism

spectrum or other neurodevelopmental disorders [48]. The same exome capture and sequenc-

ing platforms were used for these control samples.
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Fig 1. Overview of variant discovery and data analysis. We performed whole-exome DNA sequencing of 129 pCMS and 853 control parent-child trios. After

quality control, 118 pCMS and 750 control trios remained for subsequent analyses. We performed a burden analysis, comparing the rates of de novo single

nucleotide (SNVs) and insertion-deletion (indel) DNA variants between cases and controls. Next, we assessed the statistical significance of gene-level

recurrence of de novo damaging variants in our pCMS group, identifying one high-confidence risk gene. Using the maximum likelihood estimation (MLE)

method, de novo variant simulations, and TADA, we estimated the number of genes contributing to pCMS risk and used this estimate to predict the number of

risk genes that will be discovered as more pCMS trios are sequenced. Finally, exploratory gene enrichment analyses were performed, assessing degree of overlap

with gene sets harboring de novo damaging variants in other disorders, gene ontology terms, networks, and expression pattern clustering within certain brain

regions across development.

https://doi.org/10.1371/journal.pone.0291978.g001
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Sequence alignment, variant calling, and quality control

Alignment and variant calling of the sequencing reads followed the latest Genome Analysis

Toolkit (GATK) [49] Best Practices guidelines, as described previously [46]. Variants were

annotated using RefSeq hg19 gene definitions using ANNOVAR [50]. Trios were omitted

from downstream analyses if (a) genetic markers were not consistent with expected family

relationships; (b) an excessive number of de novo variants were observed, or (c) if they were

outliers in principal components analysis (see S1 File). De novo variants were called and con-

firmed as previously described [46] and as detailed in S1 File.

Mutation rate and gene recurrence

Within each cohort, we calculated the rate of de novo DNA mutations per base pair, using

methods previously described [46]. We included only those de novo variants present with a

frequency of<0.001 (0.1%) in the ExAC v0.3.1 database [51] and compared de novo mutation

rates in cases versus controls using a one-tailed rate ratio test (S1 File). Because our cases and

controls were sequenced at different times, we took precautions to ensure that batch effects,

including differences in sequencing depth and quality, did not influence our comparisons.

First, we compared cases and controls that were sequenced on the same sequencing platform

and using the same capture library. Second, we considered only “callable” bases, defined as

loci with� 20x sequencing depth in all family members, with base quality� 20, and map

quality� 30; these thresholds match those required for GATK and de novo variant calling.

Third, for each cohort, we summed the “callable” base pairs in every family and used this num-

ber as the denominator for de novo rate calculations. In this way, we normalized the de novo

rates to guard against any residual differences in sequencing depth or quality, and we com-

pared these normalized rates between cases and controls. This method of comparing different

batches of sequencing data has been used in several prior studies [45, 46, 52, 53].

As described in our previous WES studies [45, 46, 52], we used the Transmitted And De

novo Association (TADA-Denovo) test as a statistical method for risk gene discovery based on

gene-level recurrence of de novo mutations within the classes of variants that we found

enriched in pCMS [54, 55]. This test generates random mutational data based on each gene’s

specified mutation rate to determine null distributions, then calculates a p-value and a false

discovery rate (FDR) q-value for each gene using a Bayesian "direct posterior approach." A low

q-value represents strong evidence for pCMS association. See S1 File for details.

Estimating the number of pCMS risk genes

As described previously [46, 52], we used a maximum likelihood estimation (MLE) method

[56] to estimate the number of genes contributing risk to pCMS, based on the observed num-

ber of de novo damaging variants in our dataset. See S1 File for details of these calculations.

Next, we used previously described methods [46, 52] to predict the likely number of risk

genes that will be discovered as additional pCMS parent-child trios are sequenced by WES.

These predictions utilize the estimated number of pCMS risk genes along with pCMS de novo

mutation rates observed in our study to perform mutation simulations, followed by TADA-

Denovo testing (see S1 File).

