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Abstract

Quality control is paramount in product manufacturing as it ensures consistent production to
meet customer expectations, regulatory requirements and maintain a company’s reputation
and profitability. Distance measures within fuzzy sets serve as powerful tools for quality con-
trol, allowing for data comparison and identification of potential defects or outliers within a
system. This study aims to develop a hybrid concept by combining a Cubic Intuitionistic
Fuzzy Set (CIFS) with Soft Set (SS) and extending it to Cubic Intuitionistic Fuzzy Hypersoft
Set (CIFHSS). CIFHSS enables handling multiple distinct attributes at the sub-attribute

level within a cubic set environment. The concept includes operations like internal, partial
internal, external, complement, direct sum, and product. Additionally, six distance metrics
are defined within CIFHSS and applied to establish a quality control management system
for industrial applications. The versatility of CIFHSS in quality control management stems
from its ability to capture and model uncertainty, vagueness, and imprecision in data. This
makes it an effective tool for decision-making, risk analysis, and process optimization across
a wide range of industrial applications.

1 Introduction

In order to ensure that the goods satisfy the necessary quality, safety, and reliability criteria,
quality control is a vital component of manufacturing. Traditional quality control procedures
rely on precise, well-defined data and statistical analysis to identify deviations and anomalies.
However, adopting traditional quality control procedures can be difficult in many industrial
applications since the data is frequently ambiguous, unclear, or lacking. When it comes to
dealing with ambiguous and uncertain data in quality control management, fuzzy logic and
fuzzy sets offer a potent option. Zadeh [1] put forward the idea of Fuzzy Sets (FS) where a
value between [0, 1] is assigned to an element in a set. This mathematical framework extends
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classical logic by allowing partial truth values between true and false. This enables the repre-
sentation of uncertain and vague information often encountered in real-world problems.
Fuzzy sets can capture and represent the degree of uncertainty and vagueness inherent in real-
world data, making them a powerful tool for modelling and decision-making.

Uncertainty can arise from a variety of places when discussing multi-attribute problems
such as:

1. The decision maker (DMs) are not provided with accurate information on which is to be
accessed to make decisions.

2. The DMs may not be well informed on the subject on which they are making the decisions.

3. The inability of the decision maker to explicitly discriminate how one alternative is superior
over the other during the decision-making process [2].

In the third condition, the DMs access the alternatives using a membership degree instead
of providing an assessment with complete certainty [3].

The concept of FS was then extended to interval-valued fuzzy sets (IVES) by Zadeh in 1975
[4]. This extension allowed for the division of the membership function into an interval
instead of a single value which is more suited to real-world applications. Atanassov [5] intro-
duced an intuitionistic fuzzy set (IFS) in 1986, taking into account not only the degree of mem-
bership of an element to a set but also the degree of non-membership and the degree of
hesitation of the decision-maker in assigning a membership grade. Numerous researchers
have extensively explored the concept of similarity measures (SM) within the domain of Intui-
tionistic Fuzzy Sets (IFSs). The journey began with Atanassov (1993), who initially defined SM
for IFS elements [6]. Building upon this foundation, Chen (1995) introduced the idea of quan-
tifying similarity degrees for vague sets [7]. However, Hong and Kim (1999) noted that Chen’s
measures exhibited inaccuracies and indistinguishable outcomes under extreme conditions,
necessitating the development of modified SM [8]. Subsequently, Dengfeng and Chuntian
(2002) focused on determining SMs for IFSs, especially in the context of discrete or continuous
universal sets for pattern recognition problems [9]. Nevertheless, Mitchell (2003) identified
limitations in Dengfeng and Chuntian’s measures, as they also produced indistinguishable
results in specific scenarios [10]. To overcome these challenges, Hung and Yang (2004) pro-
posed SM based on the Hausdorff distance for IFSs, providing a foundation for deriving essen-
tial properties [11]. Expanding the scope, Szmidt and Kacprzyk (2004) introduced SMs to
address medical diagnosis problems utilizing IFS [12]. Following suit, Liu (2005) modified
Hong and Kim’s SM and explored the relevant properties thereof [13]. Additionally, Liang and
Shi (2003) exchanged SMs between pairs of IFSs, comparing their performance against existing
ones through numerical examples [14]. Ye (2011) investigated cosine SM for IFS, uncovering
its unique characteristics [15]. Furthermore, Wang and Xin (2005) delved into the relationship
between different SM measures and their application in pattern recognition problems [16]. As
research continued to progress, Song et al. (2014) introduced weighted SMs for IFSs, catering
to scenarios where varying importance levels were assigned to elements [17]. Ngan et al.
(2018) explored distance-based measures using H-max measures for IFS information, opening
new avenues for analysis. Notably, Khan and Lohani (2016) contributed by discussing cluster-
ing algorithms based on distance measures, promoting effective data organization techniques
[18, 19]. Numerous other scholars and researchers continue exploring the vast landscape of
IFS similarity measures, each striving to address specific problems and uncover novel perspec-
tives [20-23]. Similarly, highly complex and versatile structures have been developed in vari-
ous industrial applications, including medical diagnostics, decision-making, pattern
recognition, and risk analysis from these hybrid fuzzy structures [24-27].

PLOS ONE | https://doi.org/10.1371/journal.pone.0291817  September 25, 2023 2/23


https://doi.org/10.1371/journal.pone.0291817

PLOS ONE

Development of hamming and hausdorff distance metrics for cubic intuitionistic fuzzy hypersoft set

In 2012, Jun et al. [28] combined the concept of IVES and FS to develop a Cubic Set (CS)
and developed properties like internal cubic sets (ICS) and external cubic sets (ECS). Cubic
sets help us evaluate the same object’s range at a particular event. Cubic fuzzy sets are a power-
ful extension of fuzzy sets that provide a higher degree of flexibility and expressiveness in
modeling uncertain data. In fuzzy cubic sets, the degree of membership is represented by a
cubic function, which allows for a more precise and detailed representation of uncertainty.
Within this context, Khan et al. [29] introduced specific cubic aggregation operators. In con-
trast, Mahmood et al. [30] explored the notion of cubic hesitant fuzzy sets and their corre-
sponding aggregation operators for decision-making. However, these theories primarily
focused on membership intervals and did not adequately address the crucial role of non-mem-
bership information in the decision-making process. Non-membership data entities play an
equally significant role in the assessment of alternatives, warranting further attention in the
research.

The concept of soft set was extended to Hypersoft set (HS) by Smarandache in 2018.
Hypersoft set allowed for the division of attributes used in soft sets to be further divided into
sub-attributes such that the selected attributes are disjoint from one another [31]. This divi-
sion of attributes to sub-attributes opened a pathway for more approaching and processing
information more concisely and detailed, leading to better results. This concept was further
hybridized with many fuzzy structures to increase the ability to apply to different scenarios
each addressing something different from the other. For example, a variety of neutrosophic
and complex fuzzy hypersoft structures have been used in literature for developing disease
diagnosis models [32-35]. A hybrid of picture fuzzy graph and hypersoft set was developed
to address micro-enterprise investment risk assessment [36]. Also, a number of similar
hypersoft set structures have been found in literature and applied in different decision-mak-
ing scenarios [37-39].

