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Abstract

Aging leads to time-dependent functional decline of all major organs. In particular, the aging

brain is prone to cognitive decline and several neurodegenerative diseases. Various studies

have attempted to understand the aging process and underlying molecular mechanisms by

monitoring changes in gene expression in the aging mouse brain using high-throughput

sequencing techniques. However, the effect of microRNA (miRNA) on the post-transcrip-

tional regulation of gene expression has not yet been comprehensively investigated. In this

study, we performed global analysis of mRNA and miRNA expression simultaneously in the

hypothalamus and hippocampus of young and aged mice. We identified aging-dependent

differentially expressed genes, most of which were specific either to the hypothalamus or

hippocampus. However, genes related to immune response-related pathways were

enriched in upregulated differentially expressed genes, whereas genes related to metabo-

lism-related pathways were enriched in downregulated differentially expressed genes in

both regions of the aging brain. Furthermore, we identified many differentially expressed

miRNAs, including three that were upregulated and three that were downregulated in both

the hypothalamus and hippocampus. The two downregulated miRNAs, miR-322-3p, miR-

542-3p, and the upregulated protein-encoding coding gene C4b form a regulatory network

involved in complement and coagulation cascade pathways in the hypothalamus and hippo-

campus of the aging brain. These results advance our understanding of the miRNA-medi-

ated gene regulatory network and its influence on signaling pathways in the hypothalamus

and hippocampus of the aging mouse brain.

Introduction

Aging is an irreversible, time-dependent process marked by the decline of physiological func-

tions responsible for survival and fertility [1]. This physiological decline leads to loss of organ
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and tissue function and an increased risk of cancer, diabetes, and cardiovascular disease [2].

Aging of the brain is often associated with a decline in motor, sensory, and cognitive functions,

resulting in common neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease

[3]. To understand the aging processes, the molecular mechanisms of aging, as well as mor-

phological and physiological changes in the aging brain, have been extensively investigated [4].

In particular, analysis of gene expression changes associated with brain aging can characterize

cellular events during aging and may allow prevention or treatment of age-related diseases [5].

Gene expression changes during aging have been reported at cellular, tissue and organism

level using Drosophila [6, 7], Caenorhabditis elegans [8], and mouse models [9]. Several studies

have identified differentially expressed genes (DEGs) by comparing young and aged mice,

mostly focusing on specific brain regions [10]. Using RNA sequencing (RNA-seq), Shavla-

kadze et al. [11] identified 229 age-regulated genes with a significant proportion implicated in

immune-response signaling pathways in the hippocampal region of rats. Li et al. [12] per-

formed RNA-seq of the hippocampal regions of the mouse brain during aging and found

DEGs associated with neuroinflammation. Ximerakis et al. [13] performed single-cell RNA-

sequencing (scRNA-seq) of whole brains of young and aged mice and found DEGs involved in

protein synthesis, oxidative stress, inflammatory responses, and growth factor signaling. How-

ever, the underlying control mechanisms of genome-wide gene expression in aging are still

not comprehensively understood.

miRNAs are small non-coding RNAs composed of 19–24 nucleotides that regulate gene

expression at the post-transcriptional level [14, 15]. miRNA-mediated regulation of gene

expression is critical for most biological processes, including tissue development, cellular dif-

ferentiation, cell proliferation, and cell death [16]. In humans, 60% of protein-coding genes

are regulated by miRNAs [17]. Numerous studies have shown that miRNAs play an important

role in regulating aging processes, such as cognitive decline, inflammation, and neurodegener-

ative diseases, in mouse brains [18–20]. Li et al. [21] analyzed miRNA expression datasets

from human prefrontal cortex obtained from individuals aged 2 days to 98 years and proposed

that age-related miRNAs play an important role during development and the aging process of

the human brain. Danka Mohammed et al. [22] performed small-RNA sequencing (small-

RNA seq) of mouse brain hippocampal regions in young and aged mice and identified a differ-

entially upregulated miR-204 target Ephb2, which may be involved in age-associated cognitive

decline. Inukai et al. [23] investigated miRNA expression in whole brains of young (5-month-

old) and aged (24–25-month-old) mice, and found that the predicted target genes of eight age-

dependent upregulated miRNAs were enriched in the insulin signaling pathway, which plays a

significant role in the aging process [24].

Our understanding of miRNA-mediated regulation of gene expression in the complex

aging process remains incomplete. We therefore performed simultaneous analysis of mRNA

and miRNA expression in the hypothalamic and hippocampal regions of young and aged

mouse brains. Our sequencing data indicated early signatures of aging when comparing gene

expression in young (2-month-old) and aged (15-month-old) samples. Several DEGs, includ-

ing C4b, were confirmed in publicly available single-nucleus RNA sequencing (snRNA-seq)

data from young (4-month-old) and aged (24-month-old) mouse brains. In addition, we iden-

tified differentially expressed miRNAs during aging and predicted the regulatory gene net-

works of miRNAs and their targets. The complement and coagulation cascades were notably

associated with miRNA-mediated gene expression changes during brain aging in both the

hypothalamus and hippocampus. Furthermore, coagulation factor III, a primary initiator of

the extrinsic coagulation pathway, was detected at a higher level in aged mouse brain than in

young mouse brain.
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Results

Transcriptomic analysis of mRNA expression from the hippocampus and

hypothalamus of aging mouse brains

Age-dependent gene expression changes in the mouse brain have been primarily examined in

the late stages (24–27-month-old) of aging [11, 12]. Here, we focused on understanding the

early events in brain aging, which could reveal triggering factors of the aging process. We

investigated mRNA and miRNA expression changes in the relatively early aging process using

young (2-month-old) and aged (15-month-old) C57BL/6J mice. Brain tissue has a complex

structure with multiple regions [25, 26]. The hypothalamus is a crucial structure in the brain

region involved in neuronal, endocrine, homeostatic, and aging processes [27–30]. Age-related

changes are observed in the neurons of the hypothalamus that control metabolism and energy

expenditure during obesity-associated aging [29, 31, 32]. The hippocampus plays an important

role in regulating learning, encoding memory, and memory consolidation, and participates in

cognitive aging [33–36]. Age-related decline in hippocampal volume has been well docu-

mented and correlates with Alzheimer’s disease and mild cognitive impairment [37–39]. We

therefore examined tissue-specific signatures in both the hypothalamus and hippocampus dur-

ing brain aging. Total RNA isolated from hypothalamic and hippocampal tissues of young and

aged mice were used for both mRNA and small RNA sequencing (Fig 1A and S1A Fig). At the

transcriptome level, 17,997 genes were analyzed in hypothalamic tissue (S1 Table). Differential

expression analysis revealed 74 downregulated genes and 65 upregulated genes (S1B Fig). A

total of 17,818 genes were analyzed in hippocampal tissues (S1 Table), with 117 downregulated

genes and 83 upregulated genes (fold change > 1.5, padj < 0.05) (S1C Fig). Among differen-

tially expressed genes (DEGs), we found 20 upregulated and 34 downregulated genes common

to both hypothalamic and hippocampal tissues (fold change > 1.5, padj < 0.05) (Fig 1B and

1C). Brain region-specific transcriptome analysis also revealed hypothalamus- or hippocam-

pus-specific DEGs, including 45 upregulated and 40 downregulated hypothalamic genes, and

63 upregulated and 83 downregulated hippocampal genes (Fig 1B and 1C). Individual DEGs

identified in our data have also been reported in previous studies. Pluvinage et al. [40] found

that age-dependent upregulation of Cd22 in hippocampal tissue is related to cognitive decline

in old mice. Furthermore, interleukin-1 receptor-associated kinase 3 (Irak3), a cytokine signal-

ing modulator that play an important role in obesity and metabolic syndromes by regulating

inflammatory responses, is upregulated with age [41]. Li M et al. [12] found cognitive dysfunc-

tion related Defb1, Spag6, and Ly9 genes that are differentially downregulated in the hippo-

campal tissue of aged mice (12 months) when compared with young mice (2 months), and

these genes are reportedly involved in apoptosis and inflammation during aging.