Gene set overlap

We used DNENRICH [57] (https://statgen.bitbucket.io/dnenrich/index.html) to test whether

genes harboring de novo damaging mutations in our pCMS subjects were significantly

enriched among genes harboring de novo damaging mutations in several neuropsychiatric
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disorders, including autism (ASD), schizophrenia (SCZ), Tourette’s disorder (TD), obsessive-

compulsive disorder (OCD), developmental disorders (DD), intellectual disability (ID), and epi-

leptic encephalopathy (EE). Additionally, we were interested in the question of whether our

pCMS cohort share genes harboring de novo damaging mutations with ASD probands having

high versus low stereotypy scores. To approach this question, we assembled lists of genes harbor-

ing de novo damaging mutations in ASD probands from the Simons Simplex Collection (SSC)

for whom stereotyped behavior scores (Stereotyped Behavior Score from the RBS-R, Repetitive

Behavior Scale-Revised) were available. We looked for overlap between our pCMS cohort and

those SSC ASD probands with stereotypy scores in the 90th percentile (high stereotypies) and

those scoring in the 10th percentile (low stereotypies). These gene lists are compiled in S4 Table.

Further details about gene list curation and DNENRICH methods can be found in S1 File.

Exploratory gene ontology, network, and spatiotemporal analyses

To determine whether genes harboring de novo damaging variants in pCMS may perform

similar biological functions, we used the list of pCMS genes harboring de novo damaging

mutations to identify overlap with gene ontologies using two tools: Enrichr (https://

maayanlab.cloud/Enrichr/) [58] and ConsensusPathDB (http://cpdb.molgen.mpg.de/). We

identified gene ontology and pathway terms with an enrichment p-value < 0.05. We also used

Ingenuity Pathway Analysis (IPA, Ingenuity Systems, http://www.ingenuity.com/) to identify

potential gene networks based on this same gene list with the lowest likelihood of interactions

due to chance.

Finally, using this same list of genes harboring de novo damaging variants in pCMS, we

searched for possible enrichment of gene expression within certain brain regions across multi-

ple developmental time periods, using data from the Brainspan Atlas of the Developing

Human Brain [59, 60]. See S1 File.

Results

We performed WES on 129 pCMS parent-child trios (387 samples total) meeting inclusion cri-

teria. WES data from 853 unaffected control trios, already sequenced from the Simons Simplex

Collection, were pooled with our pCMS trios for joint variant calling. After quality control

methods, our sample size for a burden analysis was 118 pCMS and 750 unaffected trios

(Table 1, Fig 1, S1 Table, S1 Fig).

Increased burden of de novo damaging variants in pCMS

Based on work in other neurodevelopmental disorders, we expected to find an enrichment of

de novo likely gene disrupting (LGD) variants (stop codon, frameshift, or canonical splice-site

variants) in pCMS probands versus controls. We found a statistically significant increased rate

of de novo LGD variants in pCMS cases, confirming our hypothesis (rate ratio [RR] 1.95, 95%

Confidence Interval [CI] 1.04–3.50, p = 0.04). Furthermore, de novo variants predicted to be

damaging (LGD plus missense variants with Polyphen2-HDIV score <0.957 and�0.453)

were also over-represented in pCMS probands (RR 1.37, CI 1.05–1.76, p = 0.03). We did not

detect a difference in mutation rates for de novo synonymous variants, or when all de novo

variants (coding +/- non-coding) were considered together (Table 1, Fig 2, S2 Table).

KDM5B is a high-confidence candidate risk gene in pCMS

Having established a higher rate of de novo damaging variants in pCMS probands, we next

asked whether these variants cluster within specific genes. We identified one gene with more
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Table 1. Distribution of de novo variants in pCMS cases and controls.