The application of Cubic Intuitionistic Fuzzy Sets (CIFS) has yielded a range of fuzzy hybrid
structures, documented across diverse literature for various applications.

The application of Cubic Intuitionistic Fuzzy Sets (CIFS) has yielded a range of fuzzy
hybrid structures, documented across diverse literature for various applications. Mahmood
et al. (2016) extended this concept to introduce Cubic Hesitant Fuzzy Sets (CHFS) as an effi-
cient tool for decision-making processes regarding performance of imaging techniques for
diagnosis of breast cancer [40]. Furthermore, Kaur and Garg (2018b) contributed by pre-
senting generalized aggregation operators (AOs) tailored for Cubic Intuitionistic Fuzzy
Numbers (CIFNs), offering innovative solutions to decision-making problems [41]. In a
similar vein, Garg and Kaur (2018) devised a TOPSIS method grounded in distance mea-
sures within the CIFS framework, facilitating the resolution of group decision-making chal-
lenges [42]. Senapati et al. (2015) took the concept of Cubic Sets to the next level, exploring
subalgebras, ideals, and introducing closed ideals within the realm of B-algebras [43]. Addi-
tionally, Kang and Kim (2016) delved into the theory of images and inverse images of cubic
sets [44]. Similarly, Saqlain et al. (2022) extended the concept of CIFS to cubic intuitionistic
fuzzy soft set allowing for addressing individual attributes in a decision-making problem
[45]. Notably, the existing CIFSS framework lacks consideration for the NMD correspond-
ing to MD, limiting its applicability. Remarkably, there has been no prior exploration into
the development of hybrid structures combining Hypersoft sets and CIFS, which promises
to provide a deeper understanding of decision-making attributes by dividing each of the
attributes into sub-attributes, paving the way for more effective and efficient decision-mak-
ing processes. The development of the hybrid fuzzy structure called the Cubic Intuitionistic
Fuzzy Hypersoft Set, was motivated by the need for a versatile analysis tool to comprehen-
sively evaluate at a sub-attribute level. Traditional fuzzy set theory and its extensions have
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proven effective in handling uncertainty and vagueness in various applications. However,
there was a need to enhance the existing frameworks to better represent complex decision-
making scenarios, particularly in the context of industrial quality control. The CIFSis a
powerful extension of fuzzy set theory that incorporates two membership functions (i.e.,
membership and non-membership) and two fuzzy intervals (i.e., membership and non-
membership intervals) that either contain the membership and non-membership functions
or don’t. This enables a more accurate representation of uncertainty and ambiguity in deci-
sion-making processes. On the other hand, Hypersoft set theory focuses on analyzing attri-
bute-based data from soft set theory at a sub-attribute level. Combining these two
frameworks, the CIFHS was developed to provide a comprehensive and flexible approach to
decision analysis. The CIFHS structure allows for a granular analysis at a sub-attribute level,
enabling a detailed examination of various factors influencing industrial quality control. It
represents the inherent ambiguity and imprecision in quality control procedures, which are
frequently influenced by a number of variables and judgment calls. The CIFHS framework
offers a more accurate and complete depiction of the quality control environment by utiliz-
ing the CIFS and Hypersoft set components. Hamming and Hausdorff distance metrics
were created to improve the CIFHS structure’s practical applicability even more. These dis-
tance measurements make it possible to quantitatively compare or contrast various quality
control samples or sub-attributes. By comparing various data points, spotting abnormalities,
and spotting patterns or trends that could affect product quality, the CIFHS framework uses
these measures to support efficient quality control analysis. The CIFHS structure and its
corresponding distance measures can be used in a variety of ways for industrial quality con-
trol. First, it may be used to model and analyze intricate quality control systems while taking
into account a variety of sub-attributes and how they interact. This makes it possible for
decision-makers to evaluate how various aspects affect overall quality and take appropriate
action. Second, distance measurements enable quantitative evaluation of sample variability,
assisting in the detection of outliers or departures from predetermined quality standards.
Such anomalies can be quickly identified and the necessary remedial actions can be done to
provide constant quality control. The major objective is to improve quality control in the
production of industrial products by addressing uncertainty, ambiguity, and imprecision in
data effectively. CIFHSS enables the management of multiple distinct attributes at the sub-
attribute level within a cubic set environment, providing a more detailed analysis of com-
plex industrial systems.

In this study, we generalize the CIFS to a cubic intuitionistic fuzzy soft set (CIFSS) and
introduced a hybrid of CIFHS (CIFHSS). CIFHSS deals with multiple distinct attributes in the
CS environment. We introduced the concept of Internal Cubic (resp. External Cubic) Intuitio-
nistic Fuzzy Hypersoft set, and Internal Cubic (resp. External Cubic). Furthermore, comple-
menting these sets and discussing some aggregation operators with the examples introduced
distance measures of CIFHSS and a decision-making approach.

The study is organized in the following manner: Section 2 provides some selected prelimi-
nary definitions essential for introducing CIFHSS. Section 3 defines the concept of CIFHS
with the operators mentioned above and properties. Section 4 focuses on first introducing the
applications of fuzzy distance measures and then developing Hamming and Hausdorff dis-
tance measures along with proofs to validate their applications. Section 5 illustrates the appli-
cation of the developed distance measures in industrial quality control by developing an
algorithm for computation of similarity from an ideal solution. This concept is then applied to
selecting ideal cement storage facilities out of a group of options by comparison of the facilities
to a reference set. The paper is then rounded up with major findings and future works in the
Conclusion section.
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2 Preliminaries

This section provides some essential definitions that will be used further on in the article:
Definition 1.1. [45] Suppose U be a set of discourse, E be an attributive set with respect to U
and P the subset of E. Then, soft set will be:

M, = {(¢,M(¢))|é € P, M(¢) € P’}
where M is a mapping such that:
M:P—P°

and P° representing the collection of all subsets of U. (¢, M(&)) is an ordered pair where é are the
attributes from set P C E.

Definition 1.2. [46] Suppose U be a set of discourse. E be an attributive set with respect to U
and P the subset of E. Then Fuzzy Soft Set can be expressed as:

My = {(&,M(¢))|é € P, M(¢) € F'}
where M is a mapping such that:

M:P—F’

F° represents the collection of all Fuzzy subsets of U and (¢, M(&)) is an ordered pair where é are

the attributes from set P C E, M(¢) = {(0, iz(0)) |0 € U} where u(o) represents the member-
ship degree from 0 to 1.

Definition 1.3. [47] Suppose U be a set of discourse. E be an attributive set with respect to U
and P the subset of E. Then Cubic Soft Set can be expressed as:

My = {(&,M(¢))|é € P, M(¢) € C"}
where M is a mapping such that:
M:P—C°

C® represents all cubic subsets of U. (&, M(¢)) is an ordered pair where é are the attributes from
setP CE.

