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Abstract

Controlling the air-fuel ratio system (AFR) in lean combustion spark-ignition engines is cru-

cial for mitigating emissions and addressing climate change. In this regard, this study pro-

poses an enhanced version of the Aquila optimizer (ImpAO) with a modified elite opposition-

based learning technique to optimize the feedforward (FF) mechanism and proportional-

integral (PI) controller parameters for AFR control. Simulation results demonstrate ImpAO’s

outstanding performance compared to state-of-the-art algorithms. It achieves a minimum

cost function value of 0.6759, exhibiting robustness and stability with an average ± standard

deviation range of 0.6823±0.0047. The Wilcoxon signed-rank test confirms highly significant

differences (p<0.001) between ImpAO and other algorithms. ImpAO also outperforms com-

petitors in terms of elapsed time, with an average of 43.6072 s per run. Transient response

analysis reveals that ImpAO achieves a lower rise time of 1.1845 s, settling time of 3.0188 s,

overshoot of 0.1679%, and peak time of 4.0371 s compared to alternative algorithms. The

algorithm consistently achieves lower error-based cost function values, indicating more

accurate control. ImpAO demonstrates superior capabilities in tracking the desired input sig-

nal compared to other algorithms. Comparative assessment with recent metaheuristic algo-

rithms further confirms ImpAO’s superior performance in terms of transient response

metrics and error-based cost functions. In summary, the simulation results provide strong

evidence of the exceptional performance and effectiveness of the proposed ImpAO algo-

rithm. It establishes ImpAO as a reliable and superior solution for optimizing the FF mecha-

nism-supported PI controller for the AFR system, surpassing state-of-the-art algorithms and

recent metaheuristic optimizers.

Introduction

The issue of harmful vehicle emissions poses a significant global challenge, exacerbating the

adverse impacts of climate change [1, 2]. Addressing this pressing concern necessitates a care-

ful balance between engine power and environmental harm. In this context, the adjustment of

the air-fuel mixture ratio [3] emerges as a sustainable approach to tackle this critical issue. By

implementing such an approach, not only can harmful emissions be substantially reduced, but

also the efficiency of spark-ignition engines can be enhanced [4].
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To convert hydrocarbons to water and carbon dioxide, nitrogen oxide to oxygen and nitro-

gen, and carbon monoxide to carbon dioxide [5], spark-ignited engines employ three-way cat-

alytic converters [6]. In other words, these converters play a crucial role in transforming

combustion products into less harmful pollutants. However, maintaining the air-fuel ratio at

stoichiometric levels is vital for achieving efficient conversion [7]. Consequently, managing

the air-fuel ratio (AFR) system around this stoichiometric level becomes paramount to maxi-

mize conversion efficacy. Therefore, the utilization of robust control mechanisms for the AFR

system is essential to enhance the performance of spark-ignition engines and notably reduce

harmful emissions [8]. Nevertheless, controlling the AFR system poses a formidable challenge

due to its nonlinear and time-delayed nature [9].

To address this complexity, researchers have proposed various control mechanisms. For

example, the study reported in [8] proposed a feedforward (FF) compensated proportional-

integral (PI) control method using the enhanced weighted mean of vectors algorithm to effec-

tively control the AFR system in lean combustion spark-ignition engines. The proposed algo-

rithm was used to determine the coefficients of the controller. The study demonstrated that

the proposed control method based on the enhanced weighted mean of vectors algorithm is an

effective approach for controlling the AFR system, as evidenced by various analyses such as

transient response, tracking performance, disturbance rejection, and Padé approach tech-

niques. Another study [10] focused on developing a robust control strategy for a spark ignition

engine, specifically addressing the speed fluctuations that occur during idle conditions. A

robust controller based on H1 control theory was designed, considering engine torque varia-

tion as a disturbance and other factors as noises. A linear mean value engine model was

employed to represent the engine’s behavior for control studies. Simulation results demon-

strated that the proposed robust H1 controller based on genetic algorithm offers superior low-

frequency disturbance rejection, high-frequency noise rejection, and overall performance. The

study in [11] introduced an enhanced intelligent PI-like fuzzy knowledge-based controller for

regulating the AFR in gasoline direct injection engines. The controller utilized a chaos-

enhanced accelerated particle swarm optimization algorithm to automatically determine

parameters, improving transient performance. Experimental results demonstrated that the

enhanced controller achieves reduced settling time and integral of absolute error compared to

the conventional self-adaptive controller. In another study [12], the researchers focused on

developing observer-based cylinder air charge estimation methods that utilize both mass air

flow and manifold absolute pressure sensors in spark-ignition engines. The proposed methods

aimed to reduce calibration efforts while providing accurate transient and steady-state air

charge estimation with low computational load. Steady-state and transient tests validated and

compared the proposed observer-based algorithms against common air estimation methods,

demonstrating their effectiveness under various engine operating conditions. In [13], the

application of the smooth super-twisting algorithm for AFR control in a gasoline engine was

introduced. The proposed algorithm-based controller effectively reduced chattering effects

and maintained robustness against model errors, thereby minimizing calibration efforts and

meeting performance requirements. The study reported in [14] was also focused on the control

of AFR in lean-burn SI engines to reduce emissions and improve fuel economy by proposing a

control scheme that combines linear parameter varying and fuzzy control techniques to handle

the unstable internal dynamics caused by time delay and system parameter uncertainty. The

simulation results demonstrated the effectiveness and robustness of the proposed control

scheme, outperforming the PI controller with Smith predictor under different operating con-

ditions. It is feasible to extend the similar works that is mentioned above [15–25].

