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Abstract

Accurate prediction of blood glucose levels is essential for type 1 diabetes optimizing insulin

therapy and minimizing complications in patients with type 1 diabetes. Using ensemble

learning algorithms is a promising approach. In this regard, this study proposes an improved

stacking ensemble learning algorithm for predicting blood glucose level, in which three

improved long short-term memory network models are used as the base model, and an

improved nearest neighbor propagation clustering algorithm is adaptively weighted to this

ensemble model. The OhioT1DM dataset is used to train and evaluate the performance of

the proposed model. This study evaluated the performance of the proposed model using the

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Matthews Correlation

Coefficient (MCC) as the evaluation metrics. The experimental results demonstrate that the

proposed model achieves an RMSE of 1.425 mg/dL, MAE of 0.721 mg/dL, and MCC of

0.982 mg/dL for a 30-minute prediction horizon(PH), RMSE of 3.212 mg/dL, MAE of 1.605

mg/dL, and MCC of 0.950 mg/dL for a 45-minute PH; and RMSE of 6.346 mg/dL, MAE of

3.232 mg/dL, and MCC of 0.930 mg/dL for a 60-minute PH. Compared with the best non-

ensemble model StackLSTM, the RMSE and MAE were improved by up to 27.92% and

65.32%, respectively. Clarke Error Grid Analysis and critical difference diagram revealed

that the model errors were within 10%. The model proposed in this study exhibits state-of-

the-art predictive performance, making it suitable for clinical decision-making and of signifi-

cant importance for the effective treatment of diabetes in patients.

Introduction

Diabetes is a metabolic disorder involving inadequate insulin production or impaired function

that causes changes in blood glucose levels (BGLs) [1]. The main types include Type 1 Diabetes

(T1D), Type 2 Diabetes (T2D), and gestational diabetes [2, 3]. T1D stems from an autoim-

mune response that damages pancreatic β-cells [4], whereas T2D results from reduced insulin

sensitivity or insufficient secretion [5]. Gestational diabetes can also develop during pregnancy

[6]. Both hyperglycemia and hypoglycemia can cause complications, such as cardiovascular

diseases, nephropathy, neuropathy, and retinopathy [7, 8]. Traditional diabetes management

includes pharmacotherapy, diet, exercise, and self-monitoring. Pharmacotherapy involves oral
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medications and insulin injections, whereas dietary control regulates carbohydrate, fat, and

protein intakes to maintain BGLs. Exercise improves insulin sensitivity and aids in glucose

control. Self-monitoring, including blood and urine glucose tests, effectively helps patients

manage BGLs [9]. The artificial pancreas (AP) is a closed-loop insulin delivery system that reg-

ulates blood glucose levels based on continuous glucose monitoring (CGM) data [10, 11], insu-

lin infusion, and other available information [12].CGM technology monitors current blood

glucose levels in real-time to assist T1D subjects in controlling blood glucose abnormalities

[13–15].

In addition, predicting BGLs in real time is effective for T1D patients to avoid hypoglyce-

mia, hyperglycemia, and related complications. Machine learning enables the real-time predic-

tion of BGLs. Machine learning is crucial for predicting BGLs because it uses physiological

data of patients and historical records to create predictive models [16]. These models can be

trained to make predictions based on individual patient characteristics, enhancing accuracy

and reliability. At the same time, machine learning can adjust the parameters of the prediction

model in real time based on the prediction results and patient feedback, thus continuously

optimizing the prediction results.

Furthermore, machine learning can dynamically adjust the parameters of the predictive

model and continuously optimize the results. Deep learning excels at discovering data correla-

tions, whereas ensemble learning fusion prediction results from multiple base estimators [17].

With advancements in computer hardware, ensemble deep learning models have become

advanced solutions for BGL prediction. Combining predictions from multiple models

improves the performance of the ensemble model, reducing the model variance and the risk of

overfitting and increasing accuracy and robustness.

This study proposes an improved adaptive weighted deep ensemble learning (AWD-stack-

ing) method for predicting the BGL of patients with type I diabetes mellitus (T1DM). First,

continuous blood glucose data were pre-processed using Kalman filtering and double expo-

nential smoothing. Second, improved LSTM models (bidirectional LSTM, StackLSTM, and

vanillaLSTM) were used as base estimators in a stacking ensemble, with a linear regression

model as the meta-model to predict BGL. The proposed method utilizes only BGL data from

continuous glucose monitoring in the OhioT1DM clinical dataset, defining BGL prediction as

a univariate time-series prediction. In the AWD-stacking method, multiple historical window

techniques were proposed to predict the BGLs and a weighted similarity matrix was proposed

with an affinity propagation clustering algorithm to weight the base estimators adaptively. The

initial training and testing sets were integrated into the meta-estimator training, constructing

an advanced BGL prediction method. The proposed method achieved a state-of-the-art BGL

prediction accuracy for the OhioT1DM dataset. The key contributions of this study are as

follows.

• This study proposes a new approach to BGL prediction using a deep ensemble neural net-

work architecture based on a multi-history window technique.

• A more reliable BGL prediction model uses Kalman filtering and bi-exponential smoothing

to mitigate sensor failures in the CGM readings.

• In this study, an improved propagation weighting algorithm for affinity clustering is pro-

posed to enhance the connection strength between nodes by increasing the weight α, which

makes it easier for similar nodes to cluster together.

• This study used stacking ensemble learning to predict blood glucose levels and improve pre-

diction accuracy.
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The rest of this paper is organized as follows. Section 2 discusses the relevant work on BGL

prediction, highlighting the current status and limitations of the existing research. Section 3

provides an overview of the OhioT1DM dataset. Section 4 elaborates on our proposed method.

Section 5 presents experimental results. Section 6 is a discussion. Section 7 provides a sum-

mary and future research directions.

Related works

BGL prediction models are categorized into data-driven, physiological, hybrid, and fuzzy

inference models [18]. Physiological models rely on mathematical representations of the

human insulin-glucose feedback system for BGL prediction, offering strong interpretability

and accuracy but requiring substantial input data. Hybrid models combine the strengths of

both the physiological and data-driven models. Fuzzy inference models based on fuzzy logic

theory were designed to address the uncertainty and fuzziness inherent in BGLs. In contrast,

data-driven models don’t require extensive physiological parameters or specialized knowledge

and can quickly establish accurate BGL prediction models. Consequently, most researchers

have selected data-driven models for BGL prediction. In practical applications, the perfor-

mance of data-driven models is comparable to that of the physiological models. The following

sections will briefly discuss recent BGL prediction research from the past few years.

In 2020, Kezhi Li et al. [19] proposed a convolutional recurrent neural network for predict-

ing BGLs, which was validated using the OhioT1DM dataset. The results demonstrated that

the RMSE was 9.38 ± 0.71 mg/dL for a 30-minute PH and 18.87 ± 2.25 mg/dL for a 60-minute

PH. The model exhibited strong competitiveness, ineffective prediction levels, and low time

lag. In the same year, Zhu et al. [20] proposed a deep learning model based on a Dilated Recur-

rent Neural Network (DRNN) for predicting BGLs for the next 30 minutes. The RMSE of the

proposed model is 18.9mg/dL. The experimental results indicated that the Dilated Recurrent

Neural Network could effectively enhance the BGL prediction performance. In 2021, Rabby

et al. [21] proposed a deep recurrent neural network model based on stacked long short-term

memory (StackLSTM) for BGL prediction. They conducted experiments using the OhioT1DM

(2018) dataset. To achieve a more accurate prediction, the authors considered that the BGL is

affected by multiple factors and adopted an incremental learning strategy to learn other fea-

tures, such as carbohydrate intake and high-dose insulin. The experimental results showed

that the average RMSE of the StackLSTM model was 6.45 and 17.24 mg/dL for PHs of 30 and

60 minutes, respectively. The proposed method can predict BGL more accurately and help

avoid abnormal BGLs in patients. In 2021, Dudukcu et al. [22] proposed a fusion model using

LSTM, WaveNet, and Gated Recurrent Unit (GRU) for predicting BGLs. The experimental

results showed that the proposed fusion model achieved RMSE values of 21.90 mg/dL, 29.12

mg/dL, and 35.10 mg/dL for PHs of 30, 45, and 60 minutes, respectively. The proposed algo-

rithm was compared with state-of-the-art research results, and the best results were obtained.