M(e) = {(e, (uc(e), nc(e)))| € U} where (o) € [0, 1] and (o) € [0,1]-

Definition 1.4. [48] Assume that U be a universe of discourse and Py, P, Ps. . .P, are the
attributive sets, where, p1, P2, P3. . .Pn is the set of sub-attributes of P, P, Ps. . .P, respectively,
with condition PN\ Py = ¢, and s # t, for all s, t € {1, 2, 3, .., n}. Then Hy, is called hypersoft set
as:

H, = {(p,H(p))|p € P,H(p) € P’}
where is the mapping as:

H:P—PY

P =P, x P, x P,... x P, each element of P is in the form of n-tuple, p € P and P° represents
all the subsets of U.

Definition 1.5. [48] Assume that U be a universe of discourse and Py, P, Ps. . .P, are the
attributive sets, where, p1, P2, 3. - -Pn is the set of sub-attributes of Py, P, Ps. . .P, respectively,
with condition Ps(\ Py = ¢, and, s # tall s, t € {1, 2, .., n}. Then Hy, is called Fuzzy hypersoft set
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Fuzzy set

(Zadeh 1965)

It is defined by a membership It deals with sub-attributes along fuzzy universe of
function whose value lies along crisp universe of discourse.

between O and 1.

as:
Hy = {(p.H(p))|p € P,H(p) € F'}
where H is the mapping:
H:P—F

andP = P, x P, x P,... x P, each element of P is in the form of n-tuple. F° represents all the
fuzzy subsets of U and:

H(p) = {o,u:(0)|0 € U}.

A representation of the structure is provided in Fig 1.

Definition 1.6. [48] Assume that U be a universe of discourse and Py, P,, Ps. . .P, are the
attributive sets, where, py, P2, 3. - -.Pn is the set of sub-attributes of Py, P,, Ps. . .P, respectively,
with condition P;N P, = ¢, and, s # tall s, t € {1, 2, 3, .., n}. Then Hy, is called Intuitionistic
Fuzzy hypersoft set as:

H, = {{p,H(p))|p € P,H(p) € IF"}
where H is the mapping as:
H:P—IF°

andP = P, x P, x P,... x P, each element of P is in the form of n-tuple. IF° represents all the
intuitionistic fuzzy subsets of U.
and

H(p) = {0, m(0) Mi(0) }
with

0<pp+hs<1l

If

Fuzzy Hypersoft set
(Florentin 2018)

It deals with sub-attributes

discourse. It allows membership functions
with values in the range [0,1].

Fig 1. Fuzzy hypersoft set.

https://doi.org/10.1371/journal.pone.0291817.9001
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Intuitionistic Intuitionistic Fuzzy
Fuzzy set Hypersoft set
(Atanassov 1986) (Florentin 2018)
+ = |t deals with sub-attributes along
It's elements have degree of It deals with sub-attributes intuitionistic fuzzy universe of
membership and along crisp universe of discourse.
non-membership which lies discourse. It allows membership and
between 0 and 1. non-membership functions in the
range [0,1].

Fig 2. Intuitionistic fuzzy hypersoft set.

https://doi.org/10.1371/journal.pone.0291817.g002

Then, nie(p) is the degree of non-determinacy of the membership of the element o € U to the set.
A representation of the described structure is provided in Fig 2.

3 Cubic intuitionistic fuzzy hypersoft set

Definition 2.1. Assume that U be a universe of discourse. E be an attributive set with respect to
U and PP is the subset of E. Then Cubic Intuitionistic Fuzzy Soft Set can be expressed as

M, = {(e,M(¢é))|ée € P,M(é) € CIF’}
where M is a mapping such as:

M:P — CIF®

CIE® represents the collection of all cubic intuitionistic fuzzy subsets of U.
M(é) = {{o, uz(0), s (0)) |0 € U} where p;(0) is an interval-valued intuitionistic fuzzy set
and Lg(0) is an intuitionistic fuzzy set. If.

m(0) = 1 — pp(0) — Ae(0)

Then, mp(o) is the degree of non-determinacy of the membership of the element p € U to the set.
Fig 3 provides a timeline of the development of fuzzy and soft hybrid structures over time.
Definition 2.2. Assume that U be a universe of discourse and Py, P,, Ps. . .P, are the sets of

attributes, where, p1, P2, P3. . .Pn is the set of sub-attributes of Py, Py, Ps. . .P,, respectively, with

condition PsN P, = ¢, and, s # tall s, t € {1,2, 3, .., n}. Then Hy, is called Cubic Intuitionistic

Fuzzy hypersoft set as:

H, = {{(p,H(p))Ip € P,H(p) € CIF’}
where H is the mapping as:

H:P — CIF°

andP = P, x P, x P,... x P, each element of P is in the form of n-tuple. CIF® represents all
the fuzzy subsets of U.
And

H = {(0, (1:(0), 1(0)))|0 € U}
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Interval-valued
Fuzzy Soft Set

by X.B. Yang et al.
(2009)

P” Cubic Soft Set P’ Cubic Set
by Muhiuddin etal. - by Y.B. JUN
(2014)  (2012)

Fuzzy Soft Set
by Maji et al.
(2001)

Classical Set

Soft Set
by Molodtsov (1999)

Intuitionistic

Fuzzy Soft Set

by Maji et al.
(2004)

’ Cubsic Intuitionistic

PCUbic Intuitionistic
Fuzzy Set by
Kaur and

"  Fuzzy Soft Set _

Interval-valued
Intuitionistic Fuzzy

 Garg (2018)

Soft Set by
Yuncheng et al.

(2010)

Fig 3. A Graphical Representation of the timeline of the developed structure.

https://doi.org/10.1371/journal.pone.0291817.9003
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where (up()) is an interval-valued intuitionistic fuzzy set illustrated as:

{{o: (e (0); Myie(0)))] 0 € U}

where

tre(0) € [0,1], A (0) € [0, 1]

and Lg(0) is an intuitionistic fuzzy set as
{{o, (u(0), M (0))) |0 € U}

where purr(0) € [0, 1], Mir(0) € [0, 1] is a cubic intuitionistic fuzzy set, for all o € U.

If

m:(0) = 1 — pe(0) — Ap(0)

Then, np(o) is the degree of non-determinacy of the membership of the element o € U to the set.
The representation of the designed structure is provided in Fig 4.

Definition 2.3. Let U be a universal set then H, = (p, H(p)) is said to be an internal cubic
intuitionistic fuzzy hypersoft set if:

:u(IF)(Q) € H(IVIF)(Q) and x(IF)(Q) € 7L(IVIF)(‘Q)

where p(vir) is a membership interval which is a subset of [0, 1] and Ayir) is a non-membership
interval which is also a subset of [0, 1], for all p € U.

Definition 2.4. Let U be a universal set then H, = (p, H(p)) is said to be an external cubic
intuitionistic fuzzy hypersoft set if:

Har) (0) ¢ Havir (0) and 7\’(IF) (0) ¢ }“(IVIF) (0)

Definition 2.5. Let U be a universal set then H, = (p, H(p)) is said to be a partial internal

CIFS set if:

Cubic Intuitionistic

Fuzzy set
(Kaur and Garg 2018)

Har (0) € H(IVIF)(Q) and }\’(IF)(Q) ¢ }\‘(IVIF)(Q)

Cubic Intuitionistic

Fuzzy Hypersoft set

It is defined by two membership and
non-membership functions.

