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Abstract

To accurately locate faulty components in analog circuits, an analog circuit fault diagnosis

method based on Tunable Q-factor Wavelet Transform(TQWT) and Convolutional Neural

Network (CNN) is proposed in this paper. Firstly, the Grey Wolf algorithm (GWO) is used to

improve the TQWT. The improved TQWT can adaptively determine the parameters Q-factor

and decomposition level. Secondly, The signal is decomposed, and single-branch recon-

struction is conducted with TQWT to facilitate adequate feature extraction. Thirdly, to cap-

ture the time-frequency features in the signal, a CNN-LSTM network is built by combining

CNN and LSTM for feature extraction. Finally, CNN, which introduces Fully Convolutional

Network (FCN) layers and a Batch Normalization layer, is used to fault diagnosis. The

method was comprehensively evaluated with a second-order bandpass filter circuit. The

experimental results illustrate that the proposed fault diagnosis method can achieve excel-

lent fault diagnosis accuracy, and the average accuracy is 98.96%.

Introduction

Analog measurement circuits are significant compositions widely used in measurement cir-

cuits, etc [1–3]. The signals measured from sensor measurements must be amplified, shaped,

and filtered to extract valuable signals. As an essential part, the filters produce shifts in parame-

ter values with usage and environmental factors such as temperature and humidity, which can

affect the test accuracy and make test errors when the parameter values exceed the specified

tolerance values [4]. Therefore, it is essential to diagnose faults in the filter circuit in order to

ensure test accuracy. Filter circuits can be divided into analog and digital circuits according to

their types [5]. Due to the complexity of the circuits themselves, analog circuits are more chal-

lenging to diagnose faults than digital circuits. However, the fault rate of analog circuits is four

times higher than that of digital circuits [6]. When a fault occurs in an analog circuit, if fault

diagnosis methods are not used, it is necessary to detect each test node to determine the faulty

component. This method is difficult to identify faulty components and may cause losses to

other parts of the circuit during the repair process. Therefore, after setting the tolerance of

components, the analog circuit is diagnosed so that the fault components can be located and
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repaired before affecting the test system’s performance, which is conducive to improving the

stability and reliability of the whole test system. Therefore, an urgent need is to study effective

analog fault diagnosis methods to locate faulty components accurately.

Filter circuit faults are divided into hard and soft faults. Since soft faults will be transformed

into hard faults if they are not handled in time, soft fault diagnosis for analog circuits is one of

the effective means to ensure the regular operation of analog circuits.

The existing fault diagnosis methods for analog circuits can be divided into traditional and

intelligent fault diagnosis methods. Traditional fault diagnosis methods include the fault dic-

tionary method [7], parameters identification method [8], and fault verification method [9].

These methods require the construction of a mathematical model of the circuit or using simu-

lation software for testing and determining the fault location and type based on the input and

output characteristics of the circuit or the component parameter. These methods are computa-

tionally intensive and difficult to adapt to circuit structure and parameters. The intelligent

fault diagnosis method processes the signal and uses artificial intelligence to classify it for fault

diagnosis. In recent years, with the development of artificial intelligence technology, intelligent

fault diagnosis methods have also achieved fruitful results.

Since Centeus used wavelet transform to extract the feature parameters of analog circuit

fault information [10], Wavelet Packet Transform [11], Wavelet Plus Neural Network [12],

and Haar Wavelet [13], which are improved by wavelet transform, have been widely used for

the extraction of analog circuit fault features to enhance the accuracy of analog circuit fault

diagnosis. Siwek [14] used Support Vector Machine (SVM) to classify LC circuit faults and

accomplished accurate analog circuit fault diagnosis localization. Xu [15] used Extreme Learn-

ing Machines (ELM) to organize the sample set constructed based on wavelet packet and wave-

form parameters and completed the fault diagnosis of the elliptic filter. Karthi [16] used

Genetic Algorithm(GA) to extract fault information of analog circuits and diagnose them.