In 2021, Tena et al. [23] proposed two ensemble neural network-based models for predicting

BGLs at three different PHs of 30, 60, and 120 minutes and compared their performance with

ten recently proposed neural network models. The authors validated their models on the

OhioT1DM dataset and found that the algorithm achieved an RMSE of 19.57±3.03 mg/dL for

a PH of 30 minutes and an RMSE of 34.93±5.28 mg/dL for a PH of 60 minutes. In 2022, Yang

et al. [24] proposed a personalized multivariable BGL prediction, an independent channel

deep learning framework. The autonomous channel network in the framework learns repre-

sentations from the input variables based on variable interconnected time-varying scales and

domain knowledge, with a reasonable sampling period and sequence length, effectively avoid-

ing input information redundancy and incompleteness. The authors validated the framework
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using the clinical dataset OhioT1DM, and the results showed that the RMSE was 18.930±2.155

mg/dL and the mean absolute relative difference (MARD) was 9.218±1.607% when the PH

was 30 minutes. Compared with other BGL prediction methods, such as support vector regres-

sion (SVR), long short-term memory network (LSTM), dilated recurrent neural network

(DRNN), temporal convolutional network (TCN), and deep residual time series network

(DRTF), the proposed method achieved the best prediction performance for BGL. In 2023,

Shuvo et al. [25] proposed a personalized blood glucose prediction model based on deep learn-

ing using a method that integrates multi-task learning (MTL). The authors validated the pro-

posed model using the OhioT1DM dataset and conducted a detailed analysis and clinical

evaluation using the RMSE, MAE, and Clarke Error Grid Analysis (EGA). The experimental

results showed that the proposed algorithm achieved an RMSE of 16.06±2.74 mg/dL and an

MAE of 10.64±1.35 mg/dL for a PH of 30 minutes, and an RMSE of 30.89±4.31 mg/dL and an

MAE of 22.07±2.96 mg/dL for a PH of 60 minutes. Table 1 summarizes related research on

blood glucose prediction using the OhioT1DM dataset.

The existing research on BGL prediction has not addressed sensor-reading errors, resulting

in suboptimal predictions. This study proposed a new adaptive deep ensemble learning model,

AWD-stacking, based on clinical data from T1D patients in the Ohi-oT1DM dataset to predict

future BGLs for 30, 45, and 60 minutes. The AWD-stacking model employs an improved

LSTM neural network as the base estimator in ensemble learning and an improved nearest-

neighbor propagation clustering algorithm for adaptive weighting of the base estimators. The

initial training and testing sets were integrated into the meta-model training, and linear regres-

sion was employed for the final prediction. The clinical accuracy of the proposed model was

evaluated using the Clarke Error Grid Analysis (EGA). Compared to recent research and non-

ensemble models, the AWD-stacking approach demonstrates superior accuracy, offering valu-

able guidance for clinical practice and helping prevent blood glucose abnormalities in patients

with diabetic.

Dataset

The proposed model was validated using the publicly available OhioT1DM datasets [26],

which consisted of data from 12 T1D patients (seven males and five females) aged 20 to 80

years, using Medtronic 530G or 630G insulin pumps. The dataset included continuous glucose

monitoring data recorded every five minutes over eight weeks for each patient, along with data

on insulin, physiological sensors, and self-reported life events. In the OhioT1DM (2018)

Table 1. Related research on BGL prediction using the OhioT1DM dataset.

Year Authors Method Dataset RMSE (mg/dL)

PH = 30 PH = 60

2020 Li. K. H et al. [19] CRNN OhioT1DM (2018+2020) 9.38±0.71 18.87±2.25

2020 Zhu. T. Y et al. [20] DRNN OhioT1DM (2018+2020) 18.90 -

2021 Rabby. F. M et al. [21] StackLSTM OhioT1DM (2018) 6.45 17.24

2021 Dudukcu. H.V et al. [22] LSTM, Wave-Net, GRU OhioT1DM (2018+2020) 21.90 29.12

2021 Tena. F. U et al. [23] ENN OhioT1DM (2018+2020) 9.57±3.03 34.93±5.28

2022 Yang. T et al. [24] AC-DLF OhioT1DM (2018+2020) 18.93±2.15 -

2023 Shuvo. M. et al. [25] D-MTL OhioT1DM (2018+2020) 16.06±2.74 30.89±4.31

Note: CRNN: convolutional recurrent neural networks, DRNN: dilated recurrent neural network, StackLSTM: stacked long short-term memory, GRU: gated recurrent

units, ENN: ensemble neural network, AC-DLF: autonomous channel deep learning framework, D-MTL: deep multi-task learning

https://doi.org/10.1371/journal.pone.0291594.t001
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dataset, patients #559, #563, #570, #575, #588, and #591 wore Basis Peak fitness bracelets, while

in the OhioT1DM (2020) dataset, patients #540, #544, #552, #567, #584, and #596 wore Empa-

tica Embrace fitness bracelets for data collection. Each patient’s The last ten days of data were

designated as the test set, and the remaining data were used as the training set. Table 2 summa-

rizes the data, gender, age, training, and testing samples for the OhioT1DM dataset. Further

information about the dataset can be found in the Data Availability section.

Methods

This subsection presents the details of data pre-processing and the proposed model.

Data preprocessing

This study utilized Kalman filtering [27–29] to address errors in the CGM readings, whereas

double exponential smoothing was applied for data smoothing. The order of data preprocess-

ing is shown in Fig 1. The steps were divided into six main steps. The first step is to collect the

dataset. A historical dataset is used. The second step was to process the test and training sets

separately, the training set using linear interpolation and the test set using linear extrapolation

to ensure that the model did not observe future data. The third step was to use Kalman filtering

for both the training and test sets to mitigate the errors caused by sensor readings. The fourth

step was double exponential smoothing for the training and test sets to resolve data outliers.

The experimental results of the smoothing process are shown in Fig 2. The fifth step was the

normalization of the training and test sets. The sixth step was to divide the training set to 8:2.

As a result, the BGL data were converted into a regular time series with 5-minute intervals,

guaranteeing data completeness. After interpolation, Fig 3 illustrates the original training set

and the first 1000 data points for patient #559.

The three pre-processing steps involved using a Kalman filter to process the blood glucose

data. Because historical data are collected through sensors that measure interstitial fluid glu-

cose levels, discrepancies exist between these readings and the actual BGLs. The Kalman filter-

ing algorithm preprocesses the blood glucose data, yielding processed data that more closely

correspond to the blood glucose values in the bloodstream. A brief overview of the Kalman fil-

tering algorithm is provided below.

The Kalman filter is a state estimation filtering algorithm. Its core principle combines sys-

tem state equations with observation equations and optimally estimates the system state values

Table 2. Date, gender, age, training samples, and testing samples of the OhioT1DM dataset.

PID Date Gender Age Training samples Testing samples

559 2018 female 40–60 10796 2514

563 2018 male 40–60 12124 2570

570 2018 male 40–60 10982 2745

575 2018 female 40–60 11866 2590

588 2018 female 40–60 12640 2791

591 2018 female 40–60 10847 2760

540 2020 male 20–40 11947 2884

544 2020 male 40–60 10623 2704

552 2020 male 20–40 9080 2352

567 2020 female 20–40 10858 2377

584 2020 male 40–60 12150 2653

596 2020 male 40–60 10877 2731

https://doi.org/10.1371/journal.pone.0291594.t002
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Fig 1. Data pre-processing sequence.

https://doi.org/10.1371/journal.pone.0291594.g001

Fig 2. Experimental results of smooth and non-smooth(Black line represents unsmoothed experimental results,

and the red line represents smoothed experimental results).

https://doi.org/10.1371/journal.pone.0291594.g002
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by minimizing the mean squared error. At each time step, the filtering process consisted of

two stages: prediction (or forecasting) and updating (or correction). The prediction stage uses

the system state equation to estimate the state value in the next time step. By contrast, the

updating stage employs an observation equation to refine the predicted values and obtain a

more accurate state estimation. The two-stage equations of the Kalman filtering algorithm are

as follows.

Time update phase: System state equation, as shown in Eq 1.

xk ¼ Axk� 1 þ Buk� 1 þ wk� 1 ð1Þ

where, xk denotes the state vector of the system at time k, A is the state transition matrix, uk−1

represents the input quantity, B corresponds to the input control matrix, and wk−1 indicates

process noise.

Fig 3. Original training set of patient #559 and the first 1000 data points after processing by linear interpolation.

https://doi.org/10.1371/journal.pone.0291594.g003
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The observation equation is as follows shown in Eq 2.

zk ¼ Hxk þ vk ð2Þ

At time k, zk represents the observation vector, H corresponds to the observation matrix,

and vk denotes observation noise.

The covariance update equation (time update) is given by Eq 3.

�Pk ¼ APk� 1A
T þ Q ð3Þ

In this case, Q represents the process noise covariance matrix.

Calculating the Kalman gain, used to balance the uncertainty between the predicted state

estimates and observed data, is essential for determining informational advantage. The Kal-

man gain is given by Eq 4.

Kk ¼
�PkH

T H�PkH
T þ Rð Þ

� 1
ð4Þ

where, Kk denotes the Kalman information gain, HT denotes the transpose of the observation

matrix, and R denotes the observation noise covariance matrix.

The observed data were used in the observation update stage. zk to update the state esti-

mates, observed data, and Kalman gain were employed to refine the predicted state estimates.

The equation for the update stage is shown in Eq 5.

x̂k ¼ �xk þ Kk zk � H�xkð Þ ð5Þ

where, zk is the observation vector at time k; H�xk denotes the predicted observation value

derived from the predicted state estimate; and zk � H�xk represents the observation residual.

The covariance update equation (observation update) uses Kalman gain to refine the pre-

dicted covariance matrix. The equation for updating the error-covariance matrix is shown in

Eq 6.