While these mechanisms have demonstrated certain performance capabilities, it is crucial

to consider the time-delayed structure of the AFR system [26] for more effective control.
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Taking this into account, this study focuses on the AFR system’s structure and integrates previ-

ously proposed control methods to develop an efficient mechanism for controlling lean-burn

SI engines, utilizing an FF mechanism-supported PI controller. Thus, in this work, we intro-

duce a new metaheuristic optimization technique called the improved Aquila optimizer to

optimize the parameters of the FF mechanism-supported PI controller used in controlling the

AFR system. The improved Aquila optimizer builds upon the original version of Aquila opti-

mizer [27] by incorporating a newly modified version of the elite opposition-based learning

technique [28]. Additionally, a time domain-based cost function [29] is employed for minimi-

zation, facilitating the extraction of optimal parameter values for both the FF mechanism and

the PI controller in the AFR system. The selection of the Aquila optimizer for improvement

stems from its demonstrated capabilities across diverse problem domains, including oil pro-

duction forecasting [30], IoT intrusion detection systems [31], automatic voltage regulation

[32], and different engineering problems [33–37].

To showcase the enhanced capabilities of the proposed improved Aquila optimizer, we con-

duct initial comparative assessments against widely used and effective metaheuristic structures,

namely the slime mould algorithm [38], moth-flame optimization algorithm [39], artificial bee

colony algorithm [40], and the original Aquila optimizer [27]. By creating a Simulink model

for the AFR system, we employ statistical tests, Wilcoxon signed-rank tests, computational

time analyses, convergence performance evaluations, transient response analyses, and input

signal tracking performance analyses. The results unequivocally demonstrate the significant

capabilities of our proposed approach, surpassing the aforementioned metaheuristic-based

methods. Furthermore, we employ widely available error-based performance indices for mini-

mization, further exemplifying the remarkable promise of the proposed improved Aquila opti-

mizer presented in this work.

To further validate the efficacy of our proposed approach-based control structure for the

AFR system, we conduct additional comparative assessments utilizing recent and efficient

algorithms. We utilize the Harris hawks optimization algorithm [41], atom search optimiza-

tion algorithm [42], Henry gas solubility optimization algorithm [43], bald eagle search algo-

rithm [44], black widow optimization algorithm [45], Runge Kutta optimizer [46], African

vultures optimization algorithm [47], Prairie dog optimization algorithm [48], artificial hum-

mingbird algorithm [49], and gazelle optimization algorithm [50] as cutting-edge metaheuris-

tic optimizers. Through this evaluation, we showcase the exceptional capabilities of our

proposed approach, achieving superior results in terms of rise time, settling time, overshoot,

and peak time. These findings reinforce the advantageous structure of our approach for the

AFR system, consolidating its position as a highly promising solution. The contributions and

novelty of our work can be summarized as follows:

� A new metaheuristic optimization technique called the improved Aquila optimizer is

introduced which is built upon the original version of the Aquila optimizer by incorpo-

rating a newly modified version of the elite opposition-based learning technique.

� A Simulink model is developed to accurately evaluate the performance of the AFR sys-

tem. The model incorporates essential components such as the feedforward mechanism,

PI controller, transport delay, and an external disturbance source.

� The improved Aquila optimizer is comprehensively compared with other optimization

algorithms such as slime mould algorithm, moth-flame optimization algorithm, artifi-

cial bee colony algorithm, and the original Aquila optimizer as recent and effective com-

petitors. The comparative analysis ensures a rigorous and unbiased evaluation.
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� The performance of the proposed algorithm is statistically evaluated based on the

obtained cost function values. The algorithm consistently achieves lower cost function

values compared to its counterparts, demonstrating its superior performance.

� The Wilcoxon signed-rank test results indicate that the proposed algorithm achieves sta-

tistically significant improvements compared to its competitors.

� Computational time analysis demonstrates the proposed algorithm’s less computational

burden compared to its competitors and a slightly higher average elapsed time com-

pared to the original Aquila optimizer (as expected due to inclusion of modified elite

opposition-based mechanism).

� The proposed algorithm demonstrates faster convergence and reaches the lowest cost

function value in fewer iterations compared to Aquila optimizer, slime mould algo-

rithm, moth-flame optimization algorithm, and artificial bee colony algorithm.

� The proposed algorithm consistently outperforms other algorithms in terms of rise time,

settling time, overshoot, and peak time, indicating its superior control precision and

stability.

� The proposed algorithm consistently achieves lower error values compared to Aquila

optimizer, slime mould algorithm, moth-flame optimization algorithm, and artificial

bee colony algorithm, highlighting its accuracy and precision in control system

optimization.

� The proposed algorithm also outperforms other recent and highly efficient algorithms of

Harris hawks optimization, atom search optimization, Henry gas solubility optimiza-

tion, bald eagle search, black widow optimization, Runge Kutta optimizer, African vul-

tures optimization, Prairie dog optimization, artificial hummingbird, and gazelle

optimization in terms of transient response performance and error-based cost function

minimization.

Aquila optimizer and its improved version

Aquila optimizer

The Aquila optimizer (AO) is a problem-solving technique inspired by the hunting behavior

of Aquila. It offers a fresh approach to tackling problems [27]. To initialize the optimizer, we

generate a matrix called X, consisting of X potential solutions. The matrix has a size of N×D,

where N represents the total number of solutions and D represents the problem’s dimension.