De novo variant typea Variant counts Mutation rate (x10-8) per bp (95%

CI)j
Estimated coding variants per

individual (95% CI)k
Rate ratio

(95% CI)

p-

valuel

pCMS

(N = 118)

Control

(N = 750)

pCMS (N = 118) Control

(N = 750)

pCMS (N = 118) Control

(N = 750)

Allb 134 666 1.91 (1.60–2.27) 1.68 (1.56–1.82) 1.29 (1.08–1.54) 1.14 (1.05–1.23) 1.14 (0.97–

1.33)

0.10

Codingc 128 628 2.02 (1.68–2.40) 1.74 (1.61–1.88) 1.37 (1.14–1.62) 1.18 (1.09–1.27) 1.16 (0.98–

1.36)

0.07

Synonymous SNV 30 171 0.47 (0.32–0.68) 0.47 (0.41–0.55) 0.32 (0.22–0.46) 0.32 (0.28–0.37) 1.00 (0.70–

1.40)

0.50

Nonsynonymousd 96 446 1.51 (1.23–1.85) 1.24 (1.12–1.36) 1.02 (0.83–1.25) 0.84 (0.76–0.92) 1.23 (1.01–

1.48)

0.04

All Missense (Mis) 84 411 1.32 (1.06–1.64) 1.14 (1.03–1.25) 0.89 (0.72–1.11) 0.77 (0.70–0.85) 1.16 (0.95–

1.42)

0.12

Mis-De 42 190 0.66 (0.48–0.90) 0.53 (0.45–0.61) 0.45 (0.32–0.61) 0.36 (0.30–0.41) 1.26 (0.93–

1.68)

0.11

Mis-Pf 15 79 0.24 (0.13–0.39) 0.22 (0.17–0.27) 0.16 (0.088–0.26) 0.15 (0.12–0.18) 1.08 (0.64–

1.75)

0.43

Mis-Bg 25 137 0.39 (0.26–0.58) 0.38 (0.32–0.45) 0.26 (0.18–0.39) 0.26 (0.22–0.30) 1.04 (0.70–

1.50)

0.46

Likely Gene Disrupting

(LGD)h
12 35 0.19 (0.098–

0.33)

0.097 (0.068–

0.13)

0.13 (0.066–0.22) 0.066 (0.046–

0.088)

1.95 (1.04–

3.50)

0.04

Damaging (LGD + Mis-D) 54 225 0.85 (0.64–1.11) 0.62 (0.54–0.71) 0.58 (0.43–0.75) 0.42 (0.37–0.48) 1.37 (1.05–

1.76)

0.03

LGD SNV 10 19 0.16 (0.076–

0.29)

0.053 (0.032–

0.082)

0.11 (0.051–0.20) 0.036 (0.022–

0.055)

3.00 (1.43–

6.03)

0.007

LGD Stopgain 6 16 0.095 (0.035–

0.21)

0.044 (0.025–

0.072)

0.064 (0.024–

0.14)

0.030 (0.030–

0.049)

2.13 (0.82–

5.02)

0.10

LGD Splice 4 3 0.063 (0.017–

0.16)

0.0083 (0.0017–

0.024)

0.043 (0.011–

0.11)

0.0056 (0.0012–

0.016)

7.59 (1.66–

38.5)

0.01

LGD frameshift indel 2 16 0.032 (0.0038–

0.11)

0.044 (0.025–

0.072)

0.022 (0.0026–

0.074)

0.030 (0.017–

0.049)

0.71 (0.12–

2.56)

0.77

Nonframeshift indel 1 3 0.016 (0.0004–

0.088)

0.0083 (0.0017–

0.024)

0.011 (0.00027–

0.060)

0.0056 (0.0012–

0.016)

1.90 (0.07–

17.2)

0.47

Unknowni 1 8 0.016 (0.0004–

0.088)

0.022 (0.010–

0.041)

0.011 (0.00027–

0.060)

0.015 (0.0068–

0.028)

0.71 (0.03–

4.28)