Subsequently, Mosin [17] used a clustering preprocessing algorithm to extract fault eigenval-

ues and combined it with a neural network to complete the whole fault diagnosis process,

which improved the correct rate of fault diagnosis of analog circuits. Gan [18] first introduced

an adaptive factor to enhance the accuracy of the Unscented Kalman Filter (UKF). In order to

construct a fault diagnosis model for analog circuits, the improved UKF was used to optimize

the parameters of the Wavelet Neural Network(WNN) classifier. Hu [19] proposed a fre-

quency feature extraction method based on the Martingale Distance (MD) to convert the con-

ventional frequency features and frequency response moments into a one-dimensional MD

for ana-log filter anomaly detection. Viveros-Wacher and Rayas-Sánchez [20] investigated

artificial neural networks for constraint parameter extraction and fault classification for analog

fault identification in RF circuits. Shokrolahi [21] used Ensemble Empirical Mode Decomposi-

tion (EEMD) for preprocessing of analog circuit fault signals and extracted the fault features

from the Intrinsic Mode Functions (IMF) components obtained based on EEMD for compos-

ing feature vectors. This method effectively improves the accuracy of analog circuit fault detec-

tion and diagnosis. Gan [15] proposed a feature extraction method based on Kernel

Supervised Locality Preserving Projection (KSLPP), which combines kernel techniques with

supervised locality-preserving projections. Shi [22] proposed a fault diagnosis method com-

bining Density Peaks Clustering(DPC) and Probabilistic Neural Networks(PNN) with

dynamic weights that reduces redundant data and achieves high accuracy with a small number

of neurons. Aizenberg Igor [23] proposed a multi-valued neural neuron network classifier

model, which effectively diagnoses analog circuit faults. Gao [24] proposed a fault diagnosis

model for analog circuits based on conditional variational neural networks, which accom-

plished the fault diagnosis of a variety of filter circuits.
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In the above methods, some of the fault data are subjected to feature enhancement, feature

extraction, or feature fusion, and then the classifiers are used to classify the faults; some of the

data are directly input into the model, and the whole end-to-end fault diagnosis is completed

by adaptive feature extraction and a softmax layer. On the one hand, the signal change is rela-

tively feeble when the analog circuit fault occurs, and the feature refinement is significant. At

this time, the use of the CNN network end-to-end fault diagnosis method of adaptive feature

extraction can not satisfy the requirements of the fault diagnosis; on the other hand, the use of

fewer data, faster completion of the fault diagnosis can reduce the loss of the electronic system,

and a small amount of data is not conducive to the accurate diagnosis of end-to-end fault diag-

nosis mode. Inspired by existing fault diagnosis methods [25, 26], this paper proposes a fault

diagnosis method based on TQWT-CNN.

Bandpass filters are widely used in measurement systems as devices that filter specific fre-

quencies to obtain power signals at the desired frequency and are an integral part of various

electronic systems The use of bandpass filtering circuits can improve the stability of communi-

cation and distribution systems, extend the service life of communication and power equip-

ment, and make the distribution system more in line with design specifications for harmonic

environments. Therefore using the methodology of this paper the filter circuits are diagnosed

for faults. The innovative contributions of the method are as follows:

• This article proposes a fault diagnosis model that can be used for bandpass filter circuits. By

combining the improved TQWT with the CNN-LSTM network for feature extraction and

the improved CNN for fault recognition, the improved TQWT network can better extract

local time-frequency signals with weak features, which is more detailed than the feature

extraction of end-to-end models.

• The optimal quality factor Q of TQWT is optimized by using GWO with strong global

search ability. The RMSE of the signal with inverse TQWT and the original signal is used as

the evaluation criterion to determine the optimal quality factor. The signal is decomposed by

TQWT using the optimal quality factor Q, and single-branch reconstruction is performed to

complete the decomposition of the signal.

• To improve the classification accuracy and the generalization ability of the model, an

improved CNN with FCN and Batch Normalization (BN) layers is built.

Methods

TQWT is an improvement of Wavelet Transform, which can better adapt to different types of

signals and extract data features better and faster. The Grey Wolf Optimizer (GWO) has the

advantages of fast convergence, global solid search capability, and robustness. In this paper,

GWO is used to optimize the Q-factor of TQWT. CNN-LSTM feature extraction network

combines the advantages of CNN and LSTM networks and is widely used for feature extrac-

tion. Convolutional Neural Networks(CNN) are characterized by high accuracy in fault

diagnosis.

Given the advantages of each method, the structure for performing analog circuit fault diag-

nosis is shown in Fig 1. In Fig 1, TQWT (x) is the TQWT transform of the signal x, ITQWT

(w) is inverse TQWT of the decomposed signal, and Max_iter, dim, lb, and ub are the number

of iterations, dimensionality of the variables, lower bound of the range of searching for the

superiority, and the upper bound of the range of searching for the superiority of the GWO,

respectively. TQWT and GWO are used for preprocessing the data, the feature extraction
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method of the data is shown in the CNN-LSTM feature extraction network, and the fault diag-

nosis technique of the feature dataset is shown in the Fault diagnosis network.