1. Degree of interval-valued membership
and non-membership is the subset of
[0,1].

2. Degree of membership and
non-membership which lies between 0
and 1.

It deals with sub-attributes
along crisp universe of
discourse.

It deals with sub-attributes along cubic
intuitionistic fuzzy universe of discourse.
It allows interval-valued membership
and non-membership function which is
the subset of [0,1] also membership and
non-membership function in the range

[0,1].

Fig 4. Cubic intuitionistic fuzzy hypersoft set.

https://doi.org/10.1371/journal.pone.0291817.9004
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or

Har (o) ¢ :u(IVIF)(Q) and X(IF) (0) € X(IVIF)(Q)'

Definition 2.6. Let U be a universe of discouse, H, = <f), [, 1V, AT, (u, k)> bea

CIFHS wherep € P = {P, x P, X P,, .., P, } each element of P’ is in the form of n-tuple and P,
P,, .., P, are the attributive sets, for all o € U then its complement will be:

HE = (B4 D) 00 )
where [yL, ‘uU] is the membership interval, (AL, AY] is the non-membership interval and y is the
membership value, X is the non-membership value.

Definition 2.7. Let U be an universal set, H, = <ﬁ, [, 1V, AT, (u, k)> and Gy, =

<f), [, 1V, AT, (u, X)> be two CIFHSs then direct sum will be defined as:

Hyoplis Gy = 1= (1= 4 )0 =i )1 - (1) (0= )| ot |

(1= (= )0 = ), )

Definition 2.8. Let U be an universal set, H, = <f), [, 1], AT, (e, X)> and Gy, =

<13, [, 1Y), YT, (u, ?»)> be two CIFHSs then direct product will be defined as:

Hy, times Gy, = {ugpugg,ugp%], [1 — (1=, = MGQ), 1T—(1=2 )01 - xg@>],

(o 1= (1= )12

Definition 2.9. Let U be an universal set, H, = <f), [, 1V, AT, (u, k)> be a CIFHS

and & > 0 be any real number. Then:

ott, = 1= - 1= -] | 07| (1= - )

4 Development of distance measures using cubic intuitionistic
fuzzy hypersoft set

Fuzzy distance measures are a type of distance metric used in fuzzy set theory to measure the
similarity or dissimilarity between two fuzzy sets. There are several types of fuzzy distance
measures, including Hamming distance, Euclidean distance, Jaccard distance, and Minkowski
distance. These measures have been used in various applications, such as pattern recognition,
medical diagnosis, and image processing [49-51]. A fuzzy distance measurement known as the
hamming distance counts the number of locations where two fuzzy sets have distinct member-
ship values. Fuzzy In many different applications, including data mining, image processing,
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and bioinformatics, the hamming distance is a widely used distance metric. The degree of
membership of items in a fuzzy set is taken into account in this fuzzy variation of the tradi-
tional Hamming distance.

Fuzzy Hamming distance has been used in bioinformatics to gauge how similar DNA
sequences are to one another. To compare the DNA sequences of two closely related bacterial
strains, researchers used fuzzy hamming distance. They discovered that Fuzzy Hamming dis-
tance could detect minute variations between the strains that traditional Hamming distance
was unable to [52]. The field of image processing has also used fuzzy Hamming distance.
Fuzzy Hamming distance was used to compare the features of two faces using the metric in the
development of a facial recognition system. The researchers discovered that Fuzzy Hamming
distance has a high degree of accuracy for classifying the two faces [53].

Fuzzy Hamming distance has been used in literature a number of times for the comparison
of multiple-attribute alternatives where normal hamming distance falls short. In this study,
with a number of examples found in literature for computing different types of distance mea-
sures, we propose 6 different forms of Hamming distances for development of a pattern recog-
nition system for quality control.

4.1 Hamming distance measures

A number of Hamming distances are developed to cover a range of scenarios using a variety of
methods for manipulation of data to reach the desired outcome. The developed distance mea-
sures are as follows:
4.1.1 Hamming distance measure. The Hamming distance measure using CIFHSs is
defined as:
Pilu, () = w6, (@)1 + biluyy, (¢) — 16, ())1+
1 - -
dl (H]P7 GQ) = 67’!122 pil)\’iip(gj) - }"éQ(Qj)‘ +pi|7"grp(9j) - ng(Qj)|+
f)illqu (Qj) - :uG@ (Qj)l + ﬁip“H]P(Qj) - )”G@ (Qj>|

i=1 j=1

Here g are the elements of U which is a universal set, “n” represents the number of elements of
universal sets and “m” represents the number of attributes.
Theorem 3.1. Distance d,(Hp,Gyy) is said to be distance measure if it satisfies the following

properties:

1. 0<d,(HpGy) <1

2. d,(Hy, Gy) = O ifand only if Hy, = G,

3. d,(Hy, Gy) = d,(Gy, Hy)

4. IfH, C Gy C I, then d,(H,, G,) < d,(H,, 1) and d,(Gy, I) < d,(Hy, I).

Proof. For two CIFHSs H, = <f), [T N S N (T kH]P)> and

G = (Bl 2 B R ) ), We have

1) By the definition of distance, it is that d, (Hy, G) > 0. For it to be valid, d, (H;, G) <
must be 1. By using the definition of CIFHSs the membership and non-membership values
belongs to [0, 1],s

Such that 0 < s}, (9,), 1y, () < 1,0 <Ay, (9)), 2y (0,) < 1and 0 < gy (0)), My, () < 1,
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Similarly, 0 < ,ué@(gj) us (QJ) <1,0< XGA(QJ) A Q(gj) < 1,and
0 < 16, () Ay (0) < 1.

This implies that:

0 < 1 () — s, (0] < 1,0 < [uf () — & (0)] < 1,0 (g) — 2 (g)] < 1 and
0 < iy, () = Ag, (@) < 1,0 < |y, (0) — 1, (0)] < 1,0 < |1y, (g)) — A, (g)| < 1foralli
and j, then:

pilui, (o) — ﬂc@(QJ)IJrPIuHﬂ,( 9;) — e, ()| +
0< | PilMi () = Ae, ()] + pilgy, (0) — Mg (@)|+ | <6
pilk, (0) — HGQ(@J)HPIXHD,( 0;) — A, (0))]

=0 <d (H;Gy) <1
2) Let d,(Hy, G) = 0, For two CIFHSs H;, and G,

Lo pilug, (o) — uGQ(QJ)IJrPIuHP( 9;) — ke, (0)1+
:—mZ Pilhi, () = A ()] + il (0) = Mg, (@) 1+ | =0
=1 pIuHP( )= MGQ(Q)HPIMW,( ) — g ()]

If and only if, For all }, |up,, (¢,) — #g, (0] = 0, |ugy, (0)) — g, (0] = 0, Ay, (0) — A, (0)] =
0, [y, (0)) = Aoy (0)] = 0. 1y, () — e, (0)] = 0, Ay, (0) — A, ()] = O which is equiva-
lent to iy, (0)) = g, (0)), mir, (0) = 1, (0 14,, (0)) = M (0)), My, (0) = A (), i, (0) =
:“GQ(Qj)a }\'HP(Qj) = }“GQ(Q]‘) Thus d, (Hp, G@) =0=H, =G

