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Abstract

We describe changes in the cropland distribution for physiographic and bioregions of conti-

nental Ecuador between 2000 and 2016 using Landsat satellite data and government statis-

tics. The cloudy conditions in Ecuador are a major constraint to satellite data analysis. We

developed a two-stage cloud filtering algorithm to create cloud-free multi-temporal Landsat

composites that were used in a Random Forest model to identify cropland. The overall accu-

racy of the model was 78% for the Coast region, 86% for the Andes, and 98% for the Ama-

zon region. Cropland density was highest in the coastal lowlands and in the Andes between

2500 and 4400 m. During this period, cropland expansion was most pronounced in the

Páramo, Chocó Tropical Rainforests, and Western Montane bioregions. There was no crop-

land expansion detected in the Eastern Foothill forests bioregion. The satellite data analysis

further showed a small contraction of cropland (4%) in the Coast physiographic region, and

cropland expansion in the Andes region (15%), especially above 3500m, and in the Amazon

region (57%) between 2000 and 2016. The government data showed a similar contraction

for the Coast (7%) but, in contrast with the satellite data, they showed a large agricultural

contraction in the Andes (39%) and Amazon (50%). While the satellite data may be better at

estimating relative change (trends), the government data may provide more accurate abso-

lute numbers in some regions, especially the Amazon because separating pasture and tree

crops from forest with satellite data is challenging. These discrepancies illustrate the need

for careful evaluation and comparison of data from different sources when analyzing land

use change.

Introduction

Croplands cover around 112% of the global non-frozen land surface, and another 22% of land

is used for grazing [1, 2]. Cropland areas are expanding in response to the continuing increase

in the global demand for food and other agricultural products due to population growth, the

development of new agricultural products such as biofuel, and changes in diets [3–5]. This

expansion threatens biodiversity and the provisioning of ecosystem services [6–10]. Further-

more, climate change may facilitate the expansion of agriculture into areas at higher latitudes

and elevations [6]. Thus, to understand the impact of agriculture on the environment it is

important to monitor on-going land use change.
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Government statistics can be used to analyze patterns of agriculture expansion. However,

these are not always available, or not frequently updated, and sometimes unreliable [11].

Moreover, these records tend to be aggregated to regional and national levels that can preclude

precise understanding of the importance of the changes that are occurring. The availability of

multi-decadal remote sensing data has created an alternative data source for monitoring crop-

land dynamics [12]. However, remote sensing-based estimates of land use could also be unreli-

able due to a number of factors, including persistent cloud cover, and spectral similarity

between land cover classes (e.g. forest and tree crops). Remote sensing applications to monitor

agricultural expansion tend to either focus on large regions, such as continents or the whole

world, or on specific areas where the process is related to rapid changes such as deforestation

[13] such as in the Brazilian Amazon [14]. To better understand agricultural land use, more

detailed studies of other regions are needed as well.

Here we describe changes in the distribution of crop production in continental Ecuador.

Recent agricultural expansion has been reported from some regions in Ecuador [15, 16] but

there is no comprehensive study of recent changes in cropland distribution for the entire

country. We use Landsat data to map cropland distribution in continental Ecuador for the

years 2000 and 2016. We use the results to describe changes in cropland distribution by phys-

iographic region, bioregion, elevation and longitude. We found substantial discrepancies

between the Landsat based results and government statistics and we discuss possible reasons

for these differences.

Methods

Study area

We studied cropland expansion in continental Ecuador (that is, excluding the Galapagos

Islands) (Fig 1). The study area has 23 provinces (first level administrative subdivisions) across

three physiographic regions: Coast, Andes and Amazon (Fig 1A), and 10 bioregions (Fig 1B).

The Amazon consists of a single bioregion of tropical lowlands naturally covered with rainfor-

est. The Coast also has lowlands, that are very humid regions in the north (Choco bioregion),

but less moist in the south (Dry Shrub bioregion). The Andes (also referred to as Sierra), has

elevations between 1000 and 6260 m above sea level with a variety of climates and vegetation

types. The Ecuadorian Andes are relatively humid in comparison to the Andes further south

in Peru and Bolivia. The natural vegetation between the tree-line (~ 3250 m) and the perpetual

snow line is dominated by a grassland ecosystem called páramo [17] that has a high biodiver-

sity of plants [18] and serves as water source for lower regions due to its higher precipitation

and deep soils.