Fig 1. Functional block diagram of the proposed fault diagnosis method.

https://doi.org/10.1371/journal.pone.0291660.g001
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TQWT

Tunable Q-factor Wavelet Transform (TQWT) is a method for time-frequency analysis and

feature extraction of signals [27]; that is, signals are divided into different frequency bands for

decomposition according to frequency. Compared with the traditional wavelet transform,

TQWT can control the shape of the basis function by changing three key parameters (quality

factor Q, redundancy r, and the number of decomposition layers J) according to the character-

istics of the signals to be analyzed and realize the decomposition and reconstruction of the sig-

nals by means of iterative two-channel filters and discrete Fourier Transforms(FT) in an

iterative manner. Adaptive selection of TQWT parameters suitable for the characterization of

weak fault features of analog circuits and reconstruction of the subbands obtained from

decomposition is essential for analog circuit fault feature extraction. In addition, TQWT

decomposes the features of the original signal into local features in different subbands. Com-

pared with the original signal, TQWT provides local refinement of the features, which facili-

tates subsequent fault diagnosis. A series of iterative two-channel filter banks decompose and

reconstruct signals by TQWT. For example, the three-scale decomposition and reconstruction

are shown in Fig 2.

In Fig 2, H0(ω)H1(ω)are the low-pass and high-pass filter frequency response functions, αβ
are the low-pass scale coefficients and high-pass scale coefficients, H0

*(ω)H1
*(ω) are the corre-

sponding complex conjugates, and ωj(j = 1,2,3) represents the transformed wavelet

coefficients.

The steps of single-branch reconstruction are as follows: after using TQWT to decompose

the signal with length N according to different frequency bands, there are j+1 branches in

total. When performing single branch reconstruction of branch i, first perform zero filling

interpolation, that is, set the signals of other branches except for branch i to 0, and then per-

form the inverse transformation of TQWT so as to complete the single branch reconstruction

of branch i.

The choice of J only affects the decomposition performance of the TQWT in the low-fre-

quency domain, while Q and r affect the wavelet construction. According to HU [28], the r-

value is set to 3. In order to make the TQWT more adaptive to analyze and process the output

signal of the circuit, the selection of Q is considered an optimization problem, and the GWO is

used to find the optimum for Q iteratively.

In order to make the TQWT more adaptive to analyze and process the output signal of the

circuit, the selection of Q is considered an optimization problem, and the GWO is used to find

the optimum for Q iteratively. In order to make TQWT more suitable for analyzing and pro-

cessing the output signal of the circuit, the selection of Q is very important. The decomposition

and reconstruction effect of the randomly selected Q value cannot reach the optimal value.

Combined with references [29, 30], the selection of Q can be set as an optimization problem,

and the optimal value of Q can be found iteratively using GWO. The range of the optimum is

set to [1,5]. After determining Q and r, the number of decomposition layers of the TQWT can

be determined by Eq (1):

J ¼ b lg½N=4ðQþ 1Þ�

lgðQþ 1Þ=ðQþ 1 � 2=rÞ
c

ð1Þ

In Eq (1), b┤c is rounded to 0, and "N" is the signal length to be analyzed.

The optimized TQWT is used to decompose the signal and obtain j+1 frequency bands

according to the frequency; that is, there are j+1 branches from low frequency to high fre-

quency. After single branch reconstruction, the characteristic data of the j+1 group from low
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frequency to high frequency were obtained. Using TQWT signal decomposition and data sin-

gle brangle-branching reconstruction, it is suitable for weak feature extraction and provides

better local time-frequency signals for subsequent feature extraction, which is conducive to

improving the accuracy of the fault diagnosis model.