3) For two CIFHSs H; and G,

| o pilu, (o) — MGQ(Q,)| + Pilug, (0) — mg, (0)1+
4Gy =305 B (o) ~ Ko o) + A2, (5) 25, (o) +
S Pl (o) — MGQ( o)1+ Pilhy, (07) = Aey (0))]

L o pilue, (0) — 1z, (g)] +ﬁ,~lu8@(9,) MZW(QJ)H

= 6722 ﬁilxéQ(Qj) - 7L;ﬁp(Q/‘)l +ﬁi|7‘g(@(@) ( )|+
= Pi|ﬂc@(9j) _MHP(‘Qj)| +pi|7“c@(gj) ]p( ])|

=d,(Gg, Hp)

Hence d, (Hy, Gy) = d,(Gy, Hp)

4) IfHy € Gy C I then [HH( ) i, (0))] € g, (9), k6, ()] € u, (0), w3 ()]s
[%‘fin»( j):kll-]zfz( 1)] = [)"éQ( j) ( )] 2 [)‘fk(@j)vxlm( j)]’Also :qu(Qj) > :“GQ(Q]') > /’LIR(Q]‘)
and }\‘HP(Q;') < 7‘(;@(9}) < 7‘1[[%(9;')'

Therefore, |1, (0)), /léQ(Qj)| < |ug, (0), MﬁR(é’jN |z, () gy (0)] < lng, (0)), 1y, ()1
M (07), 26, (9)] < gy, (9), M, (9] Mg, (7). 2, (9] < gy, (9), g (0)];
|MHH,,(QJ~),NGQ(Q,»)| < iy, (9)); 1y, (g;)| and |7\HP(Q,')’ Aoy (0] < [y, (0)), M, (0))-

PLOS ONE | https://doi.org/10.1371/journal.pone.0291817  September 25, 2023 12/23


https://doi.org/10.1371/journal.pone.0291817

PLOS ONE

Development of hamming and hausdorff distance metrics for cubic intuitionistic fuzzy hypersoft set

(L) =S 5[ B0 (o) — AL (0)] + P (g) — 2
=1 = PIMHH,( )= #IR(QJ)IJrPI?»HP(Q]) A
Lo IﬂHP(Q,) uGQ(@])IJrPI#HE(@J) He, (¢
>@ZZ Pilri, (9) = A, (9)] + Pilrg, (0) — MQ(Q,

== P,IMHH,( 9) — #GQ(QJ)I + Pilh, (0) — Ay (0)]
:dl(H]P’vGQ)

. [Pl (o) — MIR(QJ)HPIM(@]) ur, (o) |+
) — M () +>

Similarly, d, (Hp, I) > d,(Gg, I).

Hence, d, is a valid distance measure.

4.1.2 Normalized hamming distance measure. The normalized hamming distance mea-
sure can be defined as:

\ PIMHP( ) 16, (0] =+ Pilus, (0)) — mg, (0)1+
dy(Hy, Gy) —ZZ Pilri, (0) = g, (0)] + Pilrg, (0) — g, (9) ]+
UL\ P IMHP( ) uc@(g)l +p; IXHF( ) = A, (0)]

here g are the elements of U which is a universal set, “n” represents the number of elements of
universal sets and “m” represents the number of attributes.

Theorem 3.2. Distance d\(Hy, G,) is said to be distance measure if it satisfies the following
properties:

1. 0<d(H,,Gy) <1
2. d,(Hy, Gy) = Oifand only if H, = G,
3. d,(Hy, Gy) = d,(Gg, Hy)

4. IfH, C G, C I, then d,(Hy, Gy) < d,(Hy, I) and d,(Gy, 1) < d, (Hy, I).

4.1.3 Weighted hamming distance measure. The weighted hamming distance for
CIFHSS is defined as:

Lo F(e;) |z, (0;) — ng, (0)] + Fle)|ui, (0,) — m, ()14
dy(Hp, Gy) = 6mz ¢, | Fle)hy, (g) — A, (0)] + Fle)ry, (9) — hg ()14 | (1)
=t F(e,) |y, (0) — tay (0)] + Fle) Ay, (07) — Asy ()]

Here, g are the elements of U which is a universal set, “n” represents the number of ele-
ments of universal sets and “m” represents the number of attributes.

4.2 Hausdorff distance measures

The Hausdorff distance measure can be calculated using the formula below: Let Hy, G, are
CIFHSs then Hausdorff distance measures will discussed as
4.2.1 Hausdorff hamming distance measure.

( e)|u, (9) — ne, (91 Fle)u, (9) — ng, (9))],
&' (Hp, Gg) ZZ max | F(e;) Mg, (0) — A, (0)], Fle) Ay, (0) — 7»7@( ])I
=1 F(ei)lan,,(Qj) = oy ()], F(e) Ay, (0) — Ay (0)]
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Here p are the elements of U which is a universal set, “n” represents the number of elements of
universal sets and “m” represents the number of attributes.

Theorem 3.3 Distance d;'(Hy, G) is said to be distance measure if it satisfies the following
properties:

1. 0 < d¥(Hy, Gy) <1

2. d¥(H,,Gy) =0 < H, = G,

3. di(Hy, Gy) = d)'(Gy, Hy))

4. IfHl, C Gy C L, then d¥(H,, Gy) < d¥(Hy, Iy) and d*(Gy, I) < d¥(Hy, I).

Proof. For two CIFHSs H, = (F(e,), [ty , gy, ], [y, » Mg |5 (g, » Ay, )) and
(F(e). 12, [0 22 ]ty Ry ) We have
1) By the definition of distance, it is that d\' (Hy, Gy) > 0. For it to be valid,
d/'(Hp, Gy) > 0 < mustbe 1. By using the definition of CIFHSs the membership and non-

membership values belongs to [0, 1]

Such that 0 < max(u;, (0,)), max(uy, (¢;)) < 1,
0< max(?»L (2)), max(k” (0,)) < 1and 0 < max(py, (¢;)), max(ry, (¢;) < 1,
Similarly,

0 < max(i (0)), mar(, (o) < 1,

0 < max(hg, (g)), max(hg, (g)) < 1and 0 < max(ug, (g))), max(hg,(g)) < 1,

This implies that:

0 < max|uy, (0) — 16, (0)| < 1,0 < maxlujy (o)) — ug (o)) < 1,0 < max|dy, (o) —
Xé@(gj)| <land0 < max|xU (o) — kg@(gjﬂ < 1,0 < max|u, (o) — ,uGQ(gj)| <1,
0 < maxfhy () — gy (g)] < 1

or all i and j, then:

L

F(e;)|ug, (0) — 1, ()], (e,)luh’?(@}) — ke, ()],
0 < max| Fle;)|My, (0)) — Ao, (9)] Fle) My, (g)) — e, (@)l | <6
F(e,)un, (0) — tg, ()], F(%)Pmp(@j) = g, (0)]-
= 0 < di(H,,Gy) < 1
2) Let d}' (Hp, Gy) = 0, For two CIFHSs Hy, and G,