KEGG enrichment analysis of differentially expressed genes

In our analysis, the expression level changes for most genes were under 1.5-fold, with the

exception of 54 genes in both tissues, suggesting that changes in mRNA expression are not dra-

matic during brain aging. Although expression levels of individual genes are only slightly

altered, the interconnected gene networks of DEGs can play a triggering role in the aging pro-

cess and drive critical events. Therefore, to investigate biological pathways linked to DEGs, we

performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of upregu-

lated and downregulated genes in hippocampal and hypothalamic tissues. For hypothalamic

tissues, upregulated genes were significantly enriched in cytosolic DNA-sensing and B-cell

receptor signaling pathways, whereas downregulated genes were enriched in pyrimidine

metabolism and leukocyte transendothelial migration pathways (Fig 1D). For hippocampal
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Fig 1. Differentially expressed genes in the hypothalamus and hippocampus of young and aged mice. (A) Schematic of the

experimental design. Hypothalamic and hippocampal tissues were dissected from young (2-month-old) and aged (15-month-old) mice.

Total RNA was isolated, followed by mRNA and small-RNA sequencing analysis. (Created with Biorender.com) (B) Bar graph showing

the number of total detected genes and brain region-specific genes (dark gray) in hypothalamic or hippocampal tissue. These genes were

further categorized as either upregulated or downregulated genes (cut off: fold change> 1.5, padj < 0.05). (C) Scatter plot of expression

level changes for a gene set detected in both hypothalamic and hippocampal tissues. Significantly upregulated or downregulated genes

(fold change> 1.5, padj < 0.05) in the hypothalamic or hippocampal tissues during aging are highlighted with colors. (D) Top five

KEGG signaling pathways associated with differentially upregulated (red) and downregulated (blue) genes in hypothalamic tissue. (E)

Top five KEGG signaling pathways associated with differentially upregulated (red) and downregulated (blue) genes in hippocampal

tissue.

https://doi.org/10.1371/journal.pone.0291943.g001
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tissues, KEGG pathway enrichment analysis revealed that upregulated genes were enriched in

complement and coagulation cascades, and antigen processing and presentation pathways,

whereas downregulated genes were enriched in ECM-receptor interaction and glycine, serine,

and threonine metabolic pathways (Fig 1E). Taken together, during brain aging, upregulated

genes are enriched in immune-related pathways in both hypothalamic and hippocampal tis-

sues, while downregulated genes are associated with metabolic pathways. The aging brain

exhibits systemic inflammation and impaired immune responses and undergoes decreased

energy utilization and increased mitochondrial dysfunction [42–52]. Hypometabolism and

inflammation, which are closely connected, correlate with cognitive decline and increase the

risk of age-related diseases, including neurodegenerative disease [42, 53]. Our results suggest

that age-dependent gene expression changes underlie immune and metabolic system dysfunc-

tion, thus highlighting the relevance of gene regulatory networks in brain aging.

Cell-type specific DEG analysis using single-nucleus RNA sequencing data

We next investigated from which cell types in the mouse brain the age-related signatures

found in our analysis originated. We compared our bulk mRNA-seq data to publicly available

snRNA-seq data from hypothalamic (GSE188646) [54] and hippocampal (GSE161340) [55]

regions, although snRNA-seq only provides nuclear mRNA levels [56]. First, we verified the

total coverage of gene expression level analysis in the bulk mRNA-seq and snRNA-seq. In

hypothalamic tissue, our bulk RNA-seq identified 17,997 genes, of which 57.7% were detected

in snRNA-seq data [54] (Fig 2A). In hippocampal tissue, our bulk mRNA-seq identified a total

of 17,818 genes, of which 56% were found in snRNA-seq data [55] (Fig 2B). We also analyzed

the number of overlapping genes for each cell type and found a higher number of overlapping

genes in neuronal cell types (S2A and S2B Fig). We then calculated the module score of relative

expression for the genes common to both bulk mRNA-seq and snRNA-seq data within the

identified cell types [57]. In hypothalamic tissue, the module scores of astrocytes, microglia/

macrophages, oligodendrocytes, tanycytes, and vascular leptomeningeal cells (VLMCs) were

similar, whereas ependymocytes, oligodendrocyte precursors (OPCs), and pericytes/endothe-

lial cells exhibited relatively higher scores. Neurons exhibited a distinctly high module score in

the hypothalamus (Fig 2C). In hippocampal tissue, the module scores of neurons and inter-

neurons were also higher than those of microglia, oligodendrocytes, astrocytes, and OPCs

(Fig 2D). Brain cells have more neurons compared with other non-neuronal glial cells [58],

which accounts for the high module scores in our analysis. We then evaluated DEG expression

levels from our bulk mRNA-seq and snRNA-seq data. Among 65 upregulated and 74 downre-

gulated genes from hypothalamic bulk mRNA-seq data, five upregulated and seven downregu-

lated genes in astrocytes, seven upregulated and nine downregulated genes in neurons, and

five upregulated and eight downregulated genes in oligodendrocytes were detected in snRNA-

seq data (Fig 2E). In the hippocampus, 12 upregulated and 16 downregulated genes in astro-

cytes, 16 upregulated and 18 downregulated genes in neurons, and 14 upregulated and 16

downregulated genes in oligodendrocytes were found in snRNA-seq data among the total of

83 upregulated and 117 downregulated genes (Fig 2H). Only a small number of overlapping

genes were detected in snRNA-seq data, probably due to inadequate coverage of low-abun-

dance genes. For these overlapping gene sets, global correlation of expression level changes

was not observed in bulk mRNA-seq and snRNA-seq data (S3 Fig). However, several genes

showed age-dependent gene expression changes in specific cell types, similar to the results in

bulk mRNA-seq (Fig 2F, 2G, 2I and 2J). The snRNA-seq samples were obtained from 3- and

24-month-old mice for the hypothalamus, and 4- and 24-month-old mice for the hippocam-

pus. Our bulk RNA-seq samples were obtained from 2- and 15-month-old mice for both
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Fig 2. Comparison of bulk RNA-sequencing and publicly available single-nucleus RNA sequencing datasets. (A) Pie chart showing

total genes expressed in bulk RNA-seq and the proportion of gene coverage compared with snRNA-seq from hypothalamic tissues. (B)