0.77

aVariants were annotated with Annovar, using RefSeq hg19 gene definitions.
b“All” includes coding and non-coding variants.
c“Coding” variants include synonymous, nonsynonymous, nonframeshift, and those annotated as “unknown” by Annovar.
d“Nonsynonymous” variants include all missense and LGD variants.
e“Mis-D” are “probably damaging” missense variants with a Polyphen2 (HDIV) score�0.957. fMis-P are “possibly damaging” missense variants with a Polyphen2

(HDIV) score <0.957 and�0.453. gMis-B are “benign” missense variants with a Polyphen2 (HDIV) score <0.453. Two pCMS missense variants and five control

missense variants had no prediction by Polyphen2 but were included in the "All Missense (Mis)" variant type.
hLGD variants are those altering a stop codon, canonical splice site, and frameshift indels. i“Unknown” variants are not included in the synonymous or nonsynonymous

counts.
jDe novo mutation rates were calculated as the number of variants divided by the number of haploid “callable” bases (see Methods).
kThe estimated number of de novo mutations per individual was calculated by multiplying the mutation rate by the size of the RefSeq hg19 coding exome (33,828,798

bp).
lRates were compared using a one-sided rate ratio test. Rate ratios, 95% CI, and p-values that are statistically significant (p<0.05) are underlined and in bold. A rate ratio

greater than one indicates a higher rate in pCMS versus controls. Also see Fig 2. Variants are listed in S2 Table.

https://doi.org/10.1371/journal.pone.0291978.t001
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than one predicted damaging de novo variant in unrelated probands: KDM5B (Lysine
Demethylase 5B) harbored two different LGD (stopgain) de novo variants in pCMS probands

1029–03 and 1050–03. Using TADA-Denovo [54] and previously established false discovery

rate (FDR) thresholds, we found that KDM5B meets statistical criteria for a high-confidence

risk gene (q<0.1) in pCMS (S3 Table).

Approximately 184 genes contribute to pCMS risk

Based on the number of observed de novo damaging mutations in pCMS, the MLE method

estimated the most likely number of pCMS risk genes to be 184 (S2 Fig). Next, we used this

estimate along with de novo mutation rates observed in pCMS trios to predict the likely num-

ber of these 184 risk genes that will be discovered in larger pCMS cohorts. Based on these sim-

ulations, WES of 500 trios should find 16 probable and 7 high-confidence risk genes; 1000

trios should find 51 probable and 26 high-confidence risk genes (S3 Fig).

Fig 2. Rates of de novo variants in pCMS cases versus controls. Bar chart comparing the rates of de novo variant classes between pCMS cases (red) and

controls (blue). Comparisons are between per base pair (bp) mutation rates, using a one-tailed rate ratio test. Statistically significant comparisons (p<0.05) are

marked with asterisks. Error bars show 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0291978.g002
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pCMS gene enrichment in Tourette’s disorder, ASD, and in ASD with high

versus low stereotypy scores

Using DNENRICH [57], we found significant overlap between genes harboring de novo dam-

aging variants in pCMS (52 genes after excluding two genes with de novo damaging variants

in controls, Table 2, S2 Table) and several gene sets curated from the literature (S4 Table). In

particular, our pCMS cohort genes show significant gene overlap with autism probands with

high stereotypy scores (5.8x enrichment, p = 0.047), Tourette’s disorder (4.5x enrichment,

p = 0.019), autism spectrum disorder (2.2x enrichment, p = 0.0055–0.0069). There was no sig-

nificant overlap with OCD, schizophrenia, intellectual disability, developmental disorders, or

epileptic encephalopathy (S4 Table).