Coastal agriculture is dominated by large-scale production of export crops such as banana,

coffee, cacao, and sugar cane. Andean farmers mostly produce food crops such as maize,

potato, cereals, and vegetables. Agriculture in the Amazonian lowlands mainly consists of

large plantations of oil palm, fruit trees and of cultivated pastures for raising livestock (13% of

the Amazonian lowlands has cultivated pastures) [19].

We chose the years 2000 and 2016 to study land cover change because of the availability of

Ecuadorian government statistics for land use, agriculture and forests, and because we did the

land cover/land use data collection in 2016. In addition, Landsat 7 data has been available

since April 1999 and provides complementary data for Landsat 8 catalog.

Landsat data

We used Landsat data because of its availability for our study period, high spatial resolution of

30m, and adequate combined-revisit cycle. We used the surface reflectance (SR) collection 1
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tier 1 time series from three Landsat satellites: Landsat 5 (Jan 01, 1984 –May 5, 2012), Landsat

7 (Jan 01, 1999 –present), both atmospherically corrected with the Landsat Ecosystem Distur-

bance Adaptive Processing System (LEDAPS) algorithm [22, 23], and Landsat 8 (Apr 11, 2013

–present) atmospherically corrected using the Land Surface Reflectance Code (LaSRC) (ver-

sion 1.4.1) algorithm [24], to create composite images for the years 2000 and 2016. Atmospher-

ically corrected SR products might enhance cropland detection in cloudy and foggy conditions

by removing atmospheric noises. Although there are minor differences in the bandwidths

between the satellite sensors (Table 1), several studies have shown that these variations are not

significant when merging multi-temporal scenes for land cover classification purpose [25–34].

For example Zhu & Woodcock 2014 [35] used all the available Landsat data until 2014 includ-

ing Landsat 4, 5, and 7, to generate the Continuous Change Detection and Classification

(CCDC) algorithm to enhance land cover change detection.

Fig 1. Continental Ecuador. (A) The three major physiographic regions and province boundaries. (B) Bioregions and province boundaries (after Ron [20];

and Sierra et al. [21]). Province codes: Esm = Esmeraldas, Man = Manabı́, SaE = Santa Elena, Gua = Guayas, Los = Los Rı́os, Elo = El Oro, Car = Carchi,

Imb = Imbabura, Pic = Pichincha, SaD = Santo Domingo de los Tsáchilas, Cot = Cotopaxi, Bol = Bolı́var, Tun = Tungurahua, Chim = Chimborazo,

Car = Cañar, Azu = Azuay, Loj = Loja, Suc = Sucumbı́os, Ore = Orellana, Pas = Pastaza, Mor = Morona Santiago, Zam = Zamora Chinchipe.

https://doi.org/10.1371/journal.pone.0291753.g001

Table 1. Wavelength (μm) of Landsat bands for the three Landsat sensors used in this study.

Landsat Blue Green Red NIR SWIR I SWIR II Thermal

5 TM 0.45–0.52 0.52–0.60 0.63–0.69 0.76–0.90 1.55–1.75 2.08–2.35 10.4–12.5

7 ETM+ 0.45–0.52 0.52–0.60 0.63–0.69 0.77–0.90 1.55–1.75 2.09–2.35 10.4–12.5

8 OLI 0.45–0.51 0.53–0.59 0.64–0.67 0.85–0.88 1.57–1.65 2.11–2.29 10.6–11.19

https://doi.org/10.1371/journal.pone.0291753.t001
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Cloud removal

Much of Ecuador remains cloudy throughout the year, especially the humid tropical lowlands,

and this is major obstacle to satellite-borne optical remote sensing. To tackle this challenge, we

tested multiple cloud removal techniques. First, we applied a two-stage cloud-screening to