Pie chart showing the total number of genes expressed in bulk RNA-seq and the percentage of gene coverage compared with snRNA-seq

from hippocampal tissues. (C) Violin plot of bulk RNA-seq illustrating total distribution of covered genes of module scores for

astrocytes, ependymocytes, microglia/macrophages, neurons, oligodendrocytes, OPCs, pericytes/endothelial cells, tanycytes, and

VLMCs in hypothalamic tissues from snRNA-seq datasets. (D) Violin plot of bulk RNA-seq illustrating total distribution of covered

genes of module scores for astrocytes, ependymocytes, microglia/macrophages, neurons, oligodendrocytes, OPCs, pericytes/endothelial

cells, tanycytes, and VLMCs in hippocampal tissues from snRNA-seq datasets. Module scores for covered genes in both bulk RNA-seq

and snRNA-seq are shown. More scores analyzed from the Seurat R package represent the average expression levels of the genes of

interest against that of a set of control genes [57]. (E) Strip chart of DEGs from bulk RNA-seq (cut-off value indicated as gray dashed

lines: fold change> 1.5, padj < 0.05) and overlap of these genes with snRNA-seq data (cut-off value indicated as red lines: log2FC> 0.1,

padj < 0.05) in hypothalamic tissue. Upregulated (red) or downregulated (blue) DEGs from bulk RNA-seq data that are also detected in

snRNA-seq data are marked in the chart. (F, G) Expression of individual age-regulated genes normalized to TPM log10 counts from bulk
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hypothalamic and hippocampal regions. We plotted the normalized expression levels for each

individual gene using the same log10-scale as the publicly available snRNA-seq data (TP10k

values) and our bulk mRNA-seq data (TPM values) at each aging time point. In hypothalamic

tissue, we observed increased mRNA levels of C4b and Dpyd in astrocytes; Abca8a and Dpyd
in oligodendrocytes; and Kcnh7, Glra3, Lrmda, and Plcxd3 in neurons in both snRNA-seq and

our bulk mRNA-seq data (Fig 2F). C4b was previously defined an aging-induced gene and

implicated in age-related macular degeneration [11, 59]. The mRNA level of Nat8f1 in astro-

cytes decreased during brain aging (Fig 2G). In hippocampal tissue, we observed increased

mRNA levels of C4b in astrocytes; C4b and C1ql3 in oligodendrocytes; and Fam8a1, despite

the slight increase, in neurons (Fig 2I). Decreased mRNA levels of Phkg1 in astrocytes; Polr3e,
Sgk2, and Gamt in oligodendrocytes; and Polr3e and Ndn in neurons were observed during

brain aging in the snRNA-seq data (Fig 2J). Combined with the snRNA-seq data of 24-month

aged mice, several early signatures of brain aging in bulk mRNA-seq data of 15-month-old

aged mice were confirmed in specific cell types of brain tissue.

Age-dependent microRNA expression changes in hippocampal and

hypothalamic tissues

To investigate miRNA-mediated regulatory networks of gene expression during the early

stages of brain aging, we performed small-RNA sequencing in the hypothalamus and hippo-

campal tissues of young (2-month-old) and aged (15-month-old) mice using the same RNA

samples as for mRNA sequencing analysis (S4A Fig). A small number of differentially

expressed miRNAs in hypothalamic and hippocampal tissues during brain aging were identi-

fied (Fig 3A and 3B). Among a total of 731 miRNAs analyzed in hypothalamic tissue, six miR-

NAs were upregulated, and three miRNAs were downregulated (fold change > 1.5; padj <

0.05) during brain aging (Fig 3A, S4B, S4F Fig and S2 Table). A total of 731 miRNAs were

expressed in hippocampal tissue, of which 16 were upregulated and 29 were downregulated

(fold change > 1.5; padj < 0.05) (Fig 3A, S4C, S4G Fig and S2 Table). Differentially expressed

miRNAs miR-542-3p and miR-322-5p were validated by quantitative PCR (S4D and S4E Fig).

A previous study, in which 49 upregulated and 31 downregulated miRNAs in hippocampal tis-

sues between young (2 and 6 months) and aged (18 months) mice were detected, reported

downregulation of miR-322-5p and miR-322-3p [22]. In this study, three miRNAs, mmu-

miR-5100, mmu-miR-8114, and mmu-miR-3084-3p were upregulated, and three miRNAs,

mmu-miR-322-3p, mmu-miR-542-3p, and mmu-miR-412-5p were downregulated in both

hypothalamic and hippocampal tissues (Fig 3B).

Differentially expressed miRNAs and their target genes are involved in

specific biological pathways during brain aging

To investigate the physiological effects of differentially expressed miRNAs, we first predicted

miRNA target genes using Targetscan-Mouse v7.2 [60]. We then selected a subset of target

genes that were differentially expressed from our mRNA sequencing data. In hypothalamic

RNA-seq datasets and normalized TP10k log10 counts from snRNA-seq datasets for (F) differentially upregulated and (G) differentially

downregulated genes in hypothalamic tissues. (H) Strip chart of DEGs from bulk RNA-seq (cut-off value indicated as gray dashed lines:

fold change> 1.5, padj < 0.05) and overlap of these genes with snRNA-seq data (cut-off value indicated as red lines: log2FC> 0.1, padj <

0.05) in hippocampal tissue. Upregulated (red) or downregulated (blue) DEGs from bulk RNA-seq data that were also detected in the

snRNA-seq data are marked in the chart. (I, J) Expression of individual age-regulated genes normalized to TPM log10 counts from bulk

RNA-seq datasets and normalized TP10k log10 counts from snRNA-seq datasets for (I) differentially upregulated and (J) differentially

downregulated genes in hippocampal tissues.

https://doi.org/10.1371/journal.pone.0291943.g002
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tissue, 27 upregulated genes were predicted as potential targets for the three downregulated

miRNAs, of which Abca8a, C4b and Xdh exhibited increased expression levels of more than

two-fold (S5 Fig). For the six upregulated miRNAs, 40 downregulated genes, including Wdfy1,

Fig 3. Differentially expressed miRNAs in the hypothalamus and hippocampus of young and aged mice. (A) The bar

graph shows the number of total detected miRNAs and tissue-specific upregulated and downregulated miRNAs (cut off

value: fold change> 1.5, padj < 0.05) in hypothalamic and hippocampal tissues. All the miRNAs are commonly detected in

both tissues. (B) Scatterplot of miRNA expression level changes in hippocampal and hypothalamic tissues during aging.