Exploratory gene ontology, network, and spatiotemporal analyses

Using this same list of 52 genes harboring de novo damaging variants in pCMS (Table 2, S2

Table), we performed exploratory analyses to identify enrichment in biological, cellular, and

molecular gene ontology terms. Using two enrichment tools, we identified significant enrich-

ment for calcium ion transport and demethylation (adjusted p-value < 0.05 in either tool). By

relaxing the statistical threshold to an unadjusted p< 0.05, we identified enrichment for these

same gene ontology terms in results from both tools (S5 Table). Finally, we performed an

exploratory gene network analysis of these 52 genes using IPA and identified the potential

importance of these genes in cell signaling, cellular assembly and organization (S5 Table).

Finally, mapping our pCMS de novo damaging variant genes onto the Brainspan Atlas of the

Developing Human Brain gene expression data, we see nominal enrichment of gene expres-

sion in early mid-fetal cortex and striatum, with a trend toward enrichment in early fetal hip-

pocampus, late mid-fetal cerebellum, and young childhood cerebellum (S5 Table).

Discussion

Like prior studies of ASD, Tourette’s disorder, and OCD, the current study demonstrates that

the identification of de novo DNA coding variants will identify risk genes and provide a reli-

able entry-point into understanding the biology of stereotypies. We are studying otherwise

typically developing children with stereotypies (primary CMS), as this may represent a more

genetically homogenous group of individuals versus those with secondary stereotypies, thereby

facilitating genetic discovery and insight into the biology of stereotypies more generally [61,

62]. Despite our small cohort size, we identified two de novo nonsense mutations in KDM5B
in unrelated probands, and we show that finding two such independent mutations in our

cohort is highly unlikely to be a chance occurrence.

KDM5B is a lysine-specific demethylase that removes methyl groups from tri-, di- and

monomethylated lysine 4 on histone 3. KDM5B acts a transcriptional repressor and has

Table 2. 52 Genes harboring de novo damaging variants in pCMS and not in controls.

ACACB BBX DESI1 GUCA1B MRAS SLC7A7 ZNF195
ADGRF2 C16orf87 DLG5 HERC1 NAV3 TET3 ZNF461
ADRBK1 CCDC25 DNAH6 ITSN1 PHIP TNFRSF10B ZNF74
AGO4 CENPP DPPA5 KDM3B PPP1R14C TRIM55 ZNF862
ALG8 COG8 FAM65B KDM5B PRRG4 TRPM1
ANKRD39 COL21A1 FEZ2 KDM5B RAB11FIP3 TRPV4
ARVCF CORO6 GGCX LY9 RHAG UVSSA
ATP2B2 DDR1 GLYR1 MASP2 RRBP1 WNT5A

https://doi.org/10.1371/journal.pone.0291978.t002
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primarily been implicated in the pathogenesis of cancer [63]. More recently, this gene has also

been implicated in congenital heart disease risk, embryonic development, DNA repair, adult

cognitive function, and muscle strength [64–69]. KDM5B has been identified as high-confi-

dence risk gene in ASD via detection of heterozygous de novo damaging variants in WES stud-

ies [47, 55] and for developmental disorders more broadly [70]. Individuals reported in the

literature with intellectual disability/developmental delay harboring KDM5B mutations often

show an autosomal recessive inheritance pattern, including inherited homozygous or com-

pound heterozygous mutations in this gene [71, 72], while heterozygous mutations occur

more frequently in probands from the Deciphering Developmental Disorders Study [73]. A

recent study by Chen et al. [68] identified KDM5B as one of eight genes associated with adult

cognitive function through rare protein-truncating and damaging missense variants. Consis-

tent with prior reports, they identified a gene dose effect, whereby individuals with rare hetero-

zygous protein-truncating variants showed higher adult cognitive function measurements

compared to those with homozygous damaging mutations [68]. Both this study and another

recent report by Huang et al. [69] found a significant association between rare variants in

KDM5B and hand grip strength, a phenotype related to muscle function, and one of several

additional phenotypes found to be associated with KDM5B [68]. Interestingly, KDM5B has a

relatively high rate of protein truncating variants, with a rate of approximately 1 in 1,900 sub-

jects in the UK Biobank sample. This is in contrast to most other genes linked to neurodeve-

lopmental phenotypes. Considering the substantial pleiotropic and gene dosage effects

reported in several studies to date, it is interesting to see how different mutations and inheri-

tance patterns in this gene can lead to a spectrum of phenotypic outcomes, including ASD, ID/

DD, congenital heart disease, adult cognitive function, muscle strength, and now pCMS in

childhood. Our team subsequently interviewed families harboring KDM5B mutations in our

pCMS child probands and confirmed that there was no evidence for ASD, ID, or congenital

heart disease.