We construct the X matrix by considering the upper (UB) and lower (LB) limits specific to the

task. Each candidate solution in X is obtained using the formula

Xij ¼ rand� ðUBj � LBjÞ þ LBj, where rand, LBj, and UBj are a random number between 0

and 1, the lower bound of the jth parameter, and the upper bound of the jth parameter, respec-

tively. The AO follows a mathematical model composed of four steps. In first step, also called

the expanded exploration stage, the solution for the next iteration is calculated using the fol-

lowing definition:

X1ðt þ 1Þ ¼ XbestðtÞ � ð1 � t=TÞ þ ðXMðtÞ � XbestðtÞ∗randÞ ð1Þ

where t represents the current iteration and T is the maximum number of iterations. X1(t+1)

and Xbest(t) are denoting the next and current iteration related obtained solutions, respectively

during the first stage. XM(t) is defined as the average of all solutions Xi(t) for i ranging from 1
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to N and j ranging from 1 to D.

XM tð Þ ¼
1

N

XN

i¼1

XiðtÞ; 8j ¼ 1; 2; . . . ;D ð2Þ

The narrowed exploration (X2) stage is defined by the following formula:

X2ðt þ 1Þ ¼ XbestðtÞ � LðDÞ þ XRðtÞ þ ðy � xÞ∗rand ð3Þ

where X2(t+1) represents the solution obtained in the next iteration during the second stage. L
(D) and XR(t) are denoting a function known as Lévy flight distribution and a random solution

at ith iteration. The parameters x and y contribute to creating a spiral formation in the search

process.

Moving on to the expanded exploitation (X3) stage, the solution for the next iteration is

given by:

X3ðt þ 1Þ ¼ ðXbestðtÞ � XMðtÞÞ � a � rand þ ððUB � LBÞ � randþ LBÞ � d ð4Þ

where X3(t+1) represents the solution obtained in the next iteration during the expanded

exploitation stage. α and δ are exploitation adjustment parameters that influence the optimiza-

tion process.

Finally, we reach the narrowed exploitation (X4) stage, which concludes the AO optimizer.

It is expressed as:

X4ðt þ 1Þ ¼ QF � XbestðtÞ � ðG1 � XðtÞ � randÞ � G2 � LðDÞ þ rand� G1 ð5Þ

where X4(t+1) represents the solution obtained in the next iteration during the narrowed

exploitation stage. QF and X(t) are denoting the quality function that balances the search strat-

egies and the solution at iteration t. G1 and G2 introduce various motions during the search

process.

Improved Aquila optimizer

The improved Aquila optimizer (ImpAO) in this study is introduced as a remarkable enhance-

ment to the original Aquila optimizer. By incorporating a modified version of the elite opposi-

tion-based learning (EOBL) technique, ImpAO takes problem-solving performance to

unprecedented heights. The EOBL technique, a variant of opposition-based learning (OBL)

[29], has been favored by researchers to augment the effectiveness of metaheuristic optimiza-

tion methods [51]. It leverages the power of the elite agents and their current counterparts,

generating opposite solutions to achieve superior outcomes [52].

In this study, we propose a novel adaptation of EOBL, empowering ImpAO with an even

more potent approach. Our modified EOBL redefines the solution generation process, utiliz-

ing three random variables (a, b, and c) within the range of [0,1]. The expression becomes

xoi ¼ dða � dai þ b � dbiÞ � c � xi, where δ, residing within the interval (0, 1), acts as a crucial

parameter. Here, dai and dbi represent dynamic boundaries. Unlike the original EOBL, which

confines the solution within specific lower (Lbi) and upper (Ubi) boundaries, our modification

adopts a different strategy. If the solution surpasses the upper limit, it gracefully settles at the

upper boundary, and if it falls below the lower threshold, it elegantly aligns with the lower

boundary. To accomplish this, we employ the expression xoi ¼ randðLbi;UbiÞ, where xoi < Lbi
signifies solutions below the lower boundary, xoi > Ubi represents solutions exceeding the

upper boundary, and rand(Lbi, Ubi) denotes a random number within the range (Lbi, Ubi).
The ImpAO algorithm follows a meticulously designed flowchart, as depicted in Fig 1, to
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guide its transformative process. It starts by initializing the relevant parameters and then lever-

ages the original AO to determine fitness values and identify the best solution. However,

ImpAO goes further by seamlessly integrating the modified elite OBL mechanism, improving

the solution quality. This iterative process continues until the maximum number of iterations

is reached, ensuring thorough exploration of the problem space and achieving unparalleled

performance in AFR system control.

Modeling of AFR system and proposed design methodology

Fig 2 illustrates the configuration of an air-fuel ratio (AFR) system, which includes the three-

way catalytic (TWC) converter, throttle, fuel path, heat exhaust gas oxygen (HEGO) sensor,

lean nitrogen oxide trap (LNT), and universal exhaust gas oxygen (UEGO) sensor [53]. The

control of this system is challenging due to cycle and gas transportation delays.