Significantly upregulated and downregulated genes (padj < 0.05) in the hypothalamic or hippocampal tissues during aging

are highlighted with colors. (C–F) KEGG signaling pathways visualized in a network of miRNA-mediated regulatory target

genes from mRNA and small-RNA sequencing data. Dot size for each gene indicates the number of differentially expressed

miRNAs expected to target DEGs. (C) Downregulated miRNAs expected to target upregulated genes in hypothalamic

tissues. (D) Upregulated miRNAs expected to target downregulated genes in hypothalamic tissues. (E) Downregulated

miRNAs expected to target upregulated genes in hippocampal tissues. (F) Upregulated miRNAs expected to target

downregulated genes in hippocampal tissues.

https://doi.org/10.1371/journal.pone.0291943.g003
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Aplnr, Dynlt1b, Nnt, Pdlim2, and Gabra2 (log2 fold change < -1), were predicted as potential

targets (S6 Fig). In hippocampal tissue, 64 upregulated target genes for 26 downregulated miR-

NAs (S7 Fig) and 76 downregulated target genes for 15 upregulated miRNAs (S8 Fig) were

predicted. Among them, 8 upregulated target genes, Abca8a, C4b, Pcdhb9, Pcdhb3, Xdh, Mlph,

Zbtb16, and Zc3hav1, and 17 downregulated target genes, Wdfy1, Nnt, Pdlim2, Sgk2, Rnf122,

Gabra2, Mog, Btbd16, Cldn11, Mal, Eln, Tspan2, Ddah2, Srd5a1, Cd248, Hist1h1c and Apcdd1,

were commonly detected in both hypothalamic and hippocampal tissues. We then analyzed a

gene regulatory network of miRNA-targeted DEGs using the Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING). We found densely interconnected networks of miRNA

target genes, suggesting that miRNAs mediate functional networks through gene expression

regulation (S9 Fig). KEGG pathway enrichment analysis of potential miRNA target genes with

differential expression during aging also indicated the functional relevance of miRNA-medi-

ated gene expression regulation. In the hypothalamus, upregulated target genes C4b, Fcgr2b,

and Irf8 are enriched in the complement and coagulation cascades, which are targeted by

downregulated miR-322-3p or miR-542-3p in hypothalamic tissues (Fig 3C and S5 Fig).

Downregulated genes targeted by upregulated miRNAs were significantly enriched in dilated

cardiomyopathy, adrenergic signaling, and prolactin signaling pathways in hypothalamic tis-

sue (Fig 3D). In the hippocampus, upregulated genes targeted by downregulated miRNAs

were significantly enriched in the complement and coagulation cascades, as well as antigen

processing and presentation signaling pathways (Fig 3E). Cd22, which is upregulated in the

aged brain, restrains phagocytic capacity and phagocytic clearance of protein aggregates and

cellular debris [40]. In our analysis, we found, in addition to Cd22, several upregulated genes

involved in antigen processing and presentation signaling pathways, which is concordant with

the decreased expression of relevant miRNAs (Fig 3E). Downregulated genes targeted by upre-

gulated miRNAs were significantly enriched in the arginine and proline metabolic pathways

(Fig 3F). Taken together, our gene network and functional enrichment analyses suggest that

miRNA-mediated gene expression regulation induces age-dependent molecular and cellular

changes.

Gene regulatory network of differentially expressed miRNAs and their

target genes in aged brain

From our mRNA and small-RNA sequencing data, we identified the network of differentially

expressed miRNAs and their predicted target genes that are commonly found in the hypothal-

amus and hippocampus. Upregulated Pcdhb3, Zc3hav1, Pcdhb9, C4b, Zbtb16, Mlph, Xdh, and

Abca8a are linked to downregulated miRNAs miR-322-3p and miR-542-3p as miRNA–target

gene pairs (Fig 4A). Upregulated miRNAs miR-3084-3p and miR-8114, and downregulated

target genes Sgk2, Gabra2, Nnt, Wdfy1, Hist1h1c, Pdlim2, Ddah2, Rnf122, Cldn11, and Tspan2
(Fig 4B) also exhibit miRNA–target gene relationships. We then investigated whether age-

related differentially expressed target genes are repressed by their corresponding miRNAs.

C4b expression levels decreased upon transfection with miR-322-3p and miR-542-3p mimics

in the astrocyte cell line (Fig 4C).

Relieving miRNA-mediated suppression of gene expression during brain aging can contrib-

ute to C4b upregulation, which is a noticeable aging signature in our analysis. C4b is a key

component of the complement system that plays an important role in innate immunity and

links the immune system to the coagulation pathway [62, 63]. Higher C4b levels are associated

with inflammation and tissue destruction [64, 65]. Dysfunction of the complement and coagu-

lation systems are involved in age-related macular degeneration, thrombosis, and hemorrhage

[66]. Our study found aging-dependent changes of miRNAs and target genes involved in the
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complement and coagulation pathways (Figs 3C, 3E and 4A). Therefore, we examined the

alteration of a key effector in the complement and coagulation pathways in aged mouse brain

samples. We analyzed the levels of coagulation factor III, a primary initiator of the extrinsic

coagulation pathway, and 110 soluble proteins, including cytokines, chemokines, and growth

factors, with the Mouse XL Cytokine Array Kit in young and aged brains using the same sam-

ples as for mRNA and small-RNA sequencing. The levels of most other cytokines and soluble

proteins did not significantly change in the aged brains (Fig 4D). However, higher coagulation

factor III levels were observed in the aged brains than in the young brains (Fig 4D and 4E).

Collectively, our data suggest dysregulation of complement and coagulation pathways as a

prominent feature of gene expression changes during brain aging.

Discussion and conclusions

miRNA-mediated regulatory networks in the early stages of normal brain aging are not com-

prehensively understood. We therefore performed simultaneous mRNA and small-RNA

Fig 4. miRNA-mediated target gene regulation during brain aging. (A, B) Differentially expressed miRNAs and their

predicted common target genes in both hypothalamic and hippocampal tissues. Node sizes for target genes ranked by the

degree method [61]. The network of downregulated miRNAs and upregulated target genes is shown in (A). The network of

upregulated miRNAs and downregulated target genes is shown in (B). (C) Validation of target gene expression following

mimic miR-322-3p and miR-542-3p transfection in the astrocyte cell line by qRT-PCR (n = 3). Data are expressed as

mean ± standard deviation (SD). **p< 0.01, * p< 0.05 by Student’s two-tailed t-test. (D) Representative images of

immunoblot for coagulation factor III and 110 soluble proteins in the brains of young and aged mice. (E) Quantification of

coagulation factor III. Data are expressed as mean ± standard deviation (SD). **p< 0.01, * p< 0.05 by Student’s two-tailed

t-test.

https://doi.org/10.1371/journal.pone.0291943.g004
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sequencing of hypothalamic and hippocampal tissues from young and aged mouse brains,

which enabled identification of novel miRNA-mediated regulatory networks (Fig 1A). The

number of genes with significant changes is limited, and the overall ranges of gene expression

changes are small in both hypothalamic and hippocampal tissue during the early stage of nor-

mal brain aging (2 months and 15 months). Previous studies reported more variability in dif-

ferentially expressed miRNAs and mRNAs in hippocampal tissue at later stages (2 months and

18 months [22], and 2 months and 24 months [12]) of aging. However, we identified several

aging-related differentially expressed mRNAs (S1B and S1C Fig) and miRNAs (S4B, S4C, S4F

and S4G Fig) in hypothalamic and hippocampal tissues. The early signatures revealed by our

study can provide insight into triggering factors that induce age-dependent progressive molec-

ular and cellular changes, which warrant further investigation. Our RNA-seq data were gener-

ated from the hypothalamic and hippocampal tissues of young and aged male mice. Therefore,

further analysis of aging in female mouse brain is also needed to identify both common and

sex-specific aging processes.