GWO

Grey Wolf Optimizer (GWO) is a swarm intelligence optimization algorithm proposed by

Mirjalili et al. in 2014 [31]. The GWO finds the optimal solution to the problem by simulating

the behavior of grey wolf hunting. In optimization problems, GWO can be used to obtain opti-

mal parameter values within the optimization range, with different optimal parameters that

can be obtained by setting different fitness functions. There is a rigorous social ranking system

in the grey wolf pack, and the grey wolf ranking in order from highest to lowest is shown in

Fig 3 [32]:

The steps for finding the Q-factor of TQWT using GWO are as follows:

Initialization stage. Initialize the wolf pack position and calculate the adaptation degree

of each wolf by the fitness function. The fitness function is the 1/RMSE of the signal decom-

posed and reconstructed using TQWT. The equation of the fitness function is shown in equa-

tion(2), and the rank of each wolf in the pack is determined according to the fitness.

fitness ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

~f i � f i
h i2

v
u
u
t ð2Þ

Fig 2. Multiscale TQWT decomposition and reconstruction filter: (a)TQWT signal decomposition process;(b)TQWT signal reconstruction process.

https://doi.org/10.1371/journal.pone.0291660.g002
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In Eq (2), fi is a point’s function value, ~f i is fi after TQWT and inverse TQWT, and n is the

number of data points in the signal data set.

Encirclement stage. The grey wolf will gradually encircle the prey during the search pro-

cess, i.e., the location of the optimal Q-factor, and the mathematical model of the encirclement

stage is as follows:

D ¼ jC� XPðtÞ � XðtÞj

Xðtþ 1Þ ¼ XPðtÞ � A� D

A ¼ 2ar1 � a

C ¼ 2r2

ð3Þ

In Eq (3), D represents the distance between the grey wolf and the prey, X represents the

position of the grey wolf, t is the number of iterations, XP is the optimal Q-factor position, A

and C are coefficient vectors, r1 and r2 are random one-dimensional vectors between [0,1],

the value of a decrease from 2 to 0 as the number of iterations increases, and a is calculated as

shown in Eq (4):

a ¼ 2 � 2� t=T ð4Þ

Fig 3. Grey wolf group social rank.

https://doi.org/10.1371/journal.pone.0291660.g003
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(3) Hunting stage. During the hunting stage, ω wolves are guided by α, β and δ wolves to

update their positions. The mathematical model of this behavior is:

Da ¼ jC1XaðtÞ � XðtÞj

Db ¼ jC2XbðtÞ � XðtÞj

Dd ¼ jC3XdðtÞ � XðtÞj

ð5Þ

8
><

>:

X1 ¼ jXaðtÞ � A1Daj

X2 ¼ jXbðtÞ � A2Dbj

X3 ¼ jXdðtÞ � A3Ddj

ð6Þ

8
><

>:

In Eqs (5) and (6), Xα, Xβ, and Xδ are the positions of wolves α, β and δ, separately.

Termination stage. Stop the iteration when the fitness no longer changes or reaches the

specified number of iterations, and output the current Q value, i.e., the best Q value obtained

from the optimization search.

CNN-LSTM feature extraction network

CNN-LSTM network is a deep neural network for feature extraction and classification of

sequential data, which combines the advantages of Convolutional Neural Network (CNN) and

Long Short Term Memory network (LSTM), with CNN layer for capturing local features in

the data and LSTM layer for capturing long term dependency relationships in the data [33].

Using CNN-LSTM networks for feature extraction can effectively improve the efficiency of

performing feature extraction while reducing overfitting. According to the optimization

results and data types, the feature data of 10 branches are obtained after single-branch recon-

struction. The CNN-LSTM network is used to perform feature extraction for each branch of

the single-branch reconstructed data, and the process of performing feature extraction is

shown in Fig 4. In the feature extraction process, the parameters of each layer of the network

vary according to the data characteristics to achieve better feature extraction results. Two con-

volution layer + pooling layer structures are used to improve the feature extraction ability

while reducing the risk of overfitting, and then LSTM layers are added to capture the temporal

features. To strengthen the model effect, two fully connected layers are finally set. Since the ten

branch features are more complex, the data are converted into two-dimensional pictures to

input into the fault diagnosis network to avoid losing the relationship between different fre-

quency bands.

Fault diagnosis network

The fault diagnosis network is based on the traditional CNN, on which FCN and BN layers are

used in addition to the convolutional, pooling, and Dropout layers. The FCN layer recovers

the class to which each pixel belongs from the abstract features [34], which is more helpful in

classifying circuit faults, and the BN layer improves the fault diagnosis network’s generaliza-

tion ability. The structure diagram of the fault diagnosis network is as follows: two convolution

layer + pooling layer structures are used, Dropout layers are added after each pooling structure

in order to enrich the training samples, and two FCN layers are built for pixel-level classifica-

tion of the images, and finally, a Dense layer is added for the output of fault categories.
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Experiment

In order to demonstrate that the method in this paper can solve the problem of diagnosing the

faulty components in the filter circuit that deviate from the normal tolerance range caused by

the failure of the components, the second-order bandpass filter circuit is selected as the experi-

mental circuit for analog circuit fault diagnosis.