If and only if, For all j,

max|ug, (0,) — ug, ()| = 0, max|uy (o) — g, (o,)] = 0, maxfdy, (¢,) — Ag, (¢,)] = 0 and
maxp (g) = 22 (0)] = 0. maxuy (8) — i, (0)] = 0. maxfh,, (g) — 1, (2)] = 0

which is equivalent to

max(iy, (¢;)) = max(pg, (¢)), max(wy () = max(ug, (g))),
max(hy, (¢)) = max(he (¢,)), max(hy, (¢))) = max(hg, (9))), max(uy, (¢)) = max(ng,(e,));
max(hy, (¢))) = maX(kc@(@j))
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3) For two CIFHSs Hj and G,

L o F(e;)| g, (0) — m, ()], Fle) g, () — g, (g))l,
By Go) = =35 max | Fle) () 2, ()] Fle) 1 (0) ~ 2, o))
=oAL F ei)':uH[P 9 _MG@(Q])LF(Q)MHP(Q]) XG@(Q])l

1 m n j
= 50 max | Fle) () = My () Fle)IrE (0) =4, (o)
=t F(e;)|ug, () =ty (0)], Fle) A, (0) — Ay, (0))]
= d (GQaH)

Hence, di' (H;, Gy) = d;'(Gy, Hp)
4) H, C G, € I, then
max{uén,,(@]) Hy, ()] © max(ug (g;), max(ug (g)] S max(ug (g;), max(w (o))]
max[hy,, (¢), My, (¢))] 2 max[hg (o;), max(h (o;)] 2 max[h;_(g)), max(\ ()]
Also max(uHP(gj))Zmax(ucQ( ) = max(u,, (g;)), and
max(hy, () < max(hg, (¢)) < max(hy (g;))
Therefore,
—r
max| . (o;
L(0): 2, (0))] < max|hy, (o), max(\y, (g))], max|hy (o), max(hg, (0)] <
max|\;, (g])7max(ku( o
(¢))
)

16, ()] < max|ug (o), max(uy, (g))], max|uy (g;), max(ug, (g,)| <

)
), max(uy) (0,)|

max|\;,

maxluHP 9)): Moy (9))| < max|py (0), 1y, ()], max(hy, (), A, (0,)| < max|
Hn(gj) IR(QJ | Thus’

F(e) i, (¢) =y ()], Fle)|my, (o)) — wi (0))],

& (Hp ) = o3> max | Fle)lth (0) ~ 1y (o). Fle) 2 (0) ~ 2L (o))
=1 j=1 F(ei)|/lH“,(Qj) M (Qj)|? F(ei)p\‘HLx(Qj) - (Qj)|~

Lo E(e) i, () — g, (9))], Fle)luy, (¢) — uc, (o),

> > D max| Fle) i, (0) = A, (0)l F(e)ny, (o) = 4G, (o))

e F(ei)‘:qu(gj) - NGQ(Q]’)LF(Q)MHP(Q;) - 7‘(;@(@]-)|~
di'(Hp, Gg)

Similarly, d\'(Hy, I;) > d/'(Gg, I,).
Hence, d}' is a valid distance measure.

4.2.2 Hausdorff normalized hamming distance measure. The hausdorff normalized
hamming distance can be computed using the expression below:

Fe )|.u§{p(9j) - MéQ(Qj)‘ﬂF(ei”tugw(gj) - :qu(Qj”v

di (Hy, Gy) GWEZI max| F(e)Mh (0) — M (0], Fle) |1y (g) — 45 (g)],
" E(e) |1y, (0) — e, (9))], Fle)) My, (0)) — Ao, (0)]
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Here p are the elements of U which is a universal set, “n” represents the number of elements of
universal sets and “m” represents the number of attributes.

4.2.3 Hausdorff weighted hamming distance measure. The hausdorff weighted ham-
ming distance can be calculated using the expression:

F(e;)|ug, (0) — m6, (0], Fle) g, () — ne, ()1,
d?(H]P’ GQ) = %ZZQ max F(ei)lxifp(gj) - Xé@(gj)|,F(e,-)|7»ZW(gj) - )‘ga(gj)h
F(e) 1, () — e, (8)]. F(e)l, (0) — g (o)

« »

Here g are the elements of U which is a universal set, “n” represents the number of elements of
universal sets and “m” represents the number of attributes.

5 Development of distance measures for quality control metrics for
industrial product manufacture

Metrics for quality control are crucial in product manufacturing to guarantee that the end
product satisfies the required criteria for quality. These metrics are measurements and indica-
tions that are used to judge a product’s quality as it is being produced. Manufacturers can spot
any flaws or problems in their products early on in the production process by using quality
control metrics, which enables them to take remedial action and stop the creation of faulty
products. As a result, waste is minimized, production costs are decreased, and customer satis-
faction is increased. In order to improve their production processes, producers can make mod-
ifications that will raise the caliber of their products with the use of quality control metrics.
Improved equipment maintenance, faster production lines, and staff training on quality con-
trol best practices are a few examples of how to achieve this. Implementing quality control
metrics can assist manufacturers in meeting industry standards and regulatory requirements
in addition to enhancing product quality. Manufacturers are required to abide by tight quality
control rules in many industries; failure to do so may result in penalties, legal action, and harm
to the company’s reputation.

Fuzzy distance measures are mathematical tools used in the manufacturing industry for
various purposes. They determine the degree of similarity or dissimilarity between two or
more entities or objects. In quality control, fuzzy distance measures can identify any quality
issues by comparing the similarity of a product’s quality characteristics to its specifications.
For production planning, fuzzy distance measures can cluster similar products and identify
patterns in production data to improve efficiency and reduce waste. In decision-making, fuzzy
distance measures can be used to evaluate the similarity between different products,
manufacturing processes, or suppliers to make informed decisions. Fuzzy distance measures
can also be used in product design to evaluate the degree of similarity between different design
concepts or prototypes. Lastly, in supply chain management, fuzzy distance measures can be
used to evaluate the similarity between suppliers or partners to optimize supply chain
processes.

The proposed methodology involves constructing a reference set that embodies the ideal
qualities of key parameters for cement storage. This reference set is a benchmark against
which various cement storage options are compared. To access the quality of the final pro-
cessed product, suppose that there are “s” batches/alternatives produced, indicated by
X,.X,.X,, - -,X,, which are assessed by an expert using a set of “t” criteria, denoted by
Y,.Y,.Y,,--.,Y,,. The quality control experts based on their human intuition express their
preferences in the form of CIFHS. The preferences are expressed based on the expert’s
human intuition where the membership interval is used to express the range in which the
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membership function should be contained for the quality assessment to be satisfactory
while the same non-membership interval and the membership degree express the prefer-
ences on contrary to the membership functions. The preferences in the form of CIFHSs are
illustrated as:

B, = (<mf,m, WO IE S ), o, >~£;>) @

wherem =1,2,3,.. ,s;andn = 1,2,3,.. ,t.
As a result, all possible rating values for each of the alternatives are compiled in terms of
CIFHSs as:

X, = (gn, (1, (0,), 19, (0,)]: [h (0., M0 (2,)]), (12, (2,) 20, (0,))] 0, € ”) ©

Let €, be the weight of criteria Y, . These weights are essential as they determine the relative
importance of each of the criteria that are under review by the expert. The weights can either
be provided by the experts or be computed by different decision-making algorithms like Ana-
lytical Hierarchy Process (AHP) and Best-Worst Method (BWM) as illustrated by research

reported in the literature. Let €, be the weight of criteria ¥, such that ¢, > 0and €, = 1.
q=1

Then, utilising the recommended measures, the following actions are provided to tackle the

DM problems:

Step 1: Collect all information in terms of CIFHSs relating to each of the alternatives, and
therefore an overall decision matrix M is written as:

X1 Xygo oo Xy

Xo1 KXoy eee Xy
M =

X X X

s1 s2 st

Step 2: Utilizing the proposed distance measures for each of the alternatives against the refer-
ence set.