Recently, single-cell sequencing has been performed to understand cell type-specific aging

processes in mouse brains [13, 54]. Although snRNA-seq data for the hypothalamus and hip-

pocampus only cover approximately half of the genes analyzed from our bulk mRNA-seq, we

tried to estimate the cell-type origin of DEGs in our bulk mRNA-seq data using snRNA-seq

data. Only a small number of genes among approximately 100 DEGs of the bulk mRNA-seq

data were found in the snRNA-seq data. DEGs that change sensitively in response to cellular

signaling or environmental stimulation may be expressed in low abundance and can therefore

not be detected by snRNA-seq analysis [67–69]. Several DEGs of our bulk mRNA-seq data

similarly showed changed expression in snRNA-seq data, especially in oligodendrocytes, even

though the total genes analyzed by bulk mRNA-seq were mainly found in the snRNA-seq data

of neurons. Compared with neurons, which comprise approximately 50% of mouse whole

brain tissue, oligodendrocytes make up a smaller proportion [70]. However, gene expression

changes during aging seem to be particularly dynamic in oligodendrocytes. When expression

levels of DEGs detected in our bulk mRNA-seq data were evaluated in snRNA-seq, C4b in par-

ticular was shown to be upregulated in several cell types, including hippocampal astrocytes

and oligodendrocytes, and hypothalamic astrocytes (Fig 2I). Previous studies have reported

that isolated hypothalamic [71] and hippocampal astrocytes [24] exhibit increased C4b expres-

sion during aging. DEGs only detected in bulk mRNA-seq data need to be further validated

with a sensitive method to capture small changes at the single cell level, which would further

our understanding of cell type-specific changes in gene expression during brain aging.

In this study, we identified specific pathways related to gene expression changes during the

early aging process (Fig 1D and 1E). Immune-related pathways were significantly enriched in

DEGs. Specifically, our mRNA-seq analysis showed notable upregulation of Cd22, previously

reported to regulate B cell receptor signaling during aging [40], consistent with another previ-

ous report [12]. We also analyzed miRNA-mediated gene regulatory networks using miRNA

and mRNA expression profiles in young and aged mouse brains (S9 Fig). miRNA-target genes

with differential expression in our sequencing data are enriched in immune-related biological

pathways, including the complement and coagulation cascades, the IL-17 signaling pathway,

antigen processing and presentation, and chemokine signaling. Giannos and Prokopidis [72]

performed a meta-analysis of gene expression data of hippocampal tissues of young (5–8

months) and aged (21–26 months) male rats to identify clustered protein–protein interaction

networks of DEGs. Similar to our result, their highly-ranked cluster of 19 age-related hippo-

campal DEGs was also associated with immune response. These independent analyses of aging

in mouse and rats indicate that immune system and immune-related responses are closely
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related to the early aging process, which is consistent with previous findings that immune sys-

tem dysfunction has a great effect on aging [73, 74].

C4b, a representative gene in the complement system, was upregulated and targeted by two

downregulated miRNAs in the hypothalamus, and thirteen downregulated miRNAs in the

hippocampus during brain aging (Fig 3E). In particular, miR-542-3p, miR-322-3p, and C4b
form a gene regulatory network commonly found in the hypothalamus and hippocampus.

Serum concentrations of complement components have previously been reported to increase

in the brains of aged mice [75], and are associated with increased susceptibility to neurodegen-

eration. A knockout mouse model of C1q, another component of the complement system [76],

exhibited less cognitive decline [77, 78]. The complement system is interconnected with the

coagulation system [79], of which coagulation factor III was found to be elevated in our aged

mouse brain sample at the protein level. Aging is associated with thrombosis and bleeding dis-

orders [64–66]. In addition, thrombin dysregulation leads to inflammatory brain diseases such

as Alzheimer’s disease [80–82]. Zorzetto et al. [83] found that patients with Alzheimer’s disease

have statistically significant increased C4b expression compared with healthy controls, and

suggested that increased C4b explain the possible role of elevated complement component C4

protein levels in Alzheimer’s disease development. Stein et al. [84] indicated that elevated C4b

level may be associated with increased inflammation in aging brains. Taken together with pre-

vious findings, our data indicate the necessity of clearly defining the direct effects of a gene reg-

ulatory network on the complement and coagulation cascades, which could uncover the

critical gene regulatory network of miRNAs and their target genes in brain aging.

Herein, we presented mRNA and miRNA profiles generated from the same samples of

mouse hypothalamus and hippocampus tissues, which covered age-dependent changes from 2

to 15 months. Our data provides a valuable resource to understand miRNA-mediated gene

expression regulation during the early stage of brain aging. In addition, the identification of

other potential age-dependent regulators of gene expression, such as circular RNA and long

non-coding RNA, could reveal complex gene regulatory networks involved in aging processes.

Materials and methods

Animal studies

All experimental protocols were approved by the Institutional Animal Care and Use Committee

of Soonchunhyang University (protocol number #SCH19-0027). Male C57BL/6J mice (2 months

old for young, n = 6; 15 months old for aged, n = 6) were obtained from ORIENT BIO (Seong-

nam-si, Korea) and Korea Basic Science Institute (KBSI) Gwangju Center (Gwangju, Korea).

Each cage contained 5–6 mice. Mice were fed Harlan 2018S (ENVIGO Co., LTD) ad libitum. The

feed was sterilized using irradiation and hydrogen peroxide (H2O2). Water and Beta-Chip bed-

ding (Abedd, LTE E-001) were autoclaved at 121˚C for 20 minutes before use. Mice were housed

in specific-pathogen free environment. Temperature and humidity were maintained at 18–22˚C

and 40–60%, respectively. Ventilation rate was 10–15 times/hour (All Fresh Air System). Mice

were kept in 12 h light (7:00–19:00)/12 h dark cycle (19:00–7:00). We sterilized the equipment

used using an autoclave, and goods that were non-autoclavable were sterilized with H2O2.

Brain tissue isolation

We isolated the hypothalamus and hippocampus of the mouse brains. Tissues were dissociated with

Tissue Extraction Reagent I (FNN0071, Thermo Fisher Scientific, Waltham, MA, USA) or TRIzol™
Reagent (15596026, Thermo Fisher Scientific) for 1 min using a BeadBug™ microtube homogenizer

(Z763713, Sigma-Aldrich, St Louis, MO, USA). Total RNA was isolated from hypothalamus and

hippocampus tissue lysates using TRIzol™ Reagent (15596026, Thermo Fisher Scientific).
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Cell lines and transfection

Astrocyte cell line C8-D1A (astrocyte type I clone from C57/BL6 strains) was purchased from

the American Type Culture Collection (ATCC, Manassas, VA, USA). Cells were cultured in

Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher Scientific) supplemented with

10% fetal bovine serum (FBS, Thermo Fisher Scientific) and incubated at 37˚C and 5% CO2.

Cells were subsequently transfected with 40 nM mmu-miR-542-3p, mmu-miR-322-3p, and

NC mimics (GenePharma, Shanghai, China) using Lipofectamine (RNAiMAX Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s instructions. Cells were harvested after

48 hours of transfection for the analysis.