Expression of KDM5B is normally restricted to the brain and the testis [74]. Within the

brain, high expression levels of KDM5B are seen in the cerebellum (S4 Fig), and expression

across all brain regions is highest prenatally (S5 Fig). Consistent with this data, a recent MRI

study from our group found volumetric differences in the cerebellum of children with pCMS

versus controls, and these changes correlated with Stereotypy Severity Scores [75]. Similarly,

cerebellar volume was correlated with stereotyped activity in a deer mouse animal model with

repetitive behaviors [75]. The identification of this risk gene in pCMS suggests that chromatin

(dys)regulation of KDM5B target genes may be one contributing mechanism underlying ste-

reotypies across diagnostic boundaries. Further studies are warranted to determine the down-

stream effects of these mutations in the developing brain. These studies are underway in our

laboratory.

It is interesting that we find significant overlap between genes harboring de novo damaging

mutations in pCMS and those reported in a recent study of Tourette syndrome (S4 Table; 4.5x

enrichment, p = 0.019). While we have reported approximately 25% of pCMS patients have

co-existing tics [14], we find this overlap with Tourette despite excluding pCMS subjects with

co-existing motor or vocal tics (see Methods). Enriched expression of pCMS genes in the cor-

tex and striatum (S5 Table) is also consistent with widely believed involvement of these regions

in Tourette syndrome. While OCD was not exclusionary in our pCMS study, we saw no signif-

icant gene overlap with OCD. Similarly, we found no significant overlap with SCZ, ID, DD, or

EE. We did, however, find significant overlap between pCMS and ASD risk genes (2.2x enrich-

ment, p = 0.006–0.007), despite no evidence of ASD in our subjects.

With regard to stereotypies in ASD, we curated lists of genes harboring de novo damaging

mutations in SSC probands with the highest (90th percentile) and lowest (10th percentile)
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stereotypies, measured by Stereotyped Behavior Scores (SBS) from the RBS-R. KDM5B muta-

tions were found only in SSC probands with high stereotypy scores, yielding 5.8-fold enrich-

ment over expectation (p = 0.047) when compared against our pCMS genes (S4 Table). To

further examine the relation between de novo KDM5B mutations stereotypies in SSC ASD

probands, we compared SBS scores in four probands with KDM5B mutations versus 364 age-

matched patients without (S6 Fig). Scores were higher in mutation carriers, but this did not

reach statistical significance (p = 0.076), likely due to the low number of mutation carriers in

this cohort.

In summary, we report an increased burden of de novo damaging heterozygous DNA cod-

ing variants in primary complex motor stereotypies. We identified one high-confidence risk

gene for pCMS in our pilot cohort and estimate that there are 184 genes conferring risk for

this phenotype. Whole-exome sequencing in parent-child pCMS trios provides a reliable way

to make progress in gene discovery. Our exploratory analyses of genes harboring de novo

damaging mutations in pCMS highlight several gene ontology terms (comprising biological

processes, molecular functions, and cellular components), as well as brain regions and devel-

opmental time periods. These preliminary findings provide insights into possible etiologies of

stereotypies, and this knowledge is a prerequisite for developing new treatments. Further

sequencing and mechanistic studies are warranted to understand this phenotype, which has

relevance across diagnostic boundaries.