Landsat scenes for both 2000 and 2016. All Landsat SR products contain a pixel quality assess-

ment (QA) band that has been generated by the CFmask algorithm [36]. Using the QA band

we masked cloud and cloud shadow pixels. However, the remaining and permanent cloudy

areas in combination with the low availability of Landsat scenes (especially for the year 2000),

required a second cloud-filter. Some methods might not result effective in removing cirrus

clouds in the dense cloud cover of the Ecuadorian tropics [37]. Other robust cloud-cover

removal algorithms such as the automated cloud-cover assessment (ACCSA) [38] identify out-

liers corresponding to permanent cloudy locations. We implemented a similar approach by

generating time series of Landsat TM SR in 2000 to evaluate the spectral patterns of sensitive

bands to atmospheric haze (Blue) and cloud brightness (NIR) [39, 40] for a representative

cloudy region. For this purpose, we selected a location within the persistent cloudy zone and

traced a 0.25 km2 homogenous land cover polygon. The land homogeneity was visually evalu-

ated in Google Earth with high spatial resolution historical images. These SR time series curves

allowed us to identify and remove saturated dates (SR>1) corresponding to fog, cloud borders,

and thin semi-transparent clouds not detected by the first filter [25, 41]. Although this signifi-

cantly improved the composite quality for the year 2000, bright areas persisted due to local

atmospheric conditions or sensor radiometric limitation, perhaps because the ETM+ spectral

channels cannot easily detect semitransparent clouds such as Cirrus Uncinus and Fibratus,

and cloud edges [42]. We also evaluated a reflectance percentile filter over the SR collections at

10, 20, 50% to remove residual cloud and cloud-shadow.

Gap-filling and compositing

The failure of the Landsat 7 ETM+ scan-line corrector (SLC) in May 2003 produced data with

constant wedge-shaped gaps between scans [43]. We created gap-filled ETM+ scenes using

data from other dates [44]. Finally, to create a cloud free mosaic, we used a five-year window

of cloud-masked images for 2000 (January 1998 to December 2002) and 2016 (January 2014 to

December 2018). Merging contemporaneous Landsat sensors, L5+L7 for 2000, and L7+L8 for

2016, increased revisit frequency until eight day and helped to supersede mosaic mismatching,

missing tiles, and invariable cloudy locations corresponding to thin clouds that were not

removed by the second cloud filter. We produced the final cloud-free composite based on

median reflectance value for each pixel for the visible (blue, green, red), near infrared, short-

wave infrared (one and two), and thermal bands.

Classification model

We collected a total of 3010 land cover samples (34% crop, 66% no-crop) by visual interpreta-

tion of high-spatial resolution satellite imagery (~1.85m or higher) using the open-access Geo-

survey platform (https://geosurvey.qed.ai/about/). The locations were generated randomly

over the study area (Fig 2). Sample locations that were much affected by clouds, or were very

heterogeneous, were not used. The sample locations were filtered over available cloud-free

scenes for 2016 and were sampled using a 250 × 250 m window. We labeled annual and peren-

nial crops, cultivated pastures, and fallow areas as cropland. Fallow areas are land that is clearly

used for crop production, but at the time of sampling did not have a crop on it. No-crop class

consisted of all other vegetated non-crop and non-green areas. Due to the unavailability of
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high-resolution images, training samples from 2000 were not collected, instead we used the

model trained with data for 2016 to classify the corresponding 2000 dataset.

We used Random Forest (RF) to classify pixels as cropland and non-croplands [45, 46]. RF

is a machine learning algorithm widely accepted for satellite-image classification purposes. RF

utilize a set of multiple decision trees to choose the most popular class providing an advantage

over other tree-based classifiers by selecting random subsets of features and minimizing

Fig 2. Elevation in Ecuador and the spatial distribution of sample locations that were classified as “crop” or “not crop” and

used to train the Random Forest model. There are fewer samples in areas with persistent cloud cover.

https://doi.org/10.1371/journal.pone.0291753.g002
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correlation among the decision trees [47]. The model was trained separately by physiographic

region (Coast, Andes, Amazon) and for the entire country with a parametrization of 100 trees,

10 predictors, and 3 out of 10 randomly selected variables per tree. These parameters were

determined to be optimal with cross-validation. The predictor variables included were seven

Landsat bands (Table 1), Normalized Difference Vegetation Index (NDVI) (eq. 1), Enhanced

Vegetation Index (EVI) (eq. 2), and 30-meter elevation from the Shuttle Radar Topography

Mission (SRTM) [48]. NDVI is an indicator of greenness and biomass for vegetation monitor-

ing [49] while EVI offers improvement in sensitivity over dense vegetation cover minimizing

canopy soil variation. Elevation is strongly associated with climate and cropping practices in

Ecuador [50].