Pk ¼ I � KkHð Þ�Pk ð6Þ

Here, I represent the unit matrix.

After applying Kalman filtering, corrected BGL data were obtained. These data were uti-

lized for the BGL prediction, ultimately enhancing the accuracy of the model. Fig 4 presents

the first 1,000 data points in the training set of patient #559 after Kalman filtering.

The four pre-processing steps involved applying a double exponential smoothing method

[30] to the dataset. Because this forecasting task is a time-series prediction, this study employs

double exponential smoothing techniques to process BGL data, resulting in increased continu-

ity and stability and improved model prediction accuracy. Fig 5 displays the first 1,000 data

points in the training set of patients with ID #559 after double exponential smoothing. A brief

overview of the double exponential smoothing algorithm is presented below.

Double exponential smoothing primarily captures data level and trend components as they

evolve. The following mathematical derivations illustrate the double exponential smoothing

process.

The equation for smoothing the level component is shown in Eq 7.

Lt ¼ aYt þ 1 � að Þ Lt� 1 þ Tt� 1ð Þ ð7Þ

where, Lt represents the level component at time t, Yt denotes the actual value at time t, α rep-

resents the level component smoothing coefficient (0< α<1), and Tt−1 corresponds to the

trend component at a given time.
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The equation for smoothing the trend component is shown in Eq 8.

Tt ¼ b Lt � Lt� 1ð Þ þ 1 � bð ÞTt� 1 ð8Þ

Here, β represents the trend component smoothing coefficient (0< β<1).

The formula for processing data through double exponential smoothing is given by Eq 9.

Yt ¼ Lt þ Tt ð9Þ

where, Yt denotes the smoothed data, and Lt and Tt represent the level and trend components

at the current time, respectively. In this work, α and β are set to 0.1 and 0.5, respectively.

The fifth step involves converting the time series problem into a supervised learning task

and transforming the time series into sequence samples. Lagged observations are inputs,

whereas future observations are outputs [31]. This study used sliding window data with vary-

ing historical lengths of 6, 9, 12, and 18 as inputs, corresponding to 30, 45, 60, and 90 minutes

of historical data. The outputs consist of 6, 9, and 12 data points, corresponding to PH of 30,

Fig 4. The first 1000 data points of the training set after the Kalman filtering process for patient #559.

https://doi.org/10.1371/journal.pone.0291594.g004
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45, and 60 minutes, respectively. By integrating multiple historical window data, multi-scale

features between the data points were adequately captured, enhancing the predictive perfor-

mance of the proposed model.

The final step entails preprocessing the sequence sample dataset using the max-min nor-

malization method and dividing the training set into a validation set and a training subset.

Twenty percent of the data is divided as the validation set, with the remaining data allocated to

the training subset. As for the test set, the dataset of the initial test set is used directly without

further division.

Proposed model

This study used a linear model as the meta-model for BGL prediction owing to its simplicity

and effectiveness. In addition, three improved time series forecasting models were introduced

as the base estimators. An improved nearest neighbor propagation clustering algorithm was

Fig 5. The first 1000 data points of the training set after double exponential smoothing of patient #559.

https://doi.org/10.1371/journal.pone.0291594.g005
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applied to weight the base estimators and enhance the prediction accuracy adaptively. Fig 6

displays the proposed deep ensemble learning architecture with adaptive weighting for BGL

prediction. The subsequent sections discuss the three non-ensemble models and the AWD-

stacking ensemble model.

Non-ensemble model. This study established a linear regression model and three

improved LSTM non-ensemble models.

Linear regression. Owing to its simplicity, strong interpretability, wide applicability, high

prediction accuracy, and ability to handle continuous variables [32], linear regression is

applied as the meta-estimator for BGL prediction.

Bidirectional Long Short-Term Memory (BiLSTM). A BiLSTM [33] network with vec-

tor output is used for multi-step prediction. To effectively predict time series data, BiLSTM

processes inputs through forward and backward LSTM layers at each time step, concatenating

the hidden states in both directions for the final output [34]. Fig 7 illustrates the architecture of

the BiLSTM model for BGL prediction, consisting of 128 units, using the mean squared error

as the loss function, a learning rate of 0.001, and the Adam optimizer. In the BiLSTM model,

consisting of forward and backward LSTM, a single LSTM model cell possesses two states: the

cell and hidden. The cell state ct is used to transmit and update memory information, while ht
storing past information. A single LSTM unit encompasses three state gates: the forget gate ft,
input gate it, and output gate ot. The forward process equations for the BiLSTM model are as

follows. Forward LSTM:

ft ¼ ss Wf xt þ Uf ht� 1 þ bf
� �

ð10Þ

Fig 6. Diagram of the architecture of the AWD-stacking model.

https://doi.org/10.1371/journal.pone.0291594.g006

Fig 7. The architecture of the BiLSTM model for predicting BGLs.

https://doi.org/10.1371/journal.pone.0291594.g007
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it ¼ ss Wixt þ Uiht� 1 þ btð Þ ð11Þ

ot ¼ ss Woxt þ Uoht� 1 þ boð Þ ð12Þ

ct ¼ ft � ct� 1 þ it � relu Wcxt þ Ucht� 1 þ bcð Þ ð13Þ

ht ¼ yt ¼ ot � relu ctð Þ ð14Þ

Here, ct represents the cell state at the current time step, and ht denotes the hidden state at

that moment. The weight matrices and bias terms are denoted by W, U, and b, respectively.

The input at the current time step is represented by xt, with σs representing the sigmoid activa-

tion function, relu representing the rectified linear unit activation function, and� indicating

element-wise multiplication. Backward LSTM employs the same algorithm as forward LSTM,

except that the input data and weight matrices are calculated in reverse order. Furthermore,

the hidden states from each direction are concatenated by merging the results. Finally, the

concatenated hidden states were processed using an activation function to yield the predicted

outcomes.

Stack Long Short-Term Memory (StackLSTM). A deep neural network model based on

LSTM [35], StackLSTM stacks multiple LSTM networks in a hierarchical structure to create a

deeper model. The architecture for BGL prediction is depicted in Fig 8. The StackLSTM model

has three LSTM layers with 128, 64, and 32 cell units in the first, second, and third layers. The

output layer corresponds to future data points, using the mean squared error as the loss func-

tion, a learning rate of 0.001, and Adam as the optimizer.

Vanilla Long Short-Term Memory (VLSTM) is a recurrent neural network model [36] uti-

lizing gating mechanisms to control the flow and retention of information. As depicted in Fig

9, the VLSTM model comprises an LSTM layer with 128 units, a fully connected (dense) layer

Fig 8. StackLSTM model architecture for predicting BGLs.

https://doi.org/10.1371/journal.pone.0291594.g008
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with future data points as output nodes, the mean squared error as the loss function, a learning

rate of 0.001, and the Adam optimizer. Peephole connections are added to the basic LSTM

model to better handle long sequence data and capture long-distance dependencies.

The same training process ensured fairness in the non-ensemble model prediction results.

The EarlyStopping callback function monitored the validation loss (val_loss) by setting the

number of epochs to 10. The validation set evaluates the model performance and calculates the

validation loss to prevent overfitting. During training, epoch_size was set to 500 and batch_size
to 32, with shuffle and verbose set to True and 1, respectively. In non-ensemble models, the

return_sequences parameter is set to True, indicating a multi-step time series prediction. The

ReLU activation function was used, and the activation function for the dense layer was set to

linear. In this study, because it is a multi-step, multi-history window time series prediction, the

Dense is 6, 9, 12 and 18, respectively.

To investigate the effects of different history windows on the prediction results, the history

windows were divided into 30, 45, 60 and 90 minutes. The average value is used as the final

result. Fig 10(a) shows the results of the 30-minute prediction layer, Fig 10(b) shows the results

of the 45-minute prediction layer, and Fig 10(c) shows the results of the 60-minute prediction

layer. For the prediction ranges of 30, 45, and 60 minutes, the final hyperparameters selected

for the best base learner BiLSTM, SLSTM, and VLSTM models are listed in Table 3.

According to Fig 10, this study compares the six plots of the base learner predictions at 30,

45 and 60 minutes. As shown in the figure, three prediction range line graphs using four differ-

ent history lengths produced different average RMSE values for the different datasets. Because

different RMSEs exist between different history windows, the history length significantly

affects the performance of the model. For the three prediction ranges, the RMSE decreased as

the length of the history window data increased, indicating that using a more comprehensive

history improved the prediction performance of the model. The AWD-stacking algorithm out-

performed the other models with four data-history windows. This study considered that four

different history windows affect the performance of the model. Therefore, the average of the

four history windows was used as the final result in the following article to make the experi-

mental results more accurate.

AWD-stacking ensemble model. Ensemble models are machine learning methods that

enhance learning performance by integrating multiple base estimators into a powerful predic-

tive model. By integrating the base estimators, overfitting is reduced, generalization ability is

improved, and strong stability is exhibited when facing new data.