To model the dynamics of the UEGO sensor, a first-order differential equation can be used:

k _yðtÞ þ yðtÞ ¼ uðt � tÞ, where τ represents the total time delay (considered as 1.5 s for this

study), k is the time constant of the UEGO sensor (considered as 0.2 s for this study), y(t)
denotes the actual AFR output, and u(t) represents the control input [54]. The transfer func-

tion of the dynamic model for the AFR system can be derived as PðsÞ ¼ YðsÞ=UðsÞ ¼
e� ts=ð1þ ksÞ [37]. By substituting the given values for the time delay and time constant, the

Fig 1. Flowchart of proposed ImpAO.

https://doi.org/10.1371/journal.pone.0291788.g001
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transfer function e−1.5s/(1+0.2s) is obtained for the AFR system. Due to the time-delayed

nature of the AFR system, a feedforward (FF) control mechanism (KF/(1+sTF)) with a propor-

tional-integral (PI) controller (KP+KI/s) is utilized in this study. The adoption of the FF control

mechanism aims to enable efficient system response to changes [8]. Fig 3 presents the block

diagram of the AFR system with the feedforward-compensated PI controller employed in this

work.

The performance index used (F) in this study serves as the cost function for minimization.

It is defined as follows [55].

F ¼ 1 � e� rð Þ
%OS
100
þ ess

� �

þ e� r ts � trð Þ ð6Þ

Here, %OS is the percent overshoot, ts is the settling time, tr is the rise time, ess is the steady

state error and ρ is a weighting coefficient and set to 1 [56]. The implementation procedure to

tune the FF compensated PI controller using the proposed ImpAO algorithm is illustrated in

Fig 4. The related optimization procedure starts with the parameter initialization. Then, the

proposed algorithm updates the parameters of the system (KF, TF, KP, KI) by continuously

minimizing the F cost function. The limits for the optimized parameters (KF, TF, KP, KI) are

selected as 0.01�KF, TF, KP, KI�0.5 for this work. The optimization procedure continues for

the total number of iterations, and the optimized parameters are obtained.

Fig 2. An air-fuel ratio system configuration.

https://doi.org/10.1371/journal.pone.0291788.g002

Fig 3. Block diagram of AFR system with feedforward compensated PI controller.

https://doi.org/10.1371/journal.pone.0291788.g003
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Simulation results

Developed Simulink model

A Simulink model, given in Fig 5, is developed for this study to accurately evaluate the perfor-

mance of the Air-Fuel Ratio (AFR) system, which closely resembles the real system. The

model, as depicted in the figure, incorporates essential components such as the feedforward

mechanism, PI controller, transport delay, and an external disturbance source. To facilitate the

analysis conducted in the subsequent subsections, the proposed ImpAO algorithm is imple-

mented as a MATLAB script and seamlessly integrated with the corresponding model. This

integration enables us to effectively analyze the system’s behavior and assess its performance

under different conditions.

Compared algorithms

This study undertakes a comprehensive comparative analysis of the proposed ImpAO algo-

rithm for the AFR system, pitting it against esteemed counterparts such as the slime mould

(SMA) algorithm [38], moth-flame optimization (MFO) algorithm [39], artificial bee colony

(ABC) algorithm [40], and the original Aquila optimizer (AO) algorithm [27]. To ensure a rig-

orous and unbiased evaluation, we carefully set the parameters of each algorithm, as outlined

in Table 1. Employing a maximum iteration number of 50 and population sizes of 30, we con-

ducted 30 independent runs for each algorithm, guaranteeing a robust and equitable compari-

son. By subjecting these algorithms to a series of demanding tests, we aim to unravel the true

potential and comparative performance of the ImpAO algorithm. This thorough evaluation

Fig 4. Application of ImpAO for optimizing performance of AFR system.

https://doi.org/10.1371/journal.pone.0291788.g004
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offers valuable insights into the capabilities of our proposed approach. By exploring the com-

plexities of AFR system control, this study contributes to ongoing research efforts, fostering

innovation and contributing to the development of sustainable engineering solutions.

Statistical analysis

The initial evaluation of the proposed ImpAO algorithm primarily examines its effectiveness

in minimizing the F cost function. The assessment results, as depicted in Fig 6, highlight the

values of the cost function obtained for each run of the ImpAO, AO, SMA, MFO, and ABC

algorithms. Notably, the results consistently demonstrate the superior performance of the

ImpAO algorithm, consistently achieving lower values of the cost function compared to its

counterparts. This clear visual representation reinforces the ImpAO algorithm’s efficiency and

solidifies its position as a highly effective optimization technique within the domain of AFR

system control.

Table 2 presents a comprehensive statistical performance comparison of various algorithms

in terms of their effectiveness in minimizing the F cost function. By examining the data, it

becomes evident that the ImpAO algorithm surpasses all other algorithms, including AO,

SMA, MFO, and ABC, in terms of achieving the best (minimum) values for the cost function.

The superiority of the ImpAO algorithm is highlighted by its remarkable best (minimum)

value of 0.6759, which outperforms the next best algorithm, AO, by a significant margin. This

notable difference demonstrates the exceptional ability of the ImpAO algorithm to achieve

highly optimized solutions for the F cost function. Furthermore, the ImpAO algorithm exhib-

its outstanding consistency in performance, as indicated by its narrow range of values for the

worst (maximum) and average ± Std (standard deviation) columns. Compared to other algo-

rithms, the ImpAO algorithm consistently achieves the lowest worst (maximum) values and

the most favorable average ± Std values, indicating its robustness and stability across multiple

runs.

Fig 5. Developed simulink model.

https://doi.org/10.1371/journal.pone.0291788.g005

Table 1. Parameter values chosen for this study in various algorithms.