NDVI ¼
NIR � RED
NIR þ RED

ðequation 1Þ

EVI ¼ 2:5
NIR � RED

NIR þ 6∗RED � 7:5∗BLUE þ 1
ðequation 2Þ

In the equations above, NIR is the reflection in the near-infrared part of the spectrum, RED

in the red part, and BLUE in the blue part of the spectrum.

For the year 2016, we evaluated model accuracy for the physiographic regions and at entire

study region using 10-fold cross-validation (CV) by computing the overall accuracy (OA),

kappa coefficient, producer accuracy (PA), and user accuracy (UA) [8]. The kappa coefficient

quantifies the agreement between two variables chance on a [0, 1] scale. A high kappa indicates

that the agreement is not likely to be due to chance alone [51]. PA measures the error of omis-

sion for a class, while the UA indicates the error of commission. The entire modeling workflow

is presented in Fig 3.

Fig 3. Workflow of the methodology for our satellite-based classification.

https://doi.org/10.1371/journal.pone.0291753.g003
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Comparison with census and survey data

We compared our model estimated cropland areas with government statistics at national and

province level for both time periods. We compiled two crop distribution data sets provided by the

Ecuadorian government: the census for year 2000 and survey data for year 2016. These data are

made available by the National Institute of Statistics and Census of Ecuador (INEC) through his

project of Agricultural Area and Production Survey or “Encuesta de Superficie y Producción Agro-
pecuaria Continua (ESPAC)” [19]. These data were generated using a methodology that follows

the Food and Agriculture Organization of the United Nations (FAO) standards for land use data

collection. ESPAC considers annual and perennial crops, fallowed land, and cultivated pastures

within the cropland category. Both datasets provide statistics of cropland area by agricultural land

use type and by province. The 2000 census has data for 21 provinces, while the 2016 survey data

has data for 23, including for the two more recently formed provinces Santa Elena and Santo

Domingo de los Tsáchilas (Fig 4). We summarized the data by administrative region: Coast,

Sierra, Amazon, and calculated proportions of disagreement with our remote sensing estimations.

The Coast comprises six provinces, the Sierra is formed by the 11 central provinces, and the Ama-

zon region has six provinces. We included cultivated pastures in cropland, but we excluded natu-

ral pastures, as was done for the high-resolution image training sample collection.

Geographic distribution of cropland across elevation and longitude

We used our Landsat based estimates of cropland extent to describe some main geographical

patterns of crop distribution. We computed the fraction of cropland area by 50 m elevation

bands, and by 0.1˚ longitude intervals. We also summarized the results by physiographic

region and by ecoregion. We computed the fraction cropland for square raster cells with a 1

km2 spatial resolution to map agricultural extent in both years and to measure change. The sat-

ellite imagery retrieval, filtering, cloud-masking, and compositing were performed in Google

Earth Engine (GEE) platform [52]; the land cover classification and subsequent data analysis

were done with R version 3.6.2 [53] and the randomForest [54] and raster [55] packages.

Results

Cloud screening

For each pixel, were computed the percentage of observations (dates) available that were

cloud-free in each time frame. This quantity differed strongly by bioregion due to satellite data

availability and variability in weather conditions. For instance, the Eastern Andes and the

Northern coastal lowlands showed particularly low rates of cloud-free observations in 2000

(0–30%) (Landsat 5 and 7) (Fig 4A). The proportion of clear-sky observations was significantly

higher and more spatially homogenous in 2016 (Landsat 7 and 8) (Fig 4B).

While Landsat 5 and 7 delivered from 60 (wet season) up to 200 (dry season) cloud-free

observations combined across the study area in 2000 (Fig 4C), Landsat 8 played a fundamental

role by significantly increasing the number of observations available in 2016 for combined

compositing through a more stable and continual data delivery (Fig 4D). In addition, the num-

ber of Landsat 7 collected scenes by geographical location in 2000 is lower than the expected

value from the revisit cycle due to temporal discontinuities of the Landsat archive on the acqui-

sition plan [56]. The spectral cloud filter evaluated times series of surface reflectance (SR) (Fig

5). Saturated and very high SR values greater than 1 (SR>1) correspond to cloudy pixels (Fig

5A). After traditional cloud-masking was applied, several outliers remained visible corre-

sponding to thinner cloudiness (Fig 5B). By adding spectral filtering (B, NIR< = 0.4), these

persistent saturated values were removed (Fig 5C).
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The improvement on composite quality by adding a second filter was evident for represen-

tative cloudy sites in 2000 (Fig 6A and 6D). A large portion of clouds was removed with tradi-

tional cloud masking (Fig 6B and 6E). Permanent thin cloudiness was mostly removed only

with spectral screening (Fig 6C and 6F).