Stacking learning is an ensemble learning method that builds predictive models by training

multiple base learners [37, 38]. In the stacking model, first-layer learners (base estimators)

train on the original data, and their predictions serve as new feature inputs into the second-

layer learner (meta-estimator). Combining this method allows stacking ensemble learning to

capture multilevel relationships in the data and enhance the predictive performance. To

Fig 9. Architecture diagram of the VLSTM model.

https://doi.org/10.1371/journal.pone.0291594.g009
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prevent overfitting, this study employed 5-fold cross-validation. Fig 11 illustrates the architec-

ture of stacking ensemble learning. In Fig 11, the base estimators represent part of the base

learner. In this study, the base learner, 5-fold cross-validation was used for the training set to

derive the final prediction result, training set prediction result,5-fold cross-validation was also

performed for the test set, and finally, the average of the test set of each base model is used as

the test set data of the meta-model, after certain combinations (as shown in Fig 11B1, 11B2

and 11B3). The results of the 5-fold cross-validation of the training set were combined into the

training set of the meta-model. Specifically, the prediction results obtained by each base

learner through the training set were combined, and the combined results are shown in the

middle part (denoted by X) in Fig 11. The data were input into the meta-learner for the train-

ing set and prediction.

Fig 10. Results of the three base estimators and AWD-stacking model predictions using four historical windows of data for 30(a),45(b), and 60 (c)

minute PH. Note: RMSE: Root mean square error; BiLSTM: Bi-directional long short-term memory; SLSTM: Stack long short-term memory; VLSTM:

Vanilla long short-term memory;2018-I: In the OhioT1DM dataset, the data released in 2018 was used.2020-II: In the OhioT1DM dataset, the data

released in 2020 was used Architecture diagram of the VLSTM model.

https://doi.org/10.1371/journal.pone.0291594.g010

Table 3. The base estimator hyperparameters.

Parameter BiLSTM SLSTM VLSTM

PH:30 PH:45 PH:60 PH:30 PH:45 PH:60 PH:30 PH:45 PH:60

units 128 128 128 128 128 128 128 128 128

units - - - 64 64 64 - - -

units - - - 32 32 32 - - -

activation relu relu relu linear linear linear linear linear linear

optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam

lr 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

loss mse mse mse mse mse mse mse mse mse

return_sequences True True True True True True True True True

Note: lr: learning_rate; loss: loss function; mse: mean_squared_error

https://doi.org/10.1371/journal.pone.0291594.t003
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Meta-estimator. In ensemble learning, a meta-estimator is a learner that combines multi-

ple base estimators. It uses base estimator predictions as inputs for further training, thereby

enhancing generalization ability and performance. In this study, to compare the experimental

results of different meta-estimators, five meta-estimators (Linear Regression, XGBoost, Ran-

dom Forest, Bagging, and ExtraTrees) were used for experimental comparison. It should be

noted that Bagging is a combination of regressors of bagging. This study used decision tree

regression as this combiner for experiments. Since the best base learners in this study were

BiLSTM, StackLSTM, and VanilaLSTM, the three models BiLSTM, StackLSTM, and Vani-

laLSTM are used as the base learners for integration learning in the experimental comparison

of the meta-learners. The experimental results are shown in Fig 12. Fig 12(a) and 12(b) repre-

sent the experimental results of the evaluation indices RMSE and MAE for the five meta-mod-

els. The linear regression model as the meta-model has the best experimental effect, and the

gap between the results of the linear meta-model and other meta-models increases as the pre-

diction range increases, which verifies that the experimental linear meta-model is the best

choice in this study.

Improved affinity propagation clustering algorithm. This study proposed a weighted

similarity matrix affinity propagation (AP) clustering algorithm, integrating a similarity matrix

and weight information to better represent relationships between data points and improve

clustering performance. First, a weighted similarity matrix was constructed, where each ele-

ment represents the similarity (distance) between the two base models. Next, the AP algorithm

calculates each cluster center and members of each base model. Finally, the cluster center indi-

ces assign weights to each base model, which are then applied to weight the base models

accordingly [39, 40]. The main steps and formulas for dynamically adjusting the weights of the

base estimators using the improved AP-clustering algorithm are as follows.

The weighted similarity matrix is then calculated. The similarity matrix is calculated based

on the distance between the data points, variance, and weight coefficients.

Si;j ¼ � disi;j � a vari þ varj
� �

ð15Þ

Fig 11. Stacking ensemble learning architecture diagram.

https://doi.org/10.1371/journal.pone.0291594.g011
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disti;j ¼
Xn

k¼1

ðxi;k � xj;kÞ
2

ð16Þ

vari ¼
1

n

Xn

k¼1

ðxi;k � x� iÞ
2

ð17Þ

The similarity between data points i and j is represented by Si,j, where disi,j denotes the

euclidean distance between them, the terms vari and varj represent the equations between data

points i and j, and α is a weight coefficient. The feature dimension of the data points is denoted

by n, where xi,k and xj,k represent the values of data points i and j on the kth feature. Moreover,

x� i represents the average value of all the feature values for data point i.

An improved nearest neighbor propagation clustering algorithm is utilized to calculate the

weighted variance sum of the clustering results, as shown in Eq 18.

wk ¼
XN

i¼1

1

C

X

j2ci

ðxj;k � mi;kÞ
2

ð18Þ

In this context, wk denotes the weighted variance sum of the kth feature, N denotes the

weighted variance sum of the kth feature, and C denotes the number of clusters. The term xj,k
indicates the predicted result of the j-th sample on the k-th feature, cj denotes the i-th cluster,

and μi,k is the average value of the i-th cluster on the k-th feature.

Fig 12. Experimental results of 5 meta-learners.

https://doi.org/10.1371/journal.pone.0291594.g012
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The weight normalization is shown in Eq 19.

wk ¼
wk

PM
i¼1

wj

ð19Þ

Both the initial testing and training sets were separately incorporated into the meta-estima-

tor for training to achieve optimal prediction results. At this stage, the training data for the

meta-model include the initial training set, weighted training set, and predictions from the

base estimators.

Evaluation metrics

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). This study evalu-

ated the performance of regression models using two indicators: the Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE). Smaller RMSE and MAE values indicate better

model performance. Eqs 20 and 21 depict the formulas for the RMSE and MAE, respectively.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyi � ŷiÞ

2

n

s

ð20Þ

MAE ¼
1

n

Xn

i¼1

jyi � ŷij ð21Þ

Here, yi represents the actual value of the i-th sample, ŷi denotes the predicted value, and n

represents the sample size.

The Matthews correlation coefficient. The Matthews Correlation Coefficient (MCC)

[41] is a model classification performance assessment metric. BGLs were categorized as low

(BGL<70 mg/dL), normal (70 mg/dL�BGL<126 mg/dL), and high (BGL�126 mg/dL)

according to the International Federation of Diabetes (IDF). Hypoglycemia and hyperglycemia

were defined as adverse events, whereas normal glucose levels were defined as normal. The

results of the regression model predictions were converted to classification labels. The confu-

sion matrix is a metric used to evaluate the performance of classification models. True Positive

(TP) represents the number of samples with predicted and actual adverse events. True Nega-

tive (TN) refers to samples predicted and actual as normal events, False Positive (FP) denotes

samples predicted as adverse events but normal, and False Negative (FN) indicates samples

predicted as normal events but actually adverse events. Eq 22 presents the MCC calculation

formula.

MCC ¼
TP∗TNð Þ � FP∗FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ

p ð22Þ

Error Grid Analysis (EGA) [37, 38] evaluates BGL predictions as a clinical indicator by

comparing the actual measurements with the predicted values. The predicted results were

divided into five regions (A, B, C, D and E), and the meanings of each region are listed in

Table 4.

Experimental results

In this section, we present experimental results and configurations. The RMSE, MAE, and

MCC were used as evaluation metrics for the models in the experiments. Ensemble and non-

ensemble models were used to predict BGLs at 30, 45, and 60 minutes. The training and test

sets of the ohiot1dm dataset were used for the model training and evaluation. The experiment
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was implemented on a desktop platform configured with an Intel Core i7-8700HQ CPU,

16GB DDR4 RAM, 256GB SSD, Nvidia Geforce GTX 1050Ti graphics card and Windows 10

Professional (version: 21H2). The programming languages used in the experiments were

Python (version: 3.8.10), TensorFlow (version: 2.11.0), Keras (version: 2.11.0), scikit-learn

(version: 1.1.1), Numpy (version: 1.23.2), pandas (version: 1.5.0) and other machine learning

libraries. Because of the versatility of TensorFlow, seven base models were built using Tensor-

Flow and Keras (BiLSTM, StackLSTM, and VanilaLSTM), and the scikit-learn library was

used to build meta-model algorithms (e.g., linear regression) and perform 5-fold cross-valida-

tion. Numpy and pandas were used for preprocessing (e.g., missing values and outlier han-

dling). The best experimental results can be obtained using the above platforms and libraries,

and the constructed algorithms can be ported to other platforms (including the corresponding

libraries) to achieve the portability of the algorithms.

Non-ensemble models

This study used four different historical window data (30, 45, 60, and 90min corresponding to

6, 9, 12, and 18 data points) to capture multi-scale features between the data. Tables 5 and 6

show the BGL predictions of the four historical window datasets. The evaluation results for the

12 patients using the non-ensemble models are listed in S1 Appendix.