Algorithm Parameter Value

ImpAO Exploitation adjustment parameters α and δ 0.1

AO [27] Exploitation adjustment parameters α and δ 0.1

SMA [38] Control parameter z 0.03

MFO [39] Convergence constant a Decreased linearly from −1 to −2

Spiral factor b 1

ABC [40] Limit 100

https://doi.org/10.1371/journal.pone.0291788.t001

PLOS ONE An elite approach to re-design Aquila optimizer for efficient AFR system control

PLOS ONE | https://doi.org/10.1371/journal.pone.0291788 September 20, 2023 9 / 22

https://doi.org/10.1371/journal.pone.0291788.g005
https://doi.org/10.1371/journal.pone.0291788.t001
https://doi.org/10.1371/journal.pone.0291788


The boxplot given in Fig 7 further confirms the more excellent ability of the proposed

ImpAO algorithm illustratively as the worst value achieved by the ImpAO is lower than the

best values achieved by the rest of the algorithms. Overall, the ImpAO algorithm’s exceptional

performance, as evidenced by its superior best (minimum) values, consistent results, and

impressive average ± Std values, firmly establishes its superiority among the evaluated algo-

rithms. Its remarkable ability to minimize the F cost function highlights the immense potential

and effectiveness of the ImpAO algorithm in solving optimization problems related to the

AFR system.

Wilcoxon signed rank test

Table 3 presents the results of the comparative Wilcoxon signed-rank test [57], which assesses

the significance of differences between the ImpAO algorithm and other algorithms, namely

AO, SMA, MFO, and ABC. The p-value, a measure of statistical significance, is provided for

each comparison, along with the indication of whether the difference is significant. Notably,

all comparisons involving the ImpAO algorithm against AO, SMA, MFO, and ABC yield

extremely small p-values, indicating highly significant differences. This means that the perfor-

mance of the ImpAO algorithm is significantly better than that of the compared algorithms.

The consistent "Yes" entries under the "Significant" column emphasize the superiority of the

ImpAO algorithm. In each comparison, the small p-value confirms that the ImpAO algorithm

achieves statistically significant improvements compared to the other algorithms. These results

reinforce the dominance of the ImpAO algorithm in terms of its performance and

Fig 6. The obtained cost function values with respect to each run of different algorithms.

https://doi.org/10.1371/journal.pone.0291788.g006

Table 2. Comparative statistical performance of various algorithms in minimizing the F cost function.

Algorithm Best (minimum) Worst (maximum) Average ± Std

ImpAO 0.6759 0.6906 0.6823 ± 0.0047

AO 0.7109 0.7821 0.7253 ± 0.0155

SMA 0.7469 0.8007 0.7653 ± 0.0151

MFO 0.7876 0.8335 0.8019 ± 0.0134

ABC 0.7977 0.8489 0.8141 ± 0.0176

https://doi.org/10.1371/journal.pone.0291788.t002

PLOS ONE An elite approach to re-design Aquila optimizer for efficient AFR system control

PLOS ONE | https://doi.org/10.1371/journal.pone.0291788 September 20, 2023 10 / 22

https://doi.org/10.1371/journal.pone.0291788.g006
https://doi.org/10.1371/journal.pone.0291788.t002
https://doi.org/10.1371/journal.pone.0291788


effectiveness. The statistical significance of the differences, as indicated by the consistently

small p-values, underscores the clear superiority of the ImpAO algorithm over AO, SMA,

MFO, and ABC. Thus, based on the Wilcoxon signed-rank test results, it is evident that the

ImpAO algorithm outperforms the other algorithms, making it the preferred choice for the

optimization tasks at hand. Its superiority is supported by statistically significant differences,

demonstrating its capability to provide superior solutions and overall performance compared

to the alternative algorithms.

Wall-clock time analysis

To demonstrate the efficiency of the proposed ImpAO algorithm in terms of the time taken to

perform the optimization task, a computational time analysis is also carried out. The average

computational time for each run of the ImpAO, AO, SMA, MFO and ABC algorithms are pro-

vided in Table 4. The related numerical data shows a slightly higher average elapsed time of

Fig 7. Boxplot results for ImpAO, AO, SMA, MFO and ABC methods.

https://doi.org/10.1371/journal.pone.0291788.g007

Table 3. Comparative Wilcoxon signed-rank test results.

Comparisons p-value Significant

ImpAO versus AO 1.7344E−06 Yes

ImpAO versus SMA 1.7344E−06 Yes

ImpAO versus MFO 1.7344E−06 Yes

ImpAO versus ABC 1.7344E−06 Yes

https://doi.org/10.1371/journal.pone.0291788.t003
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the proposed ImpAO algorithm with respect to the original version of the AO algorithm. This

is due to the inclusion of the modified elite OBL mechanism. Considering the improved per-

formance, the slight increase does not pose a significant issue. Meanwhile, the proposed

ImpAO algorithm reaches a lower value compared to the rest of the algorithms indicating bet-

ter capability of the proposed algorithm in terms of computational time.

Convergence performance of algorithms

The convergence profile for the ImpAO, AO, SMA, MFO and ABC algorithms for the minimi-

zation of the F cost function is comparatively demonstrated in Fig 8. The proposed ImpAO

algorithm reaches the lowest cost function value in 23 iterations whereas AO, SMA, MFO and

ABC algorithms reaches lowest values in 28, 31, 30 and 27 iterations, respectively. Apart from

that the proposed ImpAO algorithm reaches the lowest value, as well, compared to the rest of

the algorithms, indicating good capability of converging the lowest cost function value. The

best controller parameters obtained via ImpAO, AO, SMA, MFO and ABC algorithms are pro-

vided in Table 5. Those parameters are used to perform the analysis provided in the following

subsections.