With the percentile method, lower percentiles (10) were effective in removing pixels cov-

ered by semi-transparent clouds. However, using this method yielded cloud-free pixels for

only 80% of the total area in 2000. The spectral analysis filter performed better in terms of

Fig 4. Landsat data availability in a 5-year period. (A) Pixel-wise fraction of cloud free observations for January 1998 –December 2002 composting

period (2000); (B) Pixel-wise fraction of cloud free observations for January 2014 –December 2018 composting period (2016). (C) Monthly number of

cloud-free observations available for 2000. (D) Monthly number of cloud-free scenes available for 2016.

https://doi.org/10.1371/journal.pone.0291753.g004
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quantity and quality of masked pixels, as it produced a cloud-free cover of 98% for 2000 and

100% of the study area for 2016.

Accuracy of cropland detection

A 50-tree random forest parametrization resulted in a classification accuracy of 0.76 for Coast,

0.82 for Sierra, and 0.97 for Amazon of overall accuracy (OA). A 100-tree set-up achieved

slightly better results with 0.76, 0.83 and 0.98 OA respectively. Using more than 100 trees did

not enhance model performance. The OA of the Landsat based cropland detection was highest

for the Amazon region, and lowest for the Coast (Table 2). The Andes (kappa = 0.7) and Ama-

zon (kappa = 0.6) showed substantial agreement, while the agreement for the Coast was mod-

erate (kappa = 0.5). The estimated cropland extent was affected by the cloud filter used. Also,

there were large differences between our Landsat-based estimates and the government statis-

tics, irrespective of the cloud filter used (Table 2). For the Coast region we obtained a producer

accuracy (PA) of 0.71 and user accuracy (UA) of 0.77 for the crop class, and PA = 0.97 and

UA = 0.96 for non-crop, Sierra region PA = 0.82 and UA = 0.8 for crop, PA = 0.79 and

Fig 5. Time series of spatially averaged surface reflectance (SR) for a permanent cloudy location west of Quito in a

five-year frame (1998–2002). Displaying SR for the Blue-NIR space, with the NIR displayed in red: (a) SR Composite;

(b) Cloud-masked composite; (c) Cloud-mask plus spectral filter.

https://doi.org/10.1371/journal.pone.0291753.g005

Fig 6. True color composites for different cloud removal approaches: none (A, D), cloud-masking (B, E), and cloud

masking plus spectral filtering (C, F), for two permanent cloudy regions in 2000: the Western Montane bioregion

(A-C) west of Quito, and the Chocó and Western Foothills (D-F).

https://doi.org/10.1371/journal.pone.0291753.g006

PLOS ONE Cropland expansion in Ecuador

PLOS ONE | https://doi.org/10.1371/journal.pone.0291753 September 19, 2023 9 / 18

https://doi.org/10.1371/journal.pone.0291753.g005
https://doi.org/10.1371/journal.pone.0291753.g006
https://doi.org/10.1371/journal.pone.0291753


UA = 0.81 for non-crop, and for the Amazon region with PA = 0.81, UA = 0.78 for crop and

PA = 0.8, UA = 0.83 for non-crop. For both classes, the errors of omission (100%-PA) in the

Amazon and Sierra regions were lower than in the Coast; probably due to a higher crop het-

erogeneity and pasture presence in these regions.

The cloud free area was larger with the spectral filter, but the type of cloud screening used

had very little impact on classification accuracy. Our 2016 cropland extent estimates were

lower than the government survey data for Coast (-19%) and Amazon (-55%) while higher for

the Andes (+81%) (Table 2). For 2000, our estimates were lower than the government survey

for Coast (-21%), Amazon (-86%) and Andes (5%). The average accuracy for the three models,

one for each physiographic region, was higher than that of the single model for the entire

country (Table 2).

Visual inspection suggested that our model could not thoroughly differentiate between crop-

land-fallow transition and non-forest classes such as bare soil and abandoned land. We made

visual inspection comparing our 2016 classified maps with high resolution mosaics at several

random locations, and we found that some fallowed parcels were misclassified as non-crop

because the similarity with bare soil. Also, in the Amazon and Coast permanent crops such as

oil palm and coffee (tree crops) were not always identified as crops because of their spectral sim-

ilarity with forest. PA and UA estimates are showing higher values for crop rather than for non-

crop class. This makes sense since the non-crop class includes a range of land cover types.