Tables 5 and 6 compare three non-ensemble models with varying PHs and historical win-

dow data: Bidirectional Long Short-Term Memory (BiLSTM), Stacked Long Short-Term

Memory (SLSTM), and Vanilla Long Short-Term Memory (VLSTM). The SLSTM model

exhibited superior performance, as evidenced by the lower RMSE and MAE values and higher

MCC values. It maintained better stability across different PHs and historical windows, while

the BiLSTM and VLSTM models showed more significant fluctuations in prediction accuracy.

The prediction accuracy declined as the time range increased, with the SLSTM model exhibit-

ing the highest performance among the non-ensemble models.

Ensemble models

Tables 7–9 display the assessment results of the AWD-stacking model for 12 patients with 30,

45, and 60-minute PHs, respectively.

Table 7, which considers a 30-minute PH, shows RMSE values ranging from 0.934 to 2.206

mg/dL. Patient #575 from the 2018 data has the highest RMSE, while patient #552 from the

2020 data has the lowest RMSE. The MAE range is 0.403 to 0.938 mg/dL, with patient #575

from the 2018 data having the largest MAE and patient #552 from the 2020 data having the

smallest. The MCC range is 0.965 to 0.994 mg/dL, with patient #552 from the 2018 data having

the highest MCC and patient #584 from the 2020 data having the lowest. Through Table 7,

Table 4. Meanings of each region in Clarke EGA.

Regions Implication

A Predicted values are close to actual values, with errors within ±20%. The model exhibits good accuracy.

B Predicted values have some errors compared to actual values, but these errors do not impact patient

treatment, with errors generally within the range of ±20% to ±30%.

C Errors between predicted and actual values are significant, potentially leading to erroneous clinical

decisions and increased patient treatment risks. Unsuitable for clinical decision-making.

D Errors between predicted and actual values are very large, potentially causing serious risks and clinical

errors to patients during validation.

E Predicted values are in the opposite direction of the actual values, possibly resulting in life-threatening

treatment mistakes. Fundamental improvements to the model are required.

https://doi.org/10.1371/journal.pone.0291594.t004
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using longer historical windows of data will have lower RMSE and MAE while the Matthews

correlation coefficient of the model improves. Using the multi-history window technique, the

model proposed in this study can capture the data trends and time dependence on different

time scales, thus improving the prediction of the model.

Table 8, which considers a 45-minute PH, shows RMSE values ranging from 2.180 to 5.244

mg/dL. Patient #575 from the 2018 data has the highest RMSE, while patient #544 from the

2020 data has the lowest RMSE. The MAE range is 1.027 to 2.356 mg/dL, with patient #575

from the 2018 data having the largest MAE and patient #552 from the 2020 data having the

smallest.

The MCC range is 0.939 to 0.987 mg/dL, with patient #570 from the 2018 data having the

highest MCC and patient #584 from the 2020 data having the lowest. By utilizing multiple his-

torical windows and the AWD-stacking algorithm, the information in the time series data can

be better utilized and the accuracy of the forecasting model can be improved by combining

data patterns at different time scales. Using multiple historical windows helps the model cap-

ture trends and changes at different time scales, while the AWD-stacking algorithm further

improves the model’s predictive power by integrating data from multiple historical window

sizes.

Table 6. Experimental results for the four historical window data in the 2020 dataset, with PHs of 30, 45, and 60 minutes.

PH Model HW = 30min HW = 45min HW = 60min HW = 90min

RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC

30 BiLSTM 4.861 3.492 0.922 3.338 2.147 0.95 3.137 2.283 0.952 2.053 1.305 0.969

SLSTM 4.716 1.142 0.974 1.701 1.224 0.975 1.53 1.007 0.971 1.614 1.044 0.978

VLSTM 3.784 2.425 0.944 2.039 1.281 0.968 1.874 1.112 0.969 2.237 1.347 0.968

45 BiLSTM 7.637 4.897 0.894 5.389 3.256 0.923 3.885 2.256 0.948 3.674 2.150 0.952

SLSTM 3.772 2.348 0.945 3.913 2.526 0.949 3.431 2.044 0.954 3.132 1.832 0.960

VLSTM 5.866 3.559 0.919 4.439 2.753 0.939 4.090 2.342 0.952 4.389 2.708 0.938

60 BiLSTM 11.557 7.325 0.818 10.234 6.443 0.860 7.342 4.133 0.910 7.700 4.544 0.904

SLSTM 7.124 4.278 0.909 6.398 3.740 0.913 6.249 3.626 0.919 6.306 3.584 0.925

VLSTM 10.241 6.296 0.848 7.764 4.522 0.905 7.399 4.124 0.903 8.233 4.622 0.893

https://doi.org/10.1371/journal.pone.0291594.t006

Table 5. Experimental results for the four historical window data in the 2018 dataset, with PHs of 30, 45, and 60 minutes.

PH Model HW = 30min HW = 45min HW = 60min HW = 90min

RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC

30 BiLSTM 4.745 3.092 0.936 4.552 3.051 0.926 3.737 2.574 0.955 2.250 1.267 0.97

SLSTM 2.047 1.344 0.976 1.893 1.266 0.965 1.859 1.188 0.976 1.933 1.217 0.981

VLSTM 3.051 1.842 0.963 2.384 1.470 0.962 2.655 1.455 0.972 2.669 1.597 0.967

45 BiLSTM 7.758 5.079 0.901 9.361 6.495 0.877 5.378 3.26 0.948 4.863 2.875 0.938

SLSTM 4.626 2.849 0.954 4.214 2.549 0.960 4.115 2.308 0.960 4.092 2.343 0.957

VLSTM 7.334 4.513 0.936 5.102 3.003 0.939 4.942 2.817 0.941 5.480 3.269 0.935

60 BiLSTM 12.252 8.013 0.838 10.790 6.522 0.884 9.12 5.502 0.906 8.857 5.182 0.905

SLSTM 8.055 4.620 0.920 7.410 4.102 0.905 7.289 4.075 0.931 7.463 4.212 0.925

VLSTM 11.395 6.850 0.870 8.713 5.065 0.898 8.741 5.131 0.902 8.769 5.038 0.901

Note: HW means history window

https://doi.org/10.1371/journal.pone.0291594.t005
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Table 9, considering a 60-minute PH, shows RMSE values ranging from 4.537 to 9.804 mg/

dL. Patient #575 from the 2018 data has the largest RMSE, while patient #544 from the 2020

data has the smallest RMSE. The MAE range is 1.981 to 4.531 mg/dL, with patient #575 from

the 2018 data having the highest MAE and patient #552 from the 2020 data having the lowest.

The MCC range is 0.879 to 0.969 mg/dL, with patient #570 from the 2018 data having the high-

est MCC and patient #584 from the 2020 data having the lowest.

Tables 10 and 11 show the evaluation results of the non-ensemble models and AWD-stack-

ing model for three PHs of 30, 45, and 60 minutes using three different evaluation metrics

(RMSE, MAE, and MCC). Lower RMSE, MAE, and MCC values closer to 1 indicated better

model performance. Observing the data in Table 10, the AWD-stacking model outperformed

the SLSTM model for all PHs. Similar results can be observed in Table 11, where the AWD-

stacking model surpasses the SLSTM model for all the PHs. Fig 13 illustrates this conclusion.

The proposed AWD-stacking model in this study had significantly lower RMSE and MAE val-

ues than other non-integrated models at all three PHs for all patient data, indicating that the

Table 7. Prediction results for 12 patients on the AWD-stacking model (multi-history window data, PH 30 minutes).

Dataset PID HW = 30min HW = 45min HW = 60min HW = 90min

RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC

2018 559 1.282 0.620 0.987 1.284 0.623 0.988 1.288 0.628 0.989 1.285 0.623 0.989

563 1.741 0.794 0.981 1.730 0.791 0.981 1.732 0.791 0.982 1.737 0.793 0.982

570 1.100 0.558 0.993 1.096 0.557 0.967 1.096 0.554 0.993 1.101 0.554 0.993

575 2.170 0.938 0.987 2.173 0.949 0.953 2.188 0.947 0.987 2.206 0.940 0.986

588 1.301 0.699 0.979 1.326 0.707 0.987 1.314 0.700 0.980 1.323 0.708 0.979

591 1.829 0.914 0.975 1.833 0.916 0.973 1.836 0.918 0.974 1.840 0.919 0.976

2020 540 1.047 0.552 0.984 1.044 0.552 0.983 1.046 0.552 0.984 1.046 0.552 0.984

544 0.975 0.483 0.987 0.975 0.485 0.985 0.974 0.483 0.985 0.973 0.479 0.984

552 0.935 0.403 0.994 0.935 0.414 0.994 0.934 0.401 0.995 0.937 0.416 0.994

567 1.575 0.795 0.980 1.566 0.784 0.978 1.568 0.786 0.978 1.570 0.786 0.980

584 1.824 0.937 0.973 1.830 0.936 0.971 1.824 0.933 0.965 1.827 0.938 0.971

596 1.147 0.557 0.986 1.143 0.556 0.988 1.146 0.559 0.988 1.152 0.561 0.987

https://doi.org/10.1371/journal.pone.0291594.t007

Table 8. Prediction results for 12 patients on the AWD-stacking model (multi-history window data, PH 45 minutes).