The experiments were conducted on a computer with 16GB RAM, using C++ programming

in the Matlab platform to complete the data decomposition, reconstruction, and single-branch

reconstruction, and Python programming in the tensorflow environment to complete the rest

of the steps. The circuit simulation software is Multisim 14.0. The circuit diagram of the sec-

ond-order bandpass filter circuit is shown in Fig 5.

Fault type and fault data acquisition

There are nine representative fault modes in the second-order bandpass filter circuit shown in

Fig 6: C1", C1#, C2", C2#, R1", R1#, R3#, C1"and R2#, C1"and R2#and R3#. The " and # rep-

resent higher and lower values than the limited range, respectively, and there are nine typical

faulty modes and one "faulty-free" mode for ten types of classification. It is assumed that the

nominal value of the component is Nom.v. Therefore, the lower limit of soft faults of the com-

ponent is [0.5Nom.v, 0.8Nom.v], and the upper limit is [1.2Nom.v, 1.5Nom.v]. The fault is

Fig 4. CNN-LSTM network feature extraction process.

https://doi.org/10.1371/journal.pone.0291660.g004

PLOS ONE A Novel Fault Diagnosis Method for Second-order Bandpass Filter Circuit

PLOS ONE | https://doi.org/10.1371/journal.pone.0291660 February 8, 2024 9 / 19

https://doi.org/10.1371/journal.pone.0291660.g004
https://doi.org/10.1371/journal.pone.0291660


divided into soft and hard faults schematically shown in Fig 6, where the nominal values and

the component tolerance range of the circuit are shown in Table 1.

Data for each fault type is obtained by keeping the parameters of all components except the

component under test within expected values by adjusting the parameters of the component

under test to generate fault samples. To enhance the generalization ability of the neural net-

work model, more diverse training samples are used. The data is enhanced by using overlap-

ping sampling [35]. The length of the overlapping part is 200 in order to ensure data diversity,

and the overlapping data is sampled in an overlapping manner as shown in Fig 7.

Fig 5. Second-order bandpass filter circuit diagram.

https://doi.org/10.1371/journal.pone.0291660.g005

Fig 6. The fault is divided into soft and hard faults.

https://doi.org/10.1371/journal.pone.0291660.g006
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Structure parameters setting

The entire fault diagnosis process is divided into three parts: data decomposition, feature

extraction, and fault diagnosis. The data decomposition stage uses the improved TQWT; the

improved method is GWO. When using GWO to optimize Q, its fitness function is RMSE

after TQWT decomposition and reconstruction of the signal, as shown in equation (2), the

number of species is 1, the number of individuals in the species is 30, the value-seeking range

is [1,5], and the number of iterations is 100; in the TQWT, the redundancy degree r is 3, the

number of decomposition layers J is 9, and the optimal Q-factor obtained from the search is

1.34. The parameter values are dynamically adjusted according to the data characteristics in

the feature extraction stage.

In the fault diagnosis network, two Dense layers are used to improve the capability of non-

linear expression of the network model and its robustness. At this time, in order to improve

the generalization ability of the model and break the constraint on the image size of the train-

ing and test sets, the Dense layers are replaced with FCN layers, which contain a Convolution

layer, a pooling layer, and a Dropout layer. In addition to the FCN layers, one, two, and three

Convolution layers are set for fault diagnosis, and 50 independent repeated experiments are

conducted to obtain the fault diagnosis accuracy for different numbers of convolution layers as

shown in Table 2.

According to the experimental results, the highest accuracy of fault diagnosis is achieved

when two convolutional layers are used, and it is determined that the fault diagnosis network

uses two Convolution layers and two FCN layers. The structure and parameters of the fault

diagnosis network are shown in Table 3.

Table 1. Normal values and faulty range of the second-order bandpass filter circuit.