Quantitative RT-PCR

Total RNA was extracted from cells using TRIzol™ Reagent (15596026, Thermo Fisher Scien-

tific) and DNase I. cDNA synthesis was performed with 0.5 μg total RNA using ReverTra Ace

qPCR RT Master Mix reverse transcription kit (Toyobo, Osaka, Japan). Using the synthesized

cDNA, quantitative PCR (qPCR) was used to determine mRNA levels, normalized to universal

housekeeping reference gene 36B4 levels, and qPCR was performed using SYBR Green Real-

time PCR Master Mix (Toyobo). Mature miRNA levels were identified using TaqMan micro-

RNA assays (Applied Biosystems, Bedford, MA, USA) and normalized to U6 snRNA levels.

The comparative cycle threshold (Ct) method was used to determine relative mature miRNA

and mRNA levels. Primer sequences used for RT-PCR were as follows: 36B4, forward 50-
AACGGCAGCATTTATAACCC-30, reverse 50-CGATCTGCAGACACACACTG-30; C4b, forward

50-ACTTCAGCAGCTTAGTCAGGG-30, reverse 50-GTCCTTTGTTTCAGGGGACAG-30.

Analysis of coagulation factor III levels

Whole male mouse brains were isolated and lysed in Tissue Extraction Reagent I (FNN0071,

Thermo Fisher Scientific) to quantify coagulation factor III levels. Tissue lysates were centri-

fuged at 15,300 × g for 10 min at 4˚C, and the supernatant protein concentrations determined

using the Bradford assay (500–0006, Bio-Rad Laboratories, Hercules, CA, USA). Mouse brain

protein lysates were analyzed for coagulation factor III and 110 soluble proteins, including

chemokines, cytokines, and growth factors, using the Mouse XL Cytokine Array Kit (ARY028,

R&D systems, Minneapolis, MN, USA), according to the manufacturer’s instructions. Briefly,

100 μg protein lysate was incubated with nitrocellulose membranes containing 111 different

captured antibodies, printed in duplicate, for 16 h at 4˚C. Nitrocellulose membranes were sub-

sequently incubated with a detection antibody diluted in assay buffer for 2 h at room tempera-

ture and then incubated with streptavidin–horseradish peroxidase (HRP) in assay buffer for 30

min at room temperature. Immunoreactive spots on the nitrocellulose membranes were

detected using the chemical reagent mix and then exposed to X-ray film. In this study, multiple

exposure times were used. Pixel densities from positive signals on the developed X-ray film

were collected using a transmission mode scanner and analyzed with image analysis software

(HLImage++ Version 25.0.0r, https://www.wvision.com/QuickSpots.html, Western Vision

Software, Salt Lake City, UT, USA). Pixel densities were quantified and the relative change in

analyte levels was determined.

mRNA library preparation and sequencing

Three biological replicates (three mice) were prepared from each group of young (2-month-

old) and aged (15-month-old) male mice. Total RNA was extracted from the mouse brain tis-

sue using TRIzol (Invitrogen) reagent. For bulk-RNA sequencing, a 2100 Bio-Analyzer and
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RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA) were used to assess RNA quantity and

quality. Total RNA from each sample was used to generate mRNA sequencing libraries pro-

vided by BGI Genomics Co., Ltd. Briefly, poly-A-containing mRNA molecules were purified

using poly-T oligo-attached magnetic beads. After purification, the mRNA was cleaved with

divalent cations at high temperature, and the cleaved RNA fragments were subsequently con-

verted into single-strand cDNA using reverse transcriptase and random primers. The second

strand of cDNA was synthesized using DNA Polymerase I and RNase H. After PCR amplifica-

tion, the products were purified and enriched. DNA nanoballs were loaded into patterned

nanoarrays, and 100 bp pair-end reads were performed using the BGISEQ-500 platform for

further data analysis.

Small-RNA library preparation and sequencing

Small-RNA sequence libraries were prepared using the TruSeq Small RNA Library Prep Kit

(Illumina, San Diego, CA, USA), with 5 μg total RNA per sample for 12 samples. Sequencing

adapters were attached to the RNA molecules, which were used as primer-binding sites during

reverse transcription and PCR amplification of the cDNA sequence pool. The amplified cDNA

fragments were separated on agarose gel, and the band corresponding to the miRNA frag-

ments with ligated adapters was excised for subsequent sequencing. The library ranged from

145 to 160 bp. cDNA fragments were sequenced by read-length using the sequence-by-synthe-

sis method on an Illumina HiSeq 2500 platform.

mRNA sequence analysis

For mRNA sequencing, low-quality raw sequence reads, reads with adapters, and reads with

unknown bases were filtered using SOAPnuke software (https://github.com/BGI-flexlab/

SOAPnuke) to yield clean reads [85]. Next, filtered clean reads were mapped onto the refer-

ence mouse genome (Mus musculus, UCSC mm10) (https://genome.ucsc.edu/) using Hierar-

chical Indexing for Spliced Alignment of Transcripts (HISAT) (http://www.ccb.jhu.edu/

software/hisat/index.shtml) [86]. StringTie (http://ccb.jhu.edu/software/stringtie) was used to

predict novel genes [87]. Cuffcompare (Cufflinks tools) (http://cole-trapnell-lab.github.io/

cufflinks) [88] was used to compare the reconstructed transcripts to the reference annotation,

and CPC tools (http://cpc.cbi.pku.edu.cn) [89] were used to predict the coding potential of

novel transcripts. Subsequently, the gene expression levels of each sample were determined

using Bowtie2 (http://bowtie-bio.sourceforge.net/Bowtie2/index.shtml) [90] and RSEM

(http://deweylab.biostat.wisc.edu/RSEM) [91]. To reflect gene expression correlations between

samples, we calculated the Pearson correlation coefficients of all gene expression levels and dis-

played these coefficients using heat maps. All samples were hierarchically clustered according

to the expression levels of all genes.

Small-RNA sequence analysis

Raw sequencing reads were filtered based on quality and trimmed using adapter sequences.

The trimmed reads form a unique cluster that matches both sequence identity and read length.

The reads were aligned to the reference mouse genome (Mus musculus, UCSC mm10) (https://

genome.ucsc.edu/) and miRBase v21 (http://www.mirbase.org/) [92] precursor miRNAs to

identify known and novel miRNAs, respectively. The miRDeep2 (https://www.mdc-berlin.de/

8551903/en/) [93] (Friedländer, et al., 2008) algorithm was used to predict potential hairpin

structures. Unique cluster reads were then sequentially matched against the reference mouse

genome, miRBase v21, and the non-coding RNA database, Rfam9.1 (http://rfam.xfam.org/)

[94], to classify the known miRNAs. Read counts for each miRNA were extracted from the
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mapped miRNAs to determine abundance. Reproducibility was evaluated using Pearson’s

coefficient of the log2(Count+1)-value. For the range -1� r� 1, values approaching 1 repre-

sent greater similarity between samples. Differentially expressed miRNAs in young and aged

mice were identified using DESeq2 algorithms (https://github.com/mikelove/DESeq2) [95].