Comparison of cropland distribution with government statistics

The satellite-based estimates had lower variation in province level crop area from 2000 to 2016

than the government data (Fig 7A). For example, the government statistics shows that the

cropland area in Pichincha province (Pic) decrease with 73%, whereas our Landsat-based esti-

mates suggest that it was 26%. There was high agreement for most of the provinces between

the estimated and the government crop areas for 2000 and 2016 (Fig 7B), but with some nota-

ble exceptions for example, in 2000, the satellite-based estimate for Manabı́ province (Man)

was 42% of the government provided number, while for Morona Santiago (Mor) this estimate

was only 3% of the survey value. Both provinces are in tropical lowland areas.

Crop area by province and by physiographic region for 2000 and 2016 are provided in S1–

S3 Tables.

Table 2. Accuracy assessment of cropland classification for continental Ecuador. Overall accuracy and kappa were computed with a 2016 validation sample. Disagree-

ment with government statistics was computed with 2016 survey and 2000 census data.

Region Year Complementary cloud

filter

overall accuracy

(%)

kappa

[0, 1]

estimated crop area

(km2)

government crop area

(km2)

disagreement with gov.

statistics (%)

Coast 2016 percentile (10–50) 78.3 0.5 23,234 29,892 -22

spectral (blue, NIR) 77.6 0.5 24,318 -19

2000 spectral (blue, NIR) - - 25,321 32,039 -21

Andes 2016 percentile (10–50) 84.4 0.7 18,206 11,918 +53

spectral (blue, NIR) 86.1 0.7 21,516 +81

2000 spectral (blue, NIR) - - 18,724 19,622 -5

Amazon 2016 percentile (10–50) 97.1 0.6 1,253 5,218 -66

spectral (blue, NIR) 97.5 0.6 2,335 -55

2000 spectral (blue, NIR) - - 1,490 10,420 -86

Country 2016 percentile (10–50) 83.2 0.7 42,693 47,028 -9

spectral (blue, NIR) 84.3 0.7 48169 +2

2000 spectral (blue, NIR) - - 45,537 62,080 -27

https://doi.org/10.1371/journal.pone.0291753.t002
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Spatial distribution of croplands

Our estimates of the presence of cropland in 2000 by physiographic regions were: Coast

32.9%, Andes 17.9%, and Amazon 0.6%. For 2016 our estimates were Coast 32.8%, Andes

21.1% and Amazon 1.3%. The páramo bioregion experienced the highest cropland expansion,

from 13.3 to 21.4% (Table 3). Expansion in the Western Foothill forests and Andean Shrub

bioregions was 2.8%. The Eastern Foothill Forests bioregion has least cropland (0%). By 2016

there was relatively little cropland in the Amazon (1.3%), Western Foothill (8.7%) and Eastern

Montane forests (9.2%) compared to the other bioregions while>45% of the land in the

Andean Shrub and Chocó Rainforest bioregions is used for crop production.

Change in crop land distribution

At the national level, our land cover classification showed 45,536 km2 of cropland extent for

2000 (Fig 8A), and 48,169 km2 for 2016 (Fig 8B), suggesting an increase of 5.8% of agricultural

land over this 17-year period (Fig 8C). At the physiographic region level, we found a slight

reduction of in cropland area in the Coast (4%), whereas agricultural areas increased by 15%

in the Andes and 57% in the Amazon.

Fig 7. Comparison of cropland extent estimated by province of continental Ecuador. (A): cropland area for 2000

and 2016 according to the government statistics (2000 census and 2016 survey data); and Landsat estimates. (B):

Government statistics versus our Landsat estimates for 2000 and for 2016. Province labels: Pic = Pichincha,

Mor = Morona Santiago, Man = Manabı́.

https://doi.org/10.1371/journal.pone.0291753.g007

Table 3. The size of bioregions in Ecuador, and for 2000 and 2016, remote sensing based estimates of the percentage cropland, and the change in cropland area

between these two years.