Dataset PID HW = 30min HW = 45min HW = 60min HW = 90min

RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC

2018 559 3.166 1.560 0.969 3.164 1.555 0.972 3.196 1.579 0.969 3.146 1.554 0.961

563 4.006 1.896 0.962 4.015 1.914 0.965 3.969 1.884 0.969 3.962 1.894 0.963

570 2.705 1.376 0.987 2.689 1.370 0.985 2.709 1.372 0.987 2.705 1.358 0.981

575 5.144 2.304 0.956 5.225 2.356 0.956 5.244 2.324 0.963 5.250 2.362 0.955

588 3.295 1.725 0.958 3.268 1.716 0.958 3.299 1.734 0.957 3.226 1.700 0.957

591 4.363 2.223 0.948 4.364 2.222 0.946 4.387 2.228 0.947 4.405 2.231 0.945

2020 540 2.692 1.428 0.955 2.668 1.415 0.954 2.674 1.416 0.955 2.696 1.417 0.954

544 2.439 1.198 0.974 2.426 1.199 0.975 2.450 1.198 0.975 2.180 1.072 0.974

552 2.396 1.027 0.980 2.383 1.037 0.981 2.386 1.031 0.980 2.373 1.037 0.979

567 4.056 2.050 0.948 4.057 2.035 0.950 4.080 2.037 0.952 2.787 1.385 0.967

584 4.405 2.259 0.939 4.399 2.267 0.939 4.388 2.253 0.940 4.362 2.231 0.940

596 2.743 1.370 0.972 2.726 1.354 0.972 2.756 1.378 0.976 2.775 1.388 0.970

https://doi.org/10.1371/journal.pone.0291594.t008
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Table 10. Evaluation results of the non-ensemble model versus the AWD-stacking model for the three PHs of 30, 45, and 60 minutes in the 2018 data (in units of

mg/dL).

PID Model PH = 30min PH = 45min PH = 60min

RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC

559 BiLSTM 3.699 2.656 0.946 5.064 2.965 0.939 8.893 5.733 0.881

SLSTM 1.887 1.403 0.969 3.601 2.166 0.961 6.457 3.638 0.925

VLSTM 2.360 1.656 0.965 4.268 2.629 0.950 9.116 5.829 0.890

AWD-stacking 1.285 0.896 0.988 3.168 1.562 0.968 5.966 3.011 0.951

563 BiLSTM 5.018 3.458 0.944 5.775 3.394 0.935 6.960 5.812 0.897

SLSTM 1.974 0.979 0.977 4.299 2.324 0.964 7.735 4.154 0.928

VLSTM 3.132 1.924 0.969 5.635 3.284 0.945 9.586 5.620 0.897

AWD-stacking 1.735 0.792 0.981 3.988 1.897 0.964 7.166 3.526 0.933

570 BiLSTM 3.367 2.374 0.954 5.198 3.650 0.964 8.795 5.672 0.938

SLSTM 1.813 1.383 0.977 3.148 1.968 0.977 5.650 3.272 0.940

VLSTM 2.586 1.828 0.959 4.194 2.527 0.965 7.250 4.353 0.942

AWD-stacking 1.239 0.608 0.990 2.702 1.369 0.985 5.044 2.595 0.957

575 BiLSTM 4.268 0.584 0.952 5.198 3.695 0.963 11.615 6.118 0.903

SLSTM 2.377 1.209 0.977 3.148 1.968 0.977 9.940 5.271 0.921

VLSTM 2.956 1.563 0.971 4.194 2.527 0.965 11.737 6.148 0.892

AWD-stacking 2.184 0.942 0.977 2.702 1.369 0.985 9.487 4.400 0.921

588 BiLSTM 2.712 1.792 0.952 8.968 6.712 0.854 10.261 6.582 0.855

SLSTM 1.864 1.278 0.972 3.847 2.449 0.950 6.782 3.971 0.916

VLSTM 2.571 1.664 0.958 4.784 2.829 0.928 7.591 4.417 0.894

AWD-stacking 1.316 0.703 0.979 3.272 1.719 0.958 5.257 3.168 0.929

591 BiLSTM 4.214 2.525 0.920 8.100 5.119 0.870 12.365 7.911 0.826

SLSTM 2.093 1.299 0.967 4.695 2.753 0.939 8.763 5.206 0.891

VLSTM 2.850 1.717 0.960 7.047 4.198 0.913 11.147 6.759 0.841

AWD-stacking 1.834 0.917 0.974 4.380 2.226 0.947 7.935 4.148 0.903

AVG BiLSTM 3.880 2.232 0.945 6.384 4.256 0.921 8.815 6.305 0.883

SLSTM 2.001 1.259 0.973 3.789 2.271 0.961 7.555 4.252 0.920

VLSTM 2.743 1.725 0.964 5.020 2.999 0.944 9.404 5.521 0.893

AWD-stacking 1.598 0.809 0.982 3.369 1.690 0.968 6.809 3.475 0.932

https://doi.org/10.1371/journal.pone.0291594.t010

Table 9. Prediction results for 12 patients on the AWD-stacking model (multi-history window data, PH 60 minutes).

Dataset PID HW = 30min HW = 45min HW = 60min HW = 90min

RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC

2018 559 5.953 3.024 0.945 5.956 3.016 0.954 6.071 3.050 0.956 5.884 2.954 0.950

563 7.199 3.540 0.936 7.273 3.581 0.869 7.110 3.504 0.954 7.083 3.481 0.934

570 5.038 2.611 0.969 5.014 2.584 0.928 5.034 2.580 0.963 5.092 2.606 0.969

575 9.334 4.372 0.931 9.320 4.358 0.877 9.492 4.339 0.951 9.804 4.531 0.924

588 6.017 3.174 0.923 6.047 3.174 0.926 3.003 3.176 0.932 5.961 3.147 0.934

591 7.900 4.148 0.903 7.908 4.135 0.903 7.917 4.124 0.906 8.015 4.183 0.901

2020 540 5.144 2.790 0.915 5.135 2.779 0.917 5.132 2.750 0.915 5.147 2.771 0.916

544 4.584 2.277 0.939 4.595 2.250 0.941 4.559 2.270 0.942 4.537 2.240 0.941

552 4.564 1.991 0.963 4.615 2.008 0.960 4.708 2.017 0.961 4.616 1.981 0.960

567 7.792 3.993 0.922 7.788 3.981 0.915 7.809 3.918 0.918 7.820 3.960 0.920

584 8.125 4.229 0.884 8.123 4.236 0.879 7.998 4.151 0.891 8.087 4.202 0.887

596 5.034 2.596 0.953 5.014 2.573 0.953 5.073 2.588 0.958 5.160 2.664 0.950

https://doi.org/10.1371/journal.pone.0291594.t009
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AWD-stacking model could predict blood glucose levels more accurately. In addition, the

AWD-stacking model also showed advantages in (MCC values).

To demonstrate the superiority of the algorithm proposed in this study, four benchmarking

models were added to the experiment, and the model proposed in this study had the best pre-

diction effect by comparison, as shown in Part 2 of the S1 Appendix. The four added bench-

marking models were convolutional neural networks-bidirectional long short-term memory

(CBiLSTM), directional long short-term memory-attention (CBiLSTMA), multi-head-atten-

tion-bidirectional long short-term memory (MABiLSTM), and bidirectional long short-term

memory-attention (BiLSTMA). A comparison of the average experimental results of the four

benchmarking models with those of the proposed algorithm shows that the proposed model

has the best results. The proposed model uses integrated learning, which can learn the advan-

tages of each base learner and improve overall prediction results. Ensemble models are also an

important direction for future research compared to individual learning models. Conse-

quently, based on Tables 10 and 11, the proposed AWD-stacking model exhibits the highest

accuracy and stability.

Table 11. Evaluation results of the non-ensemble model versus the AWD-stacking model for the three PHs of 30, 45, and 60 minutes in the 2020 data (in units of

mg/dL).