Differential gene expression analysis

For small-RNA sequencing, the reads for each miRNA were normalized to the total reads of

each sample. The normalized values were then converted to reads per million (RPM), calcu-

lated as miRNA count/total count of each sample x 1 million, to identify differentially

expressed miRNAs. Fold-change and nbinomWald Test from DESeq2 algorithms were used

for statistical analysis of each comparison pair. Selection criteria for differentially expressed

mRNA and miRNAs included fold change� 1.5 and an adjusted p-value < 0.05. Volcano

plots for mRNA sequencing were generated using the EnhancedVolcano v1.12 R package

(https://github.com/kevinblighe/EnhancedVolcano) [96]. Scatter plots for small-RNA

sequencing were generated using the ggplot2 R package (https://ggplot2.tidyverse.org).

Comparison of individual age-related genes in bulk RNA-seq and snRNA-

seq datasets

We compared changes in the expression of individual candidate genes during brain aging in

hypothalamic and hippocampal tissues from publicly available snRNA-seq hypothalamic

(GSE188646) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188646) and hippo-

campal (GSE161340) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161340)

datasets to our bulk RNA-seq datasets. RNA counts from each cell type were normalized and

transcripts per 10,000 (TP10k)-values were calculated using the Seurat R package (https://

satijalab.org/seurat/) [97]. We then used the log10 scale to normalize the TP10K values of each

transcript of the identified cell types in snRNA-seq datasets. For our bulk RNA-seq datasets,

which were generated from hypothalamic and hippocampal tissues, we used the fragments per

kilobase of transcript per million fragments mapped (FPMK)-count of each identified gene

and divided it by the gene length. We then multiplied these values by one million and divided

by the total number of identified genes to calculate normalized transcript per million (TPM)

values. We then used the log10 scale-normalized TPM values from each transcript to compare

individual RNA counts in the publicly available snRNA-seq datasets and our bulk RNA-seq

datasets. To analyze common genes in both bulk mRNA-seq and snRNA-seq data within the

identified cell types, we used module score function (Seurat::AddModuleScore()) from the

Seurat R package, which represents average expression level of each cluster on single-cell level,

subtracted by the aggregated expression of control sets [57].

miRNA target prediction and functional analysis

Targetscan-Mouse v7.2 (https://www.targetscan.org/mmu_72/) [60] was used for target pre-

diction analysis of the differentially expressed miRNAs. Predicted target genes from differen-

tially expressed miRNAs were analyzed with KEGG pathway enrichment (https://www.

genome.jp/kegg/kegg1b.html) [98] using the “pathfindR” R package (https://github.com/

egeulgen/pathfindR) [99]. Statistical significance was set at p< 0.05. Enriched KEGG path-

ways and differentially up- and downregulated target genes were constructed and visualized

using Cytoscape v3.9.0-BETA1 software (https://cytoscape-builds.ucsd.edu/Cytoscape-3.9.0/

beta1/) [100]. Differentially expressed miRNAs and mRNA in hippocampal and hypothalamic

tissues were also visualized using the Cytoscape software.
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miRNA–mRNA regulatory network and core subnetwork analysis

Upregulated and downregulated differentially expressed target genes were mapped into the

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) (https://string-db.org/)

database (stringApp v1.7.1) (https://github.com/RBVI/stringApp/releases) [101], and a confi-

dence score� 0.1 was used to assess the information of the gene regulatory network between

target genes visualized with Cytoscape v3.9.0-BETA1. The Cytoscape plug-in app MCODE

v2.0 (https://mcode.readthedocs.io/en/latest/) [102] was applied to the gene regulatory net-

works to calculate the major hub target genes, and the top ten targets were ranked by the

degree method using the Cytoscape plugin app cytoHubba v0.1 (https://apps.cytoscape.org/

apps/cytohubba) [61] to identify significant functional modules.

Supporting information

S1 Fig. mRNA sequencing analysis of the hypothalamus and hippocampus of young and

aged mice. (A). Heatmap of Pearson’s correlation coefficients for gene expression in each

young and aged mouse brain hypothalamus and hippocampus sample. The X and Y axes rep-

resent each sample, and the color represents the correlation coefficient. (B, C). Volcano plots

of all detected genes from mRNA sequencing analysis of young versus aged hypothalamic and

hippocampal tissues. Differentially upregulated genes are colored red, differentially downregu-

lated genes are colored blue, and non-significant genes are colored gray. The cut-off was set as

fold change > 1.5, and statistical significance was set as padj < 0.05.

(TIF)

S2 Fig. Number of gene distributions covered for cell types from hypothalamic and hippo-

campal tissue. (A) Bar graph showing the number of gene distributions covered for each cell

type in hypothalamic tissue in bulk RNA sequencing versus single nucleus RNA sequencing

datasets. (B) Bar graph showing the number of gene distributions covered for each cell type in

hippocampal tissue in bulk RNA sequencing versus single nucleus RNA sequencing datasets.

(TIF)

S3 Fig. Correlation analysis of differentially expressed genes in both our bulk mRNA

sequencing and publicly available single nucleus RNA sequencing datasets. (A). Pearson’s

correlation analysis of Log2FC expression of differentially upregulated genes in bulk mRNA

sequencing (cut-off value: fold change> 1.5, padj < 0.05) and single nucleus RNA sequencing

(cut-off value: log2FC > 0.1, padj < 0.05) datasets from hypothalamic tissue. Linear regression

is indicated with the colored line. The Pearson’s correlation coefficient (R2) and p-value are

displayed in the graph. Gene expression changes in hypothalamic astrocytes (R2 = 0.65,

p = 0.098), oligodendrocytes (R2 = 0.01, p = 0.85) and neurons (R2 = 0.01, p = 0.78) are not

correlated. (B) Pearson’s correlation analysis of Log2FC expression of differentially downregu-

lated genes in bulk mRNA sequencing (cut-off value: fold change > 1.5, padj < 0.05) and single

nucleus RNA sequencing (cut-off value: log2FC > 0.1, padj < 0.05) datasets from hypothalamic

tissue. Linear regression is indicated with the colored line. The Pearson’s correlation coeffi-

cient (R2) and p-value are displayed in the graph. Gene expression changes in hypothalamic

astrocytes (R2 = 0.01, p = 0.81), oligodendrocytes (R2 = 0.04, p = 0.61) and neurons (R2 = 0.15,

p = 0.3) are not correlated. (C) Pearson’s correlation analysis of Log2FC expression of differen-

tially upregulated genes in bulk mRNA sequencing (cut-off value: fold change > 1.5, padj <

0.05) and single nucleus RNA sequencing (cut-off value: log2FC > 0.1, padj < 0.05) datasets

from hippocampal tissue. Linear regression is indicated with the colored line. The Pearson’s

correlation coefficient (R2) and p-value are displayed in the graph. Gene expression changes in

hippocampal astrocytes (R2 = 0.84, p = 2.9e-05) and oligodendrocytes (R2 = 0.34, p = 0.029)
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are significantly correlated, whereas gene expression changes in hippocampal neurons (R2 =

0.0044, p = 0.81) are not correlated. (D) Pearson’s correlation analysis of Log2FC expression of

differentially downregulated genes in bulk mRNA sequencing (cut-off value: fold

change> 1.5, padj < 0.05) and single nucleus RNA sequencing datasets (cut-off value:

log2FC> 0.1, padj < 0.05) from hippocampal tissue. Linear regression is indicated with the col-

ored line. The Pearson’s correlation coefficient (R2) and p-value are displayed in the graph.