Physiographic region Bioregion Area (km2) Cropland 2000 (%) Cropland 2016 (%) Change in cropland area (km2)

Amazon Eastern Foothill 13,061 0 0 0

Amazon Amazon 73,066 0.7 1.3 459.9

Andes Western Montane 21,532 21.4 23.6 480.4

Andes Páramo 15,906 13.3 21.4 1294.4

Andes Andean Shrub 11,258 46.1 48.9 309.8

Andes Eastern Montane 31,414 7.8 9.2 428.6

Coast Dry Shrub 7,911 23.4 20.2 -249.9

Coast Deciduous Forest 25,599 36.4 32.7 -952.1

Coast Chocó Rainforest 31,587 45.3 47.5 693.2

Coast Western Foothill 15,104 5.9 8.7 419.6

https://doi.org/10.1371/journal.pone.0291753.t003

PLOS ONE Cropland expansion in Ecuador

PLOS ONE | https://doi.org/10.1371/journal.pone.0291753 September 19, 2023 11 / 18

https://doi.org/10.1371/journal.pone.0291753.g007
https://doi.org/10.1371/journal.pone.0291753.t003
https://doi.org/10.1371/journal.pone.0291753


We detected cropland expansion in the central-northern part of the Coast region, and

much cropland loss along the coast (Fig 8C). In contrast, in the Andes and Amazon we mostly

found agricultural expansion. Most of the expansion we detected was in central-eastern

Andes, especially in Chimborazo province. In the Amazon, detected cropland increases were

mostly in the area near the border of the northern provinces of Sucumbı́os and Orellana.

Analysis by elevation and longitude

The proportion of land used for crops was highest in the coastal lowlands, around 100 m and

200 m above sea level, and in the Andes, between 2000 and 4000 m. Crop density is much

lower at intermediate elevations and in the Amazon lowlands west of 76˚ W (Fig 9A). Our esti-

mates suggest that cropland expanded most at elevations between 2800 and 4400 m, with an

expansion of about 10% around 3500 m. This is also notable in Fig 5B that shows in increase

between 78.5–79˚ W, as well as some expansion in the Amazon (between 76 and 77˚ W)

(Fig 9B).

Fig 8. Cropland distribution in Ecuador in 2000 and 2016 based on classification of Landsat remote sensing data. Cropland area (proportion of land area)

in (A) 2000; and (B) 2016; (C) change in cropland extent between 2000 and 2016.

https://doi.org/10.1371/journal.pone.0291753.g008

Fig 9. Geographical distribution of cropland in Ecuador by elevation (A) and longitude (B).

https://doi.org/10.1371/journal.pone.0291753.g009
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Discussion

We used Landsat data to study cropland distribution in Ecuador between 2000 and 2016. We

found major discrepancies with government reported data for the same time period. The gov-

ernment data showed a strong decline in the cropland area across the Andes and Amazon

regions whereas our analysis suggest that cropland increased in the regions. A strong decline

in cropland is not in line with our understanding of the study area and the literature. For

example, Gray and Bilsborrow [57] found cropland expansion in the Andes and the Coast.

Agricultural expansion in the Andean páramo bioregion was described by Ross et al. [58], who

found 29% of cropland expansion between 3500m and 5000m elevation between 1999 and

2014 in the Rı́o Chambo basin in the central Ecuadorian Andes. In addition, Wigmore and

Gao [59] found a páramo cover loss of 22% between 1988 and 2007 in the Pambamarca area in

northern Ecuador.

We did not find evidence of large-scale cropland abandonment that would support the

scale of cropland loss reported by the government. The cropland expansion we detected in the

northern Amazon around 76.5˚ W is also supported by Viteri-Salazar & Toledo, 2020 [60],

who analyzed expansion of the agricultural frontier in the Ecuadorian Amazon and they esti-

mated around 2190 km2 of cropland expansion between 2000 and 2011. While we show signif-

icant cropland increase in the Amazon, comparison with the government statistics and visual

inspection suggested that we strongly underestimated the cropland area in that region. Even

though we detected much more cropland in this region that other remote-sensing based

efforts. For example, the Global Food Security-support Analysis Data at 30m (GFSAD30) Proj-

ect for South America (GSFAD30SACE) [61, 62] detected 278 km2 of cropland for 2015, while

our estimate was 2335 km2 for 2016. Further efforts to map croplands in rainforest areas could

focus more on additional methods (e.g. pattern recognition or object-based image analysis) to

distinguish between trees in a forest from trees in a plantation. Another challenge is to distin-

guish cropland from pastures exclusively used for grazing.