PID Model PH = 30min PH = 45min PH = 60min

RMSE MAE MCC RMSE MAE MCC RMSE MAE MCC

540 BiLSTM 4.198 3.152 0.917 5.282 3.420 0.902 8.191 5.161 0.851

SLSTM 1.295 0.950 0.979 3.082 1.789 0.953 6.037 3.792 0.898

VLSTM 2.179 1.438 0.963 4.176 2.651 0.927 7.806 4.916 0.857

AWD-stacking 1.046 0.552 0.984 2.683 1.419 0.955 5.140 2.772 0.916

544 BiLSTM 1.198 3.152 0.917 3.830 2.276 0.947 6.885 3.917 0.901

SLSTM 1.295 0.950 0.979 2.562 1.757 0.967 4.997 2.805 0.933

VLSTM 2.179 1.438 0.963 3.337 1.888 0.959 6.542 3.821 0.908

AWD-stacking 0.992 0.552 0.984 2.374 1.167 0.974 4.569 2.260 0.941

552 BiLSTM 2.941 2.242 0.967 4.401 2.601 0.956 6.665 3.404 0.921

SLSTM 1.272 0.816 0.989 3.036 2.008 0.974 5.055 5.790 0.948

VLSTM 2.182 1.324 0.979 4.058 2.457 0.970 6.583 3.485 0.928

AWD-stacking 0.935 0.409 0.994 2.385 1.033 0.980 4.631 2.071 0.955

567 BiLSTM 4.087 2.676 0.939 6.662 4.019 0.903 12.167 7.322 0.846

SLSTM 2.246 1.580 0.957 4.369 2.677 0.922 8.655 4.908 0.896

VLSTM 3.228 1.886 0.947 6.620 3.846 0.906 10.821 5.999 0.877

AWD-stacking 1.570 0.788 0.979 3.752 1.877 0.954 7.802 3.963 0.919

584 BiLSTM 4.143 2.736 0.932 5.906 3.562 0.920 12.612 8.188 0.804

SLSTM 2.382 1.582 0.961 4.860 2.955 0.927 8.738 5.220 0.868

VLSTM 3.249 2.025 0.939 5.848 3.539 0.908 12.030 7.453 0.809

AWD-stacking 1.826 0.936 0.970 4.388 2.253 0.939 8.083 4.205 0.885

596 BiLSTM 2.775 1.910 0.963 4.795 2.960 0.948 8.244 5.290 0.912

SLSTM 1.384 0.870 0.977 3.162 1.940 0.968 5.419 3.146 0.948

VLSTM 2.254 1.490 0.971 4.135 2.662 0.952 6.597 3.715 0.936

AWD-stacking 1.147 0.558 0.987 2.750 1.372 0.972 5.070 2.661 0.954

AVG BiLSTM 3.220 2.644 0.939 5.146 3.139 0.929 9.127 5.547 0.873

SLSTM 1.645 1.125 0.974 3.512 2.188 0.952 6.484 4.277 0.915

VLSTM 2.545 1.600 0.960 4.695 2.841 0.937 8.396 4.898 0.886

AWD-stacking 1.252 0.633 0.983 3.055 1.520 0.962 5.883 2.988 0.928

https://doi.org/10.1371/journal.pone.0291594.t011
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Fig 14 depicts the glucose trajectory of patient #570 over 48 hours, showing a small discrep-

ancy between the predicted and actual values, indicating the high accuracy and stability of the

model. Fig 15 shows the error fitting plot for patient #570.

An error range between +10% and -10% signifies excellent prediction results, whereas a

range between +20% and -20% indicates good results. For PHs of 30, 45, and 60 minutes, all

predictions fell within the +10% to -10% range, demonstrating the excellent performance of

the model.

Clarke EGA plots use a higher point density to signify a better or worse model performance

in specific areas [42]. Fig 16 shows the Clarke EGA plot for patient #570, demonstrating the

performance of the proposed model in predicting BGLs. The data points are predominantly

located in Zone A for PH of 30, 45, and 60 minutes, demonstrating the high accuracy and prac-

tical significance of the model in clinical settings.

Statistical analysis

The statistical analysis results included the p-values of the Wilcoxon post-hoc test for two-by-

two comparisons of all models and CDD values of the underlying learners. A visual overview

of the future is available and the CDD plots are shown in Figs 17 and 18. A critical difference

plot (CDD) was used to compare the performances of the different machine learning models.

Fig 13. Presents the performance between the non-ensemble models and the AWD-stacking model. Note: (a), (b), and (c) represent the validation

results of the models using 2018 data, while (d), (e), and (f) represent the validation results using 2020 data.

https://doi.org/10.1371/journal.pone.0291594.g013
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In the CDD, each point represents a model, the horizontal axis represents the ranking of the

model, and the vertical axis represents the performance metric. Models positioned more to the

left or right indicated superior performance. Figs 17 and 18 show the CDD validated using the

2018 data, with RMSE and MAE as evaluation metrics. As shown in Fig 17(a)–17(c), the

RMSE of the AWD-stacking model are 1.575 mg/dL, 3.788 mg/dL and 6.809 mg/dL for pH

values of 30, 45 and 60 min, respectively. In Fig 17(d)–17(f), for pH values of 30, 45 and 60

min, the RMSE of the AWD MAE for the Stacking model was 0.793 mg/dL, 1.852 mg/dL and

3.468 mg/dL, respectively. Fig 18 shows the main differences between all prediction models

using the MCC evaluation metric on the 2018 dataset.

After statistical analysis, the experimental results of all models compared two by two

according to each evaluation metric are presented in detail in Tables 12–14. The ensemble

models were significantly better than non-ensembled models, with no significant differences

in internalities. This study uses p-values to compare the performance of the proposed models

for analysis. P-value values reflect the significance of statistical tests, and smaller p-values indi-

cate more significant differences between the two models. For the RMSE metric, the p-value

values of the AWD-stacking model were usually minimal (<0.001) compared to the other

models on different prediction time ranges (30 min, 45 min, and 60 min). This implies that the

AWD-stacking model has a significant advantage in terms of RMSE compared with other

models, whether compared with BiLSTM, SLSTM, VLSTM, CBiLSTM, MABiLSTM,

CBiLSTMA or BiLSTMA. This indicates that the AWD-stacking model can achieve better per-

formance in predicting blood glucose levels. For the MAE metric, similar results to RMSE

were observed. The p-value values of the AWD-stacking model were minimal (<0.001) com-

pared to the other models on all data sets, which implies that the AWD-stacking model showed

Fig 14. Glucose trajectory of patient #570 during 48 hours.

https://doi.org/10.1371/journal.pone.0291594.g014
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better performance in terms of MAE. The AWD-stacking model also shows significant advan-

tages over different prediction time horizons for the MCC metric. The p-value values of the

AWD-stacking model are all minimal (<0.001) compared to other models, indicating its better

performance in terms of MCC. In conclusion, the AWD-stacking model showed a significant

advantage over the other models in predicting blood glucose levels. It indicates that the AWD-

stacking model is essential for blood glucose prediction in the T1DM dataset and is a more

reliable and accurate model selection.

Discussion

This study aimed to explore the application of deep learning to BGL prediction. An Adaptive

Weighted Decision Stacking ensemble learning model (AWD-stacking) was developed and

validated using the OhioT1DM dataset. The proposed model achieves high accuracy in BGL

prediction owing to several factors: i) the first application of the Kalman smoothing technique

for BGL data preprocessing, which corrects data errors caused by sensor errors and improves

model accuracy; ii) the use of double exponential smoothing for time-series data preprocessing

to eliminate noise and outliers; iii) improved base estimator algorithms for BGL prediction

yielding better results; iv) the utilization of an improved nearest neighbor propagation

Fig 15. Error plot for patient #570.

https://doi.org/10.1371/journal.pone.0291594.g015
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clustering algorithm for feature fusion, and increased model prediction accuracy; and v) the

multi-historical window technique, which is proposed and applied to the AWD-stacking

model.

Compared with other studies, the proposed algorithm demonstrated higher accuracy and

practicality in BGL prediction. Table 15 compares state-of-the-art BGL prediction methods for

the OhioT1DM clinical dataset. To ensure a fair comparison, this study used different versions

of the ohiot1dm dataset with varying data volumes: (i) six subjects from the 2018 data and (ii)

twelve subjects from the 2018 and 2020 data. Although some studies extend the PH to 120

minutes (corresponding to 24 data points), most relevant work only considers a 60-minute

PH. Therefore, this study mainly focuses on comparisons with PH of 30 and 60 minutes, using

RMSE and MAE as evaluation metrics.

2018 dataset

In the dataset with six subjects in 2018, various machine learning algorithms for BGL predic-

tion, such as XGBoost, were compared [43]. In addition, the proposed method is compared

with state-of-the-art deep learning methods, including convolutional neural networks (CNN)

[44], dilated recurrent neural networks (DRNN) [20], artificial neural networks (ANN) [45],

stack long short-term memory (StackLSTM) [21], the fusion of neural physiological encoder

(NPE) and long short-term memory (LSTM) [46], and an improved deep learning model for

BGL prediction (GluNet) [47]. In the experiments conducted using the 2018 dataset with six

subjects, the proposed model achieved the lowest RMSE and MAE for a 30-minute PH.