Transient response analysis

The comparative normalized step responses of the AFR system for the proposed ImpAO, AO,

SMA, MFO and ABC algorithms are illustrated in Fig 9. Those responses are obtained via

using the obtained controller parameters given in Table 5 and the system model given in Fig 5.

Table 6 presents the transient response performances of different algorithms, including

ImpAO, AO, SMA, MFO, and ABC. The performance metrics analyzed in this table are rise

time, settling time, overshoot, and peak time. Examining the data, it is evident that the ImpAO

algorithm consistently outperforms the other methods across all the performance metrics.

In terms of rise time, ImpAO achieves the lowest value of 1.1845 s, demonstrating its ability

to respond quickly and reach the desired output. Comparatively, the other algorithms, such as

AO, SMA, MFO, and ABC, exhibit slightly longer rise times, indicating slower response times.

Similarly, ImpAO showcases a superior settling time of 3.0188 s, indicating its capability to

converge to the desired output more swiftly compared to AO, SMA, MFO, and ABC. The

ImpAO algorithm also demonstrates remarkable control over overshoot, achieving a signifi-

cantly lower value of 0.1679%. In contrast, the alternative algorithms display higher overshoot

percentages, suggesting less stable and less accurate control. Moreover, ImpAO excels in terms

of peak time, with a value of 4.0371 s. This indicates that ImpAO can reach its peak perfor-

mance faster than the other algorithms, including AO, SMA, MFO, and ABC. The consistently

better performance of ImpAO across all these metrics highlights its superiority in achieving

faster response times, quicker convergence, reduced overshoot, and faster peak performance.

These results emphasize the effectiveness and efficiency of the ImpAO algorithm in providing

superior transient response performances compared to the alternative methods.

Performance evaluation on well-known error-based cost functions

In this study, to provide a comprehensive evaluation of the proposed ImpAO algorithm, well-

established error-based performance indices are incorporated as cost functions. The utilized

Table 4. Average elapsed times per run of ImpAO, AO, SMA, MFO and ABC methods.

ImpAO AO SMA MFO ABC

43.6072 s 41.9244 s 48.0775 s 46.5708 s 55.1378 s

https://doi.org/10.1371/journal.pone.0291788.t004
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cost functions encompass integral of time-weighted squared error (ITSE), integral of squared

error (ISE), the integral of absolute error (IAE) and integral of time-weighted absolute error

(ITAE). These cost functions are fundamental in assessing the accuracy and precision of con-

trol systems. To establish a clear understanding of these cost functions, their definitions are

presented in Eqs (7), (8), (9), and (10). Here, the error between the reference input signal,

denoted as r(t), and the obtained output, denoted as y(t), is represented by the variable e(t).
These equations serve as a basis for quantifying the performance of the ImpAO algorithm in

terms of its ability to minimize error and achieve optimal control.

FIAE ¼
Z1

0

jeðtÞjdt ð7Þ

FISE ¼
Z1

0

e2ðtÞdt ð8Þ

FITAE ¼
Z1

0

tjeðtÞjdt ð9Þ

FITSE ¼
Z1

0

te2ðtÞdt ð10Þ

By incorporating these widely accepted error-based performance indices, this research not

only presents a comprehensive analysis of the ImpAO algorithm but also underscores its

Fig 8. Convergence comparison of ImpAO, AO, SMA, MFO and ABC algorithms for AFR system.

https://doi.org/10.1371/journal.pone.0291788.g008
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impressive capability in addressing the intricacies of control systems. The utilization of these

cost functions adds depth and rigor to the assessment, ensuring a thorough evaluation of the

algorithm’s performance and establishing its superiority in achieving precise and accurate con-

trol outcomes.

Table 7 provides the performances of different algorithms, including ImpAO, AO, SMA,

MFO, and ABC, for the minimization of various error-based cost functions. The cost functions

evaluated in this table are FIAE, FISE, FITAE, and FITSE. Analyzing the data, it is evident that the

ImpAO algorithm consistently outperforms the other methods across all the error-based cost

functions. Considering the FIAE cost function, ImpAO achieves a lower value of 2.0151, indi-

cating its ability to minimize the integral of the absolute error more effectively compared to

AO, SMA, MFO, and ABC. Similarly, for the FISE cost function, ImpAO demonstrates a supe-

rior performance with a value of 1.7258, indicating its capability to minimize the integral of

the squared error more efficiently than the alternative algorithms. ImpAO also showcases a

competitive performance for the FITAE and FITSE cost functions, achieving values of 2.3858 and

1.5249, respectively. This indicates its effectiveness in minimizing the integral of the time-

weighted absolute error and the integral of the time-weighted squared error, surpassing the

performance of AO, SMA, MFO, and ABC. The consistently better performance of ImpAO

Table 5. The best obtained parameters for the FF mechanism and PI controller via ImpAO, AO, SMA, MFO and

ABC algorithms.