Supporting information

S1 Fig. PCA scree and individual plots. Scree plots following Principal Components Analysis

(PCA), showing (A) the percentage of variance captured by each of the first 32 principal com-

ponents, and (B) the cumulative percentage of variance captured by these same components in

the exome metrics data from cases and controls. The “elbow” of the scree plot is visualized to

be around the 5th principal component. This was confirmed by the Factominer R code func-

tion “estim_ncp()”. The first 5 PCs capture over 80% of the variance, and this number of PCs

was used to determine PCA outliers during quality control (see S1 Table and S1 File). (C) Indi-

vidual plots for the first two principal components, based on PCA of exome sequencing quality

metrics. pCMS cases are plotted in red, and controls in blue. The first two PCs together capture

56.3% of the variance. R code to generate this data and figure are in S1 File, and individual PC

factor values are in S1 Table. This figure includes PCA outliers (>3 standard deviations from

the mean in PCs 1–5), which were removed during quality control, prior to further analysis of

case-control data.

(TIF)

S2 Fig. Maximum Likelihood Estimate (MLE) of number of pCMS risk genes. For each

number of possible risk genes between 1–2,500, we conducted 50,000 simulations to determine

the number of risk genes that yielded the closest agreement between our observed and simu-

lated data. This MLE method yields an estimate of 184 pCMS risk genes (red vertical line). See

S1 File.

(TIF)

S3 Fig. Gene discovery by number of trios sequenced. Using our estimate of 184 risk genes

(based on the MLE method–see Main Text and S1 File), we estimated the number of probable

(FDR q<0.3) and high-confidence (FDR q<0.1) risk genes that will be discovered as more

pCMS trios are sequenced. We performed 10,000 simulations at each cohort size from 25–

3,000 trios, randomly generating variants and assigning to risk genes in agreement with the

proportions seen in our data, then applying the TADA-Denovo algorithm. Based on these
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simulations, WES of 500 trios should find 16 probable and 7 high-confidence risk genes; 1000

trios should find 51 probable and 26 high-confidence risk genes.

(TIF)

S4 Fig. KDM5B brain expression levels. Brain expression by region for KDM5B. Data is from

GTEx Analysis Release V7 (dbGaP Accession phs000424.v7.p2) (https://gtexportal.org/home/

gene/KDM5B). Expression values are shown in Transcripts Per Million (TPM), calculated

from a gene model with isoforms collapsed to a single gene. No other normalization steps have

been applied. Box plots are shown as median, 25th, and 75th percentiles. Points are displayed

as outliers if they are above or below 1.5 times the interquartile range. Further details about

expression quantification and samples can be found at https://gtexportal.org/home/

documentationPage#AboutData.

(TIF)

S5 Fig. KDM5B spatiotemporal brain expression. Brain expression trajectories of KDM5B in

the developing human brain. Expression data is from the Brainspan Consortium (brainspan.

org, hbatlas.org), generated using the Affymetrix GeneChip Human Exon 1.0 ST Array plat-

form. Vertical axis is the log2-transformed array signal intensity, which is proportional to tran-

script expression. A stringent threshold of�6 was required to meet criteria for brain

expression. Horizontal axis represents periods of human development and adulthood as previ-

ously defined by Kang et al (2011). Birth begins period 8 and adolescence begins period 12.

Brain regions are by color: neocortex (NCX), hippocampus (HIP), amygdala (AMY), striatum

(STR), mediodorsal nucleus of the thalamus (MD), cerebellar cortex (CBC).

(TIF)

S6 Fig. Stereotypy scores in Simons Simplex Collection ASD probands. Tukey box and

whisker plot of Stereotyped Behavior Score (SBS) from the RBS-R (Repetitive Behavior Scale-

Revised) in aged-matched Simons Simplex Collection ASD probands with (+, n = 4) and with-

out (-, n = 364) de novo damaging mutations in KDM5B. Two-tailed Mann-Whitney test of

ages (months) between groups: p = 0.86. One-tailed Mann-Whitney test of SBS between

groups: p = 0.076.