There is also a need for further development of complementary cloud-masking techniques

such as spectral analysis of reflectance time series in tropical regions to address the problem of

persistent and lower clouds. Synthetic aperture radar (SAR) may be an alternative data source

for these areas with consistent cloud cover or foggy conditions [63, 64] By combining radar

data with optical satellite observations we may improve land cover classification going forward

for current and future time frames. However, the availability of SAR data continues to be a

constraint for this approach, especially for both historical era as well as the current period after

the Sentinel 1B failure that resulted in significant data gap. It could be of interest to study the

importance of cross-sensor calibration for different classification use cases and how the results

depend on the sensor characteristics, complexity of landscape, temporal duration of the com-

posite etc., however this is beyond the scope of the current study.

Our results show that there can be large uncertainty in land cover data, whether from gov-

ernment statistics or from remote sensing data. Government agricultural statistics can be of

very high quality if they are based on a census, and if the data are made available at a high spa-

tial resolution. Such products can play a key role in calibrating satellite-based models that can

be used for the years between censuses. Other survey methods can, in principle, also yield high

quality data but our results suggest that, if the 2010 census is reliable, the 2016 survey underes-

timated agricultural land use in the Andes and Amazon regions. While the trend in cropland

area in the Amazon suggested by the government data may not be reliable, the overall magni-

tude of the government estimates of cropland in that region may be more accurate than the

remote-sensing based estimate. The census and the survey reported much more cropland in

the Amazon than we, and other studies, detected with remote sensing and our visual
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inspection confirmed that we misclassified much land with pasture and tree crop, despite the

very high accuracy that we computed (0.97 overall accuracy for the Amazon).

In satellite-derived products, data quality can be affected by cloudiness, which is a signifi-

cant obstacle in the humid tropics. In this work, a minor percentage of pixels (~12%) from the

2000 satellite coverage mosaic remained cloud-masked corresponding to permanent cloudy

locations and affected by Landsat data discontinuity and downlinking limitation on the Land-

sat 5 spacecraft [43]. Through visual inspection we noticed some non-filtered cloud pixels may

have been misclassified as crops which might have led to certain overestimation of the 2000

cropland extent and crop contraction from 2000 to 2016.

We found cropland expansion in the Andes between 3000 and 4400 m between 2000 and

2016, mostly corresponding to the páramo bioregion, which provides various ecosystem ser-

vices, for example, water supply for inter-Andean valleys [17, 18]. The transformation from

natural páramo tussock grasses vegetation to cropland or to short grass vegetation by intensive

grazing, expose the Andosol soils to direct sunlight, causing drying, water repellency, and sig-

nificant reduction in soil water retention [65–67]. In the Coast, we observed a more stable

cropland dynamics along the elevational and longitudinal gradient. However, significant agri-

cultural expansion took place in the northern Coast at 79˚ W where there was a loss of low-

land, montane and cloud-belt rainforests [68].

Future research could look at different crop types to better understand the reasons behind

the differences between our remote sensing derived estimates and the government statistics.

This further analysis could provide additional insights about deviations in estimated cropland

extents across different provinces and bioregions in Ecuador due to differences between spec-

tral signatures for individual crops and similarities with signatures for natural vegetation

cover.

Conclusion

Our study offers one of the first spatially detailed reports on cropland dynamics in Ecuador.

We found 57% cropland expansion in the Amazon and 15% in the Andes in the 2000–2016

time period. Both contraction and expansion of croplands were detected in the Coast region

with a 7% of overall net contraction. There was 8% increase in cropland in the highland

páramo ecosystem. The Chocó rainforests were the most affected ecosystem in the Coast. Agri-

cultural presence in the Amazon was lower than in the Coast and Andes, but still important,

mainly in the North, and it is expanding rapidly. The remote sensing based estimates of land

use change did not match well with the government statistics but were consistent with other

studies. Our findings underline the need for the implementation of reliable sampling tech-

niques and remote sensing methodologies to collect land cover data in order to understand

how agriculture is affecting ecosystems in Ecuador.
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Ecuador, 1979–2014. 2017, 1–20, https://doi.org/10.3390/land6030046

59. Wigmore O.; Gao J. Spatiotemporal Dynamics of a Páramo Ecosystem in the Northern Ecuadorian
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