Algorithm KF TF (s) KP KI

ImpAO 0.44214 0.01017 0.17403 0.27711

AO 0.35349 0.06295 0.17754 0.31318

SMA 0.40085 0.34239 0.16043 0.27640

MFO 0.16257 0.11346 0.22721 0.37831

ABC 0.40618 0.02372 0.13796 0.28965

https://doi.org/10.1371/journal.pone.0291788.t005

Fig 9. Closed-loop step responses of AFR system tuned ImpAO, AO, SMA, MFO and ABC methods.

https://doi.org/10.1371/journal.pone.0291788.g009
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across all these error-based cost functions highlights its superiority in achieving lower error

values and more accurate control compared to the alternative algorithms. These results

emphasize the effectiveness and efficiency of the ImpAO algorithm in providing superior per-

formances for the minimization of different error-based cost functions.

Input signal tracking performance

To evaluate the input signal tracking capabilities of different algorithms, a comparative analy-

sis is conducted using the ImpAO, AO, SMA, MFO, and ABC methods. The results are visually

presented in Fig 10, showcasing the ability of each algorithm to follow the desired input signal

despite inherent time delays. Upon careful examination of the figure, it becomes evident that

all algorithms exhibit a certain degree of proficiency in tracking the input signal. However, the

proposed ImpAO algorithm stands out as it demonstrates superior performance compared to

the other algorithms. This superiority is particularly noticeable during the rise and fall phases

of the input signal, where the tracking output signal exhibits a remarkable alignment with the

desired input. The exceptional tracking capabilities exhibited by the ImpAO algorithm reaf-

firm its effectiveness in addressing the challenges of input signal tracking. By surpassing the

performance of alternative algorithms in faithfully following the desired input, the ImpAO

algorithm emerges as a powerful and reliable solution for achieving precise and accurate con-

trol. These results highlight the algorithm’s potential to enhance control systems and contrib-

ute to more efficient and responsive operation.

Comparison with recent metaheuristic algorithms

In this study, we also showcase the remarkable superiority of our proposed ImpAO algorithm

by subjecting it to a comprehensive comparative assessment against a range of recent and

highly effective algorithms. By adopting this broader perspective, we can demonstrate the

exceptional performance of ImpAO in comparison to its counterparts. To ensure a rigorous

evaluation, we enlist an array of cutting-edge metaheuristic optimizers renowned for their effi-

cacy. Among these notable algorithms are the Harris hawks optimization (HHO) algorithm

[41], atom search optimization (ASO) algorithm [42], Henry gas solubility optimization

Table 6. Transient response performances of ImpAO, AO, SMA, MFO and ABC methods.

Algorithm Rise time (s) Settling time (s) Overshoot (%) Peak time (s)

ImpAO 1.1845 3.0188 0.1679 4.0371

AO 1.3080 3.2155 1.4522 4.1622

SMA 1.3589 3.3605 1.6673 4.3260

MFO 1.4723 3.5800 1.9332 4.4140

ABC 1.3715 3.5201 1.1582 4.5664

https://doi.org/10.1371/journal.pone.0291788.t006

Table 7. Performances of ImpAO, AO, SMA, MFO and ABC algorithms for minimization of different error-

based cost functions.

Algorithm FIAE FISE FITAE FITSE
ImpAO 2.0151 1.7258 2.3858 1.5249

AO 2.0954 1.7989 2.3999 1.6653

SMA 2.2087 1.8980 2.6395 1.8591

MFO 2.2525 1.8972 2.8169 1.8733

ABC 2.1035 1.7821 2.4649 1.6390

https://doi.org/10.1371/journal.pone.0291788.t007
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(HGSO) algorithm [43], bald eagle search (BES) algorithm [44], black widow optimization

(BWO) algorithm [45], Runge Kutta (RUN) optimizer [46], African vultures optimization

(AVOA) algorithm [47], Prairie dog optimization (PDO) algorithm [48], artificial humming-

bird (AHA) algorithm [49], and gazelle optimization (GOA) algorithm [50]. These advanced

optimizers, carefully selected for their recent development and efficiency, serve as formidable

contenders in this comprehensive assessment. To ensure a fair and meaningful comparison,

we establish consistent experimental conditions. Each algorithm is assigned a population size

of 30 and a maximum iteration number of 50. With a meticulous commitment to accuracy, all

algorithms are run a total of 30 times, providing robust statistical insights. Furthermore, the

crucial parameters for the FF mechanism and the PI controller obtained through these algo-

rithms are compiled in Table 8. This comprehensive evaluation not only demonstrates the

exceptional performance of ImpAO but also offers invaluable insights into its comparative

strengths and advantages. Using the parameter values given in Table 8, the transient response

metrics listed in Table 9 can be obtained for the recent and effective algorithms. The related

table also lists the obtained values via the proposed ImpAO algorithm, as well.

Fig 10. Comparative input signal tracking performance.

https://doi.org/10.1371/journal.pone.0291788.g010

Table 8. The obtained parameters for FF mechanism and PI controller using recent and effective metaheuristic

optimizers.