Gene expression changes in hippocampal astrocytes (R2 = 0.00035, p = 0.95), oligodendrocytes

(R2 = 0.003, p = 0.84), and neurons (R2 = 0.0061, p = 0.76) are not correlated.

(TIF)

S4 Fig. miRNA sequencing analysis of the hypothalamus and hippocampus of young and

aged mice. (A) Heatmaps of Pearson’s correlation coefficients of log2(Count+1) values for

miRNA expression of each young and aged mouse brain from hypothalamic and hippocampal

tissue samples. The X and Y axes represent each sample, and the color represents the correla-

tion coefficient. (B, C) Volcano plots of detected miRNA expression from miRNA sequencing

datasets of young and aged mouse brain from (B) hypothalamic and (C) hippocampal tissues.

Differentially expressed genes (cutoff value: fold change > 1.5, padj < 0.05) are colored red for

upregulated genes, blue for downregulated genes, and gray for non-significant genes. (D, E)

Validation of miRNA expression from small-RNA sequencing datasets by qRT-PCR in the (D)

hypothalamic and (E) hippocampal tissues (n = 4). Data are presented as mean ± SEM.

**p< 0.01, *p< 0.05. (F, G) Heatmap of differentially expressed miRNAs (cut-off value: fold

change> 1.5, padj < 0.05) count numbers (TPM log2) in young and aged mouse brain samples

from (F) hypothalamic and (G) hippocampal tissues.

(TIF)

S5 Fig. Differentially downregulated miRNAs predicted to target differentially upregu-

lated mRNAs in hypothalamic tissues during aging. Heatmap shows differentially upregu-

lated gene expression (cut-off value: fold change> 1.5, padj < 0.05) predicted to be targeted by

differentially downregulated miRNAs (cut off value: fold change > 1.5, padj < 0.05) in mRNA

sequencing and small-RNA sequencing datasets from hypothalamic tissue.

(TIF)

S6 Fig. Differentially upregulated miRNAs predicted to target differentially downregu-

lated mRNAs in hypothalamic tissues during aging. Heatmap shows differentially downre-

gulated gene expression (cut-off value: fold change > -1.5, padj < 0.05) predicted to be targeted

by differentially upregulated miRNAs (cut off value: fold change > 1.5, padj < 0.05) in mRNA

sequencing and small-RNA sequencing datasets from hypothalamic tissue.

(TIF)

S7 Fig. Differentially downregulated miRNAs predicted to target differentially upregu-

lated mRNAs in hippocampal tissues during aging. Heatmap shows differentially upregu-

lated gene expression (cut-off value: fold change> 1.5, padj < 0.05) predicted to be targeted by

differentially downregulated miRNAs (cut-off value: fold change > 1.5, padj < 0.05) in mRNA

sequencing and small-RNA sequencing datasets from hippocampal tissue.

(TIF)

S8 Fig. Differentially upregulated miRNAs predicted to target differentially downregu-

lated mRNAs in hippocampal tissues during aging. Heatmap shows differentially downregu-

lated gene expression (cut-off value: fold change> -1.5, padj < 0.05) predicted to be targeted

by differentially upregulated miRNAs (cut-off value: fold change > 1.5, padj < 0.05) in mRNA
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sequencing and small-RNA sequencing datasets from hippocampal tissue.

(TIF)

S9 Fig. Protein–protein interaction (PPI) network of miRNA-mediated differentially

expressed target genes in hypothalamic and hippocampal tissues during aging. (A) PPI

analysis of differentially upregulated genes targeted by differentially downregulated miRNAs

in hypothalamic tissues, derived from mRNA sequencing datasets and small-RNA sequencing

datasets. PPI network analyzed by STRING and MCODE, node sizes for target genes are deter-

mined by the degree method, and node color indicates the cell type. (B) PPI analysis of differ-

entially downregulated genes targeted by differentially upregulated miRNAs in hypothalamic

tissues, derived from mRNA sequencing datasets and small-RNA sequencing datasets. PPI net-

work analyzed by STRING and MCODE, node sizes for target genes are determined by the

degree method, and node color indicates the cell type. (C) PPI analysis of differentially upregu-

lated genes targeted by differentially downregulated miRNAs in hippocampal tissues, derived

from mRNA sequencing datasets and small-RNA sequencing datasets. PPI network analyzed

by STRING and MCODE, node sizes for target genes are determined by the degree method,

and node color indicates the cell type. (D) PPI analysis of differentially downregulated genes

targeted by differentially upregulated miRNAs in hippocampal tissues, derived from mRNA

sequencing datasets and small-RNA sequencing datasets. PPI network analyzed by STRING

and MCODE, node sizes for target genes are determined by the degree method, and node

color indicates the cell type.

(TIF)

S1 Table. mRNA sequencing datasets from hippocampal and hypothalamic tissues of

young and aged mouse brain during aging.

(XLSX)

S2 Table. miRNA sequencing datasets from hippocampal and hypothalamic tissues of

young and aged mouse brain during aging.

(XLSX)

S1 Dataset. Minimal data set for Fig 4D.

(TIF)

S2 Dataset. Minimal data sets for Fig 4C, 4E, S4D and S4E Fig.

(XLSX)
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63. Marcovina SM, Zoppo A, Viganó-D’Angelo S, Di Cola G, D’Angelo A. Determination of serum levels of

complement component C4b-binding protein: influence of age and inflammation. Int J Clin Lab Res.

1992; 21: 171–175. https://doi.org/10.1007/BF02591638 PMID: 1815762

64. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance

and homeostasis. Nat Immunol. 2010; 11: 785–797. https://doi.org/10.1038/ni.1923 PMID: 20720586

65. Huang R-Y, Tseng F-Y, You J-J, Van Dyke TE, Cheng C-D, Sung C-E, et al. Targeting therapeutic

agent against C3b/C4b, SB002, on the inflammation-induced bone loss in experimental periodontitis.

J Clin Periodontol. 2023. https://doi.org/10.1111/jcpe.13772 PMID: 36632003

66. Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B, et al. Molecular Intercommunication between

the Complement and Coagulation Systems. The Journal of Immunology. 2010; 185: 5628–5636.

https://doi.org/10.4049/jimmunol.0903678 PMID: 20870944

67. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analy-

sis of gene expression in tissue sections by spatial transcriptomics. Science. 2016; 353: 78–82.

https://doi.org/10.1126/science.aaf2403 PMID: 27365449

68. Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, et al. Systematic com-

parison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol. 2020; 38: 737–

746. https://doi.org/10.1038/s41587-020-0465-8 PMID: 32341560

69. Li X, Wang C-Y. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci. 2021; 13: 1–6. https://

doi.org/10.1038/s41368-021-00146-0 PMID: 34782601
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