(TIF)

S1 Table. Phenotype, exome sequencing metrics, and principal components analysis. See

“S1 Table”. First tab contains individual-level sample information (columns A-I), including

family ID, individual ID, phenotype, cohort, collection site, gender, capture platform, size of

“callable exome”, and paternal age (years) at birth, where available. Column J lists reasons for

any sample exclusions by quality control methods; “0” indicates that the sample was not

excluded and was included in subsequent analyses. Columns K-AF list individual sample

sequencing metrics generated using PicardTools, and GATK DepthOfCoverage tools. Col-

umns AG-AQ list individual sample sequencing metrics generated using PLINK/SEQ (i-stats;

https://psychgen.u.hpc.mssm.edu/plinkseq/stats.shtml). Columns B, K-AQ were included in

Principal Components Analysis (PCA). Third tab contains cohort-level metrics calculated

using samples passing quality control. ±95% confidence intervals are given, when applicable.

Fourth tab contains coordinates generated for each sample for the top 10 principal compo-

nents following PCA. The code used to generate this data is included in S1 File. Using these

coordinates, we removed trios with family members falling more than three standard devia-

tions from the mean in any of the first five principal components; this information is contained

in the fifth tab.

(XLSX)
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S2 Table. Annotated de novo variants in pCMS and controls. See “S2 Table”. Detailed infor-

mation on all high confidence de novo variants in cases and controls. These variants were

annotated using ANNOVAR, based on RefSeq hg19 gene definitions. Column descriptions are

provided in a separate tab of this file.

(XLSX)

S3 Table. Gene-level de novo mutation rates, variant counts, and TADA-Denovo results.

See “S3 Table”. First tab contains de novo mutation rates used to perform subsequent maxi-

mum likelihood estimation (MLE) and TADA-Denovo analyses. The following mutation rates

are listed for each gene: overall (mut.rate), likely gene disrupting (lgd), predicted damaging

missense (mis3, also referred to as Mis-D), and all damaging (lgd + mis3). These overall muta-

tion rates were previously published (Ware et al., 2015) from unaffected parent-child trios.

The code used to generate the mutation rate table is provided in S1 File. Second tab contains

the input file for the TADA-Denovo algorithm. Gene-level expected mutation rates for LGD

(“mut.cls1” column) and Mis-D variants (“mut.cls2” column) are listed, along with their

respective observed mutation counts in our pCMS data (“dn.cls1” and “dn.cls2”, respectively).

Code for running TADA-Denovo is given in S1 File. Third tab contains the final output results

from TADA-Denovo code provided in S1 File. One gene harboring more than one damaging

de novo (LGD or Mis-D) variant in unrelated pCMS families is highlighted in yellow

(KDM5B). This gene exceeded the threshold for being considered a high confidence

(qval< 0.1) risk gene.

(XLSX)

S4 Table. DNENRICH gene lists and results. See “S4 Table”. See S1 File for details of DNEN-

RICH analysis and gene lists used. First tab contains input gene lists and information about

their curation. Second tab contains the input mutation list for DNENRICH; each row repre-

sents a de novo damaging mutation in a pCMS proband. Third tab contains results output

from DNENRICH. Significantly enriched gene sets are highlighted.

(XLSX)

S5 Table. Exploratory pathway, gene ontology, and spatiotemporal analyses results. See

“S5 Table”. Gene ontology results from Enrichr are in the first tab, including unadjusted and

adjusted p-values. Gene ontology results from ConsensusPathDB are in the second tab; p-

values< 0.05 and corresponding q-values are shown. Network analysis results from IPA are

shown in the third tab. Specific Enrichment Analysis (SEA) exploring whether genes cluster

within certain brain regions across development using Brainspan atlas data is in the fourth tab;

p-values < 0.05 are highlighted in yellow. See S1 File for details of these analyses.

(XLSX)

S1 File. Supplementary methods.

(DOCX)
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