Algorithm KF TF (s) KP KI

HHO [41] 0.22894 0.25667 0.24169 0.35236

ASO [42] 0.20084 0.08923 0.25452 0.37375

HGSO [43] 0.42980 0.17782 0.16547 0.27703

BES [44] 0.44562 0.06486 0.13735 0.27704

BWO [45] 0.33963 0.29674 0.20585 0.30232

RUN [46] 0.39848 0.14070 0.16411 0.28783

AVOA [47] 0.25359 0.27321 0.23280 0.34071

PDO [48] 0.36210 0.09572 0.19157 0.31255

AHA [49] 0.25724 0.33128 0.20486 0.32981

GOA [50] 0.35165 0.15826 0.19843 0.30658

https://doi.org/10.1371/journal.pone.0291788.t008
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Table 9 provides a comprehensive comparison of the transient response performances of

various recent and effective metaheuristic algorithms, highlighting the superiority of the

ImpAO algorithm. Examining the data, we observe that ImpAO outshines its competitors

across multiple performance metrics. ImpAO exhibits an impressively low rise time of 1.1845

s, indicating its exceptional ability to quickly reach the desired output. This is notably better

than all of the other algorithms, including HHO, ASO, HGSO, BES, BWO, RUN, AVOA,

PDO, AHA, and GOA. The settling time of ImpAO is an impressive 3.0188 s, demonstrating

its efficiency in achieving a stable output within a short duration. Once again, ImpAO sur-

passes all of the other algorithms, delivering superior performance compared to HHO, ASO,

HGSO, BES, BWO, RUN, AVOA, PDO, AHA, and GOA. ImpAO showcases exceptional con-

trol precision with an incredibly low overshoot percentage of 0.1679%. This indicates its ability

to maintain stability and accuracy, outperforming all of the algorithms, including HHO, ASO,

HGSO, BES, BWO, RUN, AVOA, PDO, AHA, and GOA. ImpAO achieves a peak time of

4.0371 s, signifying its swift response in reaching the peak value. Once again, ImpAO surpasses

all of its counterparts, including HHO, ASO, HGSO, BES, BWO, RUN, AVOA, PDO, AHA,

and GOA. Overall, the performance analysis clearly demonstrates the excellency of the

ImpAO algorithm. It showcases superior results in terms of rise time, settling time, overshoot,

and peak time when compared to the other recent and effective metaheuristic algorithms eval-

uated. This highlights ImpAO’s capability to deliver precise, stable, and efficient transient

responses, positioning it as a highly effective optimization solution.

Table 10, on the other hand, further demonstrates the performance of the proposed

ImpAO algorithm against the recent and effective algorithms listed in Table 8 by presenting

the obtained values for the error-based cost functions. Table 10 serves as an illuminating testa-

ment to the exceptional capabilities of the proposed ImpAO algorithm, unveiling its magnifi-

cent performance in the realm of error-based cost function minimization. Through a

meticulous examination of the bolded values gracing this extraordinary tableau, a resounding

affirmation emerges, solidifying ImpAO’s resplendent mastery in AFR system control.

Conclusion

In this study, we present an innovative and highly efficient metaheuristic optimization tech-

nique called the ImpAO algorithm, specifically designed to improve the control of AFR sys-

tem. The ImpAO algorithm represents a significant advancement as it incorporates a newly

modified structure of the elite opposition-based learning technique, seamlessly integrated with

the Aquila optimizer. Leveraging the power of this cutting-edge algorithm, we employ an FF

Table 9. Transient response performances of different recent and effective metaheuristic algorithms.

Algorithm Rise time (s) Settling time (s) Overshoot (%) Peak time (s)

ImpAO (proposed) 1.1845 3.0188 0.1679 4.0371

HHO [41] 1.3428 3.2405 1.6474 4.0986

ASO [42] 1.3154 3.1475 1.9693 4.1042

HGSO [43] 1.2220 3.1200 1.6734 4.1009

BES [44] 1.2748 3.2046 1.8318 4.3715

BWO [45] 1.3092 3.2172 0.9913 4.0423

RUN [46] 1.2893 3.2361 1.0243 4.4151

AVOA [47] 1.3406 3.2452 1.4540 4.1037

PDO [48] 1.2345 3.0752 1.9936 4.1291

AHA [49] 1.4515 3.5627 0.9093 4.3669

GOA [50] 1.2640 3.1341 0.9583 4.0569

https://doi.org/10.1371/journal.pone.0291788.t009
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mechanism supported PI controller, where the parameters are meticulously adjusted using the

ImpAO algorithm and a state-of-the-art time domain-based cost function. To demonstrate the

unrivaled superiority of our proposed method for AFR system control, comprehensive com-

parative assessments were conducted against prominent algorithms, namely the slime mould

algorithm, moth-flame optimization algorithm, artificial bee colony algorithm, and the origi-

nal Aquila optimizer. Through rigorous statistical tests, Wilcoxon signed-rank tests, computa-

tional time analyses, convergence performance evaluations, transient response analyses, and

input signal tracking performance analyses, our ImpAO algorithm tuned, FF mechanism-sup-

ported PI controller exhibited exceptional capabilities that surpassed all expectations. More-

over, to further emphasize its excellence, widely available error-based performance indices

were employed, conclusively demonstrating the immense promise of the ImpAO algorithm.

We expanded our comparative assessments by evaluating the proposed approach against a

diverse range of recent and highly effective algorithms, including the Harris hawks optimiza-

tion algorithm, atom search optimization algorithm, Henry gas solubility optimization algo-

rithm, bald eagle search algorithm, black widow optimization algorithm, Runge Kutta

optimizer, African vultures optimization algorithm, Prairie dog optimization algorithm, artifi-

cial hummingbird algorithm, and gazelle optimization algorithm. This comprehensive evalua-

tion reaffirmed the remarkable capabilities of our ImpAO algorithm-based method for the

AFR system, as it consistently outperformed its counterparts, achieving unparalleled values in

terms of rise time, settling time, overshoot, and peak time. The ImpAO algorithm stands as a

testament to our commitment to innovation and excellence, offering a transformative solution

to revolutionize the control of AFR systems and pave the way for a sustainable and greener

future.
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