Fault Class Fault Tag Nominal Value Faulty Range

C1" 1 5nF [4nF,6nF]

C1# 2 5nF [4nF,6nF]

C2" 3 5nF [4nF,6nF]

C2# 4 5nF [4nF,6nF]

R1" 5 1KO [0.8 KO,1.2 KO]

R1# 6 1KO [0.8 KO,1.2 KO]

R3# 7 2KO [1.6 KO,2.4 KO]

C1"and R2# 8 5nF,2KO [4nF,6nF], [1.6 KO,2.4 KO]

C1"and R2#and R3# 9 5nF,2KO, 2KO [4nF,6nF], [1.6 KO,2.4 KO] [1.6 KO,2.4 KO]

Normal 10 / /

https://doi.org/10.1371/journal.pone.0291660.t001

Fig 7. Data sampling method.

https://doi.org/10.1371/journal.pone.0291660.g007
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Experimental results

In the fault diagnosis experiment, considering the complexity of the fault, the sum signal of

three sinusoidal signals is used as the excitation source, and the frequencies and amplitudes of

the three excitation sources are: "8kHz,10kV", "33kHz,5kV", and "55kHz,3kV". The test point

where the test signal was obtained was the output of the circuit. Taking a fault tag of 10 as an

example, the data image in the tolerance range is shown in the Fig 8.

According to the fault range, 1295 sets of different types of fault signals were acquired, each

containing signals from 1000 acquisition points. The samples were divided into a training set

(648 groups) and a test set (647 groups). Fig 9 shows the visualization of the ten fault modes of

the second-order bandpass filter circuit by the features extracted by the method in this paper,

and it can be seen from the figure that the ten faults that category of the features extracted by

the method in this paper can be separated to obtain higher fault diagnosis accuracy.

The confusion matrix represents the fault diagnosis results of the circuit. In the confusion

matrix, the column coordinates indicate the actual fault type, the row coordinates indicate the

prediction category of the model in this paper, and the values in each column indicate the per-

centage of accurate predictions to the total number of faults in that category. The evaluation

metrics of the confusion matrix are TP (True Positive), TN (True Negative), FP (False Posi-

tive), and FN (False Negative). Based on the four evaluation metrics, they are expanded to

accuracy, precision, recall, and specificity by combining them with the multi-classification

problem. Precision indicates the proportion of samples predicted to be positive classes in the

classification model in which the actual category is positive:

Precision ¼
TP

TP þ FP
ð7Þ

Table 2. Accuracy of different convolution layers.

Number of Convolution layers Accuracy

1 94.25%

2 98.96%

3 97.06%

https://doi.org/10.1371/journal.pone.0291660.t002

Table 3. Fault diagnosis network parameters setting.

Layer Parameters

Conv2D filters = 512, Strides = (2,2), Kernel_size = (3,3)

MaxPooling2D pool_size = (3,3), Strides = (2,2)

Dropout 0.2

Conv2D filters = 128, Strides = (2,2), Kernel_size = (3,3)

MaxPooling2D pool_size = (2,2), Strides = (2,2)

Dropout 0.2

Conv2D filters = 64, Strides = (2,2), Kernel_size = (2,2)

Dropout 0.2

Conv2D filters = 32, Strides = (2,2), Kernel_size = (2,2)

Dropout 0.2

Dense 10

https://doi.org/10.1371/journal.pone.0291660.t003
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Accuracy is the percentage of accurate predictions out of the total and is often used to rep-

resent model accuracy:

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
ð8Þ

Recall represents the percentage of the number of positive classes correctly identified by the

model as a percentage of the number of truly positive classes:

Recall ¼
TP

TP þ FN
ð9Þ

Specificity indicates the proportion of samples predicted to be in the negative category in

the classification model for which the correct category is negative:

Specificity ¼
TN

TN þ FP
ð10Þ

The confusion matrix of the experimental results for fault diagnosis is shown in Fig 10.

From the figure, it is clear that the "TQWT-CNN-based fault diagnosis model for second-

order bandpass filtered circuits" can achieve fault diagnosis of second-order bandpass filtered

circuits. Fifty independent repetitive experiments were conducted on the available data, and

the average accuracy was 98.96%.