Step 3: If the distance between the alternatives is decreasing, it means that the possibilities are
nearer to the relevant of the group. As a result, order the possibilities in decreasing distance
order.

5.1 Quality control for storage of manufactured cement

The quality control of cement manufacture is a critical aspect of the cement industry, as it
affects the strength, durability, and overall performance of the final product. Several factors
can influence the quality control of cement manufacturing [54].

1. Raw materials: The quality of raw materials used in cement manufacturing plays a crucial
role in determining the quality of the finished product. The chemical composition, fineness,
and consistency of raw materials such as limestone, clay, and gypsum must be carefully
monitored to ensure they meet the required standards.
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2. Production process: The production process used to manufacture cement can also impact
the quality of the final product. Factors such as temperature, mixing time, and grinding
process can all influence the quality of the cement.

3. Quality control procedures: Cement manufacturers must have robust quality control pro-
cedures to ensure that the finished product meets the required standards. These procedures
should include regularly testing raw materials and finished products to meet the required
specifications.

4. Environmental factors: Environmental factors such as humidity, temperature, and air
quality can also affect cement quality. These factors can impact the setting time, strength
development, and consistency of the cement.

5. Storage and transportation: The storage and transportation of cement can also impact its
quality. Cement should be stored in a dry, cool, and well-ventilated area to prevent moisture
from affecting its quality. Additionally, it should be transported in clean, dry, and well-
maintained trucks to prevent contamination.

Now, cement storage is a critical issue as the finished product needs to be handled carefully
and safely shipped to consumers without any damage. A number of variables are considered
when storing cement, and its essential to keep a strict quality control check over them as it
greatly influences the final performance when used by the consumer. To compute the quality
control metrics for storage, consider gy, 0., 03 be the cement batches produced by an industry.
Let P be the set of parameters given by P = {P; (Temperature), P, (Humidity), P; (Air Circula-
tion in the storage site), (Enclosure Type)} and their sub-parametric sets as

P, ={(10-30%), (30-50%),(greater than 50%)}, P, = {Temperature, Pressure, Humidity,
Greenhouse Emissions} and P; = {Humidity, Air Circulation in the warehouse, Temperature,
Enclosure Types} which are represented in the form of CIFHSS as H, I, and ], are optimal
settings reported in literature for storage of cement.

For the sake of brevity, four tuples of attributes of CIFHS are computed as follows:

H; = {{e,,([0.3,0.5],[0.1,0.5]), (0.4,0.6)), (s, ([0.3,0.4],[0.1,0.5]), (0.4,0.5)), (. ([0.2,0.6],0.1,0.4]), (0.3,0.6)))
H;, = {{0,,([0.1,0.4],[0.4,0.6]), (0.2,0.7)), {0, ([0.2,0.4], [0.5,0.6]), (0.1,0.4)), {04, ([0.3,0.8], [0.1,0.2]), (0.6,0.1))
H, = {(o,,([0.2,0.6],[0.1,0.3]), (0.2,0.6)), (0,, ([0.2,0.4], [0.1,0.4]), (0.3,0.5)), (¢,, ([0.1,0.2], [0.3,0.8]), (0.3,0.5))
H, ={{0,([0.1,0.4],0.3,0.6]), (0.1,0.8)), (0,, ([0.1,0.5],[0.1,0.3]), (0.3,0.5)), {0, ([0.2,0.3],[0.2,0.7]), (0.2,0.4))

)

-

)

)

"

H, = {{0,,(]0.2,0.7],]0.1,0.2]), (0.3,0.5)), {0, ([0.3,0.6], [0.2,0.4]), (0.4, 0.6)), {05, ([0.4,0.5],[0.2,0.4]), (0.6, 0.3))) },
HP {(gl, ([0.1, 0.5], [0.3, 0.5]), (0.5, 0.4)>, <,Q2, ([0.27 0.4], [0.57 0.6}), (0.17 O.9)>, <Q3, ([0.2, 0.6], [0.1, 0.3])7 (0.5, O.4)>},
Hp; {(gl, ([0.6, 0.8]7 [0.1, 0.2]), (0.4, 0.5)>, <Q2, ([0.1, 0.6], [0.1, 0.3}), (0.27 0.8)>7 (93, ([0.1, 0.3], [0.2, 0.7]), (0.27 0.4)>},
H, = {(0,,(/0.3,0.4], 0.5,0.6]), (0.6,0.3)), {0,, ((0.7,0.8], 0.1,0.2]), (0.7,0.2)), (@,, ((0.6,0.7], 0.2,0.3]), (0.1,0.5))}

H, = {(gl, ([0.2, 0.5], [0.1, 0.4]), (0.6,0.2)), (0,, ([0.1, 0.3], [0.2, 0.7}), (0.7,0.1)), (g:i, ([0.5, 0.8}, [0.1, 0.2]), (0.9, 0.1)))},
H,, = {(0,,([0.4,0.5],[0.1,0.3)),(0.6,0.3)), (2,, ([0.3,0.6], 0.2,0.4]), (0.2,0.7)), (g, ([0.4,0.6], [0.2,0.3]), (0.2,0.8))},
de {{e,,([0.3,0.8],10.1,0.2]), (0.3,0.6)), {90,, ([0.1,0.5], [0.3,0.5]), (0.3,0.4)), {os, ([0.2,0.4],[0.1,0.3]), (0.4, 0.3)) },
H,, = {{¢,.([0.3,0.6],[0.1,0.3)), (0.1,0.5)), {0y, ([0.4,0.5, [0.2,0.4]), (0.7,0.2)), {2y, (10.7,0.8],[0.1,0.2]), (0.8,0.1)) }

Now, a reference set is used for comparison of the alternatives so the closest to the ideal alter-
native is selected. Assume the properties of an ideal storage facility for cement are recorded in
the form of an n-tuple to see the highest level of n-tuple compliance with Hp, I, and J. For
this purpose, a list is compiled with different storage options they have currently available out
of which their aim is to the select the closest to the ideal option. Most of the data for consider-
ing the similarity between the presented options is available in the form of human intuition
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Hﬁl = {<Q17
H;, = {{e:,([03,0

allowing room for uncertainty which is best dealt using fuzzy structures. The list in the form of
CIFHSS is shown below:

1,0.3],[0.2,0.5)), (0.6,0.3)), (0,, ([0.5,0.6], [0.3,0.4]), (0.2,0.7)), (05, ([0.3,0.8],[0.1,0.2]), (0.2,0.7)))},
6],[0.2,0.3]), (0.8,0.1)),
Re = H, ={(o,,([0.1,0.6],[0.2,0.3]), (0.3,0.5)), (0,, ([0.2,0.5],[0.3,0.5]), (0.1,0.4

H, = {(o,,([0.4,0.5],[0.2,0.4]), (0.1,0.8)), {0y, ([0.6,0.7],[0.1,0.3]), (0.7,0.1)), {0y, ([0.5,0.8],[0.1,0.2]), (0.4,0.6)) }

)}

(0,,([0.1,0.4],[0.2,0.6]), (0.3,0.5) )
([ )}

(Mo, ([0.4,0.5],[0.3,0.4]), (0.3,0.6
)

)
)), {03, ([0.1,0.8],[0.1,0.2]), (0.2,0.7

Now, as explained above, the purpose of this computation is to figure out which of the
enclosures out of a set of given options H, I, and J, would perform best for storage of cement
products compared to the ones ideally reported in literature. The proposed non-weighted
measurements are used to calculate Hy, I, and ], from ideal enclosure properties. Table 1 pres-
ents the summarized results of the non-weighed distance measures indicating J, is the best
performer compared to the other set of alternatives (Hy, I,). Suppose weights are assigned as
0.1, 0.4, and 0.5 to the criteria under consideration. In that case, the results may vary as illus-
trated by values of dg, d%', d{l whereby inclusion of a significant weight of a criteria leads to dif-
ferent results when compared to the ideal scenario of storage properties of cement.

By employing the hybrid cubic intuitionistic fuzzy hypersoft set structure, the study accom-
modates and captures the inherent uncertainties and complexities associated with quality con-
trol in practical applications, making it highly suitable for real-world industrial environments.
This approach offers a powerful tool to assess the similarity between each cement storage site
and the reference set of parameters. The degree of similarity determined through this process
is crucial in determining whether a particular product should be accepted or rejected in the
industrial production line. Products exhibiting a higher degree of similarity to the reference set
are more likely to meet the desired quality standards and, thus, be accepted for further process-
ing or distribution. Decision-makers can evaluate the similarities and differences between vari-
ous cement storage options and the reference set in detail by incorporating distance measures
into the hybrid cubic intuitionistic fuzzy hypersoft set structure. This allows for the optimiza-
tion of quality control procedures. As a result, this study advances quality control methodolo-
gies and has a great deal of potential to improve the overall efficacy and efficiency of industrial
production lines, which will ultimately result in greater product quality and customer satisfac-
tion. The hybrid CIFHS structure’s incorporation of distance measures enables a detailed
assessment of the parallels and divergences between cement storage choices and the reference
set, giving decision-makers insightful information for improving quality control procedures.
As a result, this study contributes to the advancement of quality control techniques. It holds

Table 1. Calculated distance measures for cement storage enclosure quality control.

Distance Measures Measurement Values of R from Ranking
Hp Ip Jp
d, 0.5875 0.55 0.470833 Jp<Ip<Hp
d, 0.195833 0.183333 0.156944 Jp<Ip<Hp
ds 0.206667 0.173333 0.172917 Jp<Ip<Hp
dar 0.179167 0.175 0.1625 Jp<Ip<Hp
d? 0.059722 0.058333 0.054167 Jp<Ip<Hp
dr 0.062917 0.054583 0.06125 Ip<Jp<Hp
https://doi.org/10.1371/journal.pone.0291817.t001
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significant promise for enhancing the overall efficiency and effectiveness of industrial produc-
tion lines, ultimately leading to higher product quality and customer satisfaction.

While the developed structure holds great promise as highlighted in the introduction, it
does have limitations. First, due to the combination of multiple mathematical structures,
CIFHSS might introduce increased complexity in the mathematical framework. CIFHSS
might introduce increased complexity in the mathematical framework. Secondly, this frame-
work is mathematically limited to work if the sub-parameters are disjoint, requiring significant
tuning of parameters before using the framework. Also, as with any fuzzy-based approach, the
computational burden increases with larger datasets and more complex systems. While the
study highlights the versatility of CIFHSS in quality control management, its generalization to
diverse industrial domains might require further investigation.

Compared to the structures reported in the literature, CIFHSS stands out as a highly versa-
tile and powerful framework for handling uncertainty and vagueness in complex data scenar-
ios. By seamlessly integrating the key characteristics of several hybrid fuzzy structures,
including cubic sets, hypersoft sets, and intuitionistic fuzzy sets, CIFHSS offers a unique and
sophisticated approach that enhances the design and incorporation of human intuitionistic
data in decision-making processes. These multiple hybrid fuzzy paradigms are combined
inside CIFHSS to produce a complex mathematical framework that more fully reflects uncer-
tainty, ambiguity, and imprecision. The use of cubic sets enables more accurate data modeling
by allowing for a more detailed depiction of membership degrees using cubic functions.
Aspects of soft computing are also introduced through the introduction of hypersoft sets,
improving the flexibility with which many qualities and their sub-attributes can be handled.
Furthermore, because it takes into account both membership and non-membership informa-
tion, the CIFHSS’s incorporation of intuitionistic fuzzy sets allows a richer comprehension
and analysis of ambiguous data. This thorough representation is essential for capturing the
instincts and preferences of the decision-maker, resulting in more precise and well-informed
decision-making processes. The application of CIFHSS across a variety of industrial fields,
where complex data frequently necessitates multifaceted analysis and decision-making, further
demonstrates its adaptability. Its capacity to manage ambiguous, vague, and imprecise data in
a more comprehensible format offers effective and efficient solutions for practical issues
including pattern detection, risk analysis, and quality control management.

6 Conclusion

In this study, we developed a hybrid concept that merges Cubic Intuitionistic Fuzzy Set (CIFS)
with Soft Set (SS) to create the novel Cubic Intuitionistic Fuzzy Hypersoft Set. The main goal
was to improve the quality control management system for industrial applications by accu-
rately capturing and modeling uncertainty, ambiguity, and imprecision in data. With the
advent of CIFHSS, we were able to manage many unique qualities within a cubic set environ-
ment at the sub-attribute level, giving complicated industrial systems a more detailed and
accurate depiction. The described operations, such as internal, partly internal, external, com-
plement, direct sum, and product, increased CIFHSS’s adaptability and the range of possible
real-world scenarios in which it may be used. The numerical simulations demonstrated how
useful and effective CIFHSS is for quality control management. The data’s possible flaws, outli-
ers, and variances were effectively found by using the six distance measures described by
CIFHSS. The ability to quantify the differences between data points and assess the consistency
of production processes empowered us to make informed decisions, optimize manufacturing
processes, and adhere to regulatory requirements effectively. The significant findings of this
paper lie in the versatility of CIFHSS as an efficient tool for decision-making, risk analysis, and
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process optimization across a wide range of industrial applications. By effectively handling
uncertainty and vagueness in data, CIFHSS enables manufacturers to maintain consistent pro-
duction, meet customer expectations, ensure regulatory compliance, and safeguard their repu-
tation and profitability.
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