Fig 8. Data curves with fault tag 10.

https://doi.org/10.1371/journal.pone.0291660.g008
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Comparison experiments

The fault diagnosis results of the TQWT-CNN based second-order bandpass filtered circuit

fault diagnosis model are compared with those of the following models. When using the

improved CNN for fault diagnosis, the accuracy is higher than that using SVM for classifica-

tion due to its network depth with strong fault classification capability; the accuracy using the

CNN-LSTM network for time domain feature learning is 5.04% higher than that when no

time domain feature extraction is performed; however, the accuracy using only CNN-LSTM

Fig 9. Visualization of the characteristics of the second-order bandpass filter circuit.

https://doi.org/10.1371/journal.pone.0291660.g009
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for time domain feature extraction also fails to However, the accuracy of using only

CNN-LSTM for time-domain feature extraction is also unable to perform fault diagnosis with

high accuracy; using GWO for Q-factor optimization of TQWT is also more accurate than

using only TQWT for frequency-domain feature extraction for fault diagnosis. From Table 4,

it can be seen that this method has a higher accuracy rate, and the operations of signal decom-

position, single branch reconstruction, and feature extraction are necessary to improve the

accuracy of fault diagnosis of second-order bandpass filter circuits.

The accuracy of comparing the fault diagnosis results of the second-order bandpass filter

circuit by comparing the model in this paper with the following models is shown in Table 5.

FRFT-CNN for feature extraction using graded Fourier transform to obtain its time-frequency

domain features, and it is known from the experimental results that the feature extraction

method in this paper extracts more compelling features than FRFT and has a higher fault diag-

nosis accuracy; the generalized particle swarm algorithm optimized by using The accuracy of

feature-based fault diagnosis using a generalized multi-core learning support vector machine

optimized by the particle swarm algorithm is 0.59% lower than that of this paper’s model; the

accuracy of using an improved empirical modal decomposition method for discriminative fea-

ture extraction and feature enhancement of the signal, followed by fault diagnosis using a sup-

port vector machine, is slightly lower compared with that of time-frequency domain feature

extraction and fault diagnosis.

Fig 10. Confusion matrix of fault diagnosis results.

https://doi.org/10.1371/journal.pone.0291660.g010

Table 4. Comparison of fault diagnosis results of different methods.

Method Accuracy

GWO+TQWT+ Single-branch Reconstruction +CNN-LSTM + improved CNN 98.96%

GWO+ TQWT+ Single-branch Reconstruction+ CNN-LSTM+SVM 87.53%

GWO+ TQWT+ Single-branch Reconfiguration+ Improved CNN 93.92%

CNN-LSTM+ improved CNN 78.50%

https://doi.org/10.1371/journal.pone.0291660.t004
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The comparison results in Tables 4 and 5 conclude that the model proposed in this paper

has good fault diagnosis results. The advantages of using improved TQWT for feature extrac-

tion, single-branch reconstruction, and thus better-displaying signal characteristics. Using

CNN-LSTM network grouping for feature extraction to make feature extraction more detailed

and using improved CNN for better pixel-wise classification of images while preventing over-

fitting make the model in this paper achieve good results for fault diagnosis of second-order

bandpass filter circuits, and the method is reliable and effective.

The local time-frequency data set is obtained by signal decomposition and single branch

reconstruction using GWO-optimized TQWT, which is of great significance to the weak fault

feature extraction of the data set and is conducive to the accurate fault diagnosis of the fault

diagnosis network. In addition, the CNN-LSTM network is used to extract the time-frequency

characteristics of the signal, which retains the time-frequency characteristics of the signal, and

the obtained features are more sufficient than the end-to-end deep learning fault diagnosis

method. Based on this, it is very necessary to carry out data enhancement and local feature

analysis in analog circuit fault diagnosis. In addition, fully retaining the time-frequency char-

acteristics of the signal is helpful to the diagnosis of the analog circuit system fault, which can

be applied to the research of analog circuit fault diagnosis technology in the future.

Conclusion

In order to solve the problem of early fault diagnosis of filter circuits, a TQWT-CNN-based

fault diagnosis model for analog circuits is proposed. Taking the second-order bandpass filter

circuit as a study subject, the GWO-optimized TQWT is used for signal decomposition and

single-branch reconstruction, and the CNN-LSTM network is used for time-frequency

domain feature extraction after single-branch reconstruction. FCN is introduced based on the

CNN network to enhance the model classification ability and BN layer to increase the model

generalization ability to complete the fault diagnosis process. The model can effectively iden-

tify early faults in second-order bandpass-filtered circuits, and the average recognition rate for

identifying and classifying ten fault types is 98.96%. The fault diagnosis method proposed in

this paper improves the reliability and stability of the second-order bandpass filter circuit and

provides a favorable guarantee for the regular and stable operation of the test system. Future

work will focus on applying this fault diagnosis method to actual physical circuits in complex

circuits.
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