Fig 16. Clarke EGA plot for patient #570 at 30(a),45(b),60(c) minutes PH.

https://doi.org/10.1371/journal.pone.0291594.g016
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2018 and 2020 dataset

Twelve Subjects 2018 Dataset and 2020 Dataset: Validation using this dataset. In this study, the

proposed development method was compared with the latest deep learning models., including

the autonomous channel deep learning framework (Auto-LSTM) [24], fast-adaptive and confi-

dent neural network (FCNN) [48], deep multi-task stacked long short-term memory

(DM-StackLSTM) [25], multi-layered long short-term memory (LSTM), cutting-edge deep

neural networks (CE-DNN) [23], multi-task long short-term memory (MTL-LSTM) [49],

Nested Deep Ensemble Learning (Nested-DE) [50], LS-GRUNet [51], long-short-term-mem-

ory and temporal convolutional networks(LSTM-TCN) [52], Shallow Network and Error

Imputation(Shallow-Net) [53], recurrent neural network (RNN) [54], convolutional recurrent

neural network (RCNN) [55] and weighted LSTM models (W-DLSTM) [22] applied to the

experimental results of 12 subjects. The proposed method achieved the best results with the

smallest root RMSE and MAE for 30 and 60 minutes PH. Overall, the proposed method out-

performed those in the existing literature. When validated using the OhioT1DM dataset, the

experimental results of the proposed algorithm were compared with those of the top-perform-

ing non-ensemble model, Stack-LSTM, as presented in Table 16. According to Tables 15 and

16 for a PH of 30 minutes, the proposed method achieves an RMSE of 1.425 mg/dL, an MAE

of 0.721 mg/dL, and an MCC of 0.982 mg/dL. For a PH of 45 minutes, the RMSE was 3.212

mg/dL, the MAE was 1.605 mg/dL, and the MCC was 0.950 mg/dL. For a PH of 60 minutes,

the RMSE was 6.346 mg/dL, MAE was 3.232 mg/dL, and MCC was 0.930 mg/dL. For all

Fig 17. Critical difference diagrams for pairwise comparisons of all prediction models within the PH of 30 (a, d), 45 (b, e), and 60 (c, f) minutes.

https://doi.org/10.1371/journal.pone.0291594.g017
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Fig 18. Critical difference diagrams for pairwise comparisons of all prediction models within PH of 30 (g), 45 (h), and 60 (i)

minutes.

https://doi.org/10.1371/journal.pone.0291594.g018
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predictions, as the PH increased, the Matthews correlation coefficient (MCC) remained high,

indicating a strong correlation between the prediction results of the model and the actual val-

ues and demonstrating good predictive performance.

Therefore, the proposed method demonstrated high accuracy and robustness in managing

and predicting Type 1 diabetes BGLs. Furthermore, embedding this model in relevant medical

devices for real-time on-site decision-making can effectively prevent adverse blood glucose

events. The findings of this study have significant implications for managing patients with

T1D, assisting doctors in decision-making, and improving patient quality of life.

Conclusion

In treating diabetes patients, effective management of BGL concentrations and a deep under-

standing of BGLs are crucial. This paper proposes an adaptive algorithm based on deep ensem-

ble learning for predicting BGLs, utilizing stacking ensemble learning with data preprocessing

using Kalman filtering and double exponential smoothing. In time-series prediction, data

smoothing has an essential effect on the prediction results because it reduces data noise and

highlights the underlying patterns of the data. In this study, as shown in Fig 2, the results after

smoothing (indicated in red in the figure) are better than the experimental results without

smoothing (indicated in black in the figure), specifically, when using RMSE as the evaluation

metric and a PH of 30 minutes, the smoothed prediction result is 1.425 mg/dL, and the non-

Table 12. P-values related to the post-hoc Wilcoxon test comparing all predictive models with each other on 12 datasets from the T1DM data contributors to

RMSE.

PH Model BiLSTM SLSTM VLSTM CBiLSTM MABiLSTM CBiLSTMA BiLSTMA AWD-stacking

30 min BiLSTM 1.000 <0.001 0.009 0.077 0.129 0.007 0.062 <0.001

SLSTM <0.001 1.000 <0.001 <0.001 <0.001 <0.001 <0.001 0.006

VLSTM 0.009 <0.001 1.000 0.001 <0.001 <0.001 0.004 <0.001

CBiLSTM 0.077 <0.001 0.001 1.000 0.469 0.733 0.042 <0.001

MABiLSTM 0.203 <0.001 <0.001 0.469 1.000 0.339 0.425 <0.001

CBiLSTMA 0.006 <0.001 <0.001 0.733 0.339 1.000 0.109 <0.001

BiLSTMA 0.622 <0.001 0.004 0.042 0.424 0.109 1.000 <0.001

AWD-stacking <0.001 0.006 <0.001 <0.001 <0.001 <0.001 <0.001 1.000

45min BiLSTM 1.000 <0.001 0.009 0.569 0.622 0.622 0.969 <0.001

SLSTM <0.001 1.000 <0.001 0.002 <0.001 <0.001 <0.001 <0.001

VLSTM 0.009 <0.001 1.000 0.092 0.034 0.077 0.176 <0.001

CBiLSTM 0.569 0.002 0.092 1.000 0.969 0.791 0.204 <0.001

MABiLSTM 0.622 <0.001 0.034 0.969 1.000 0.722 0.233 <0.001

CBiLSTMA 0.622 <0.001 0.077 0.791 0.722 1.000 0.168 <0.001

BiLSTMA 0.969 <0.001 0.176 0.203 0.233 0.168 1.000 <0.001

AWD-stacking <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000

60min BiLSTM 1.000 <0.001 0.005 0.235 0.568 0.684 0.841 <0.001

SLSTM <0.001 1.000 <0.001 0.004 <0.001 <0.001 <0.001 <0.001

VLSTM 0.005 <0.001 1.000 0.006 0.064 0.089 0.049 <0.001

CBiLSTM 0.235 0.004 0.006 1.000 0.591 0.764 0.092 <0.001

MABiLSTM 0.568 <0.001 0.064 0.591 1.000 0.861 0.684 <0.001

CBiLSTMA 0.684 <0.001 0.089 0.764 0.861 1.000 0.251 <0.001

BiLSTMA 0.841 <0.001 0.049 0.092 0.684 0.251 1.000 <0.001

AWD-stacking <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000

https://doi.org/10.1371/journal.pone.0291594.t012
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smoothed result is 2.964 mg/dL, which is 51.92% higher. When RMSE and MAE were used as

evaluation indicators, the smoothed results were 51.747% and 55.673% higher, respectively,

than the average for the smoothed results. The results demonstrated that the results after

smoothing were better than those without, using the evaluation indexes RMSE and MAE, and

the error of the smoothed and unsmoothed data increased as the prediction horizon increased.

Effective management of BGL concentrations and insight into BGLs are crucial for the

treatment of diabetic patients. This study proposes the use of an adaptive stacking ensemble

learning method and compares it with seven non-integrated learning methods that help pre-

dict BGLs at 30, 45, and 60 min in advance. This study’s best non-ensemble models are the

BiLSTM, StackLSTM, and VanilaLSTM models. These three non-ensembled models as the

base learners of the ensemble model and the meta-learner is used to feature fuse the output of

the base learners with adaptive weighting. Finally, the original training set features are fused to

the training set of the meta-learner (the final training set input to the meta-learner contains

three parts, the output of stacking ensemble learning, adaptive weighting of the three base

learner outputs, and original training set). The features were fully learned to obtain accurate

prediction results. After the experiments, the three non-ensemble models work best as the

StackLSTM model, and we will use this non-ensemble model and the state-of-the-art models

in the literature for comparison with the proposed integrated model. The multi-history win-

dow technique allows sufficient learning of data features, which is a multiple segmentation

Table 13. P-values related to the post-hoc Wilcoxon test comparing all predictive models with each other on 12 datasets from the T1DM data contributors to MAE.

PH Model BiLSTM SLSTM VLSTM CBiLSTM MABiLSTM CBiLSTMA BiLSTMA AWD-stacking

30 min BiLSTM 1.000 0.001 0.012 0.569 0.006 0.006 0.176 <0.001

SLSTM 0.001 1.000 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

VLSTM 0.012 <0.001 1.000 0.001 <0.001 <0.001 0.002 <0.001

CBiLSTM 0.569 <0.001 0.001 1.000 0.092 0.034 0.154 <0.001

MABiLSTM 0.006 <0.001 <0.001 0.109 1.000 0.722 0.380 <0.001

CBiLSTMA 0.006 <0.001 <0.001 0.034 0.722 1.000 0.622 <0.001

BiLSTMA 0.176 <0.001 0.002 0.154 0.380 0.622 1.000 <0.001

AWD-stacking <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000

45min BiLSTM 1.000 <0.001 0.091 0.594 0.425 0.005 0.035 <0.001

SLSTM <0.001 1.000 <0.001 0.005 <0.001 <0.001 <0.001 <0.001

VLSTM 0.091 <0.001 1.000 0.092 0.034 0.077 0.176 <0.001

CBiLSTM 0.594 0.005 0.092 1.000 0.126 0.038 0.426 <0.001

MABiLSTM 0.425 <0.001 0.034 0.126 1.000 0.688 0.235 <0.001

CBiLSTMA 0.005 <0.001 0.077 0.038 0.688 1.000 0.654 <0.001

BiLSTMA 0.035 <0.001 0.176 0.426 0.235 0.654 1.000 <0.001

AWD-stacking <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000

60min BiLSTM 1.000 <0.001 0.105 0.345 0.635 0.642 0.762 <0.001

SLSTM <0.001 1.000 <0.001 0.023 <0.001 <0.001 <0.001 <0.001

VLSTM 0.105 <0.001 1.000 0.016 0.164 0.046 0.038 <0.001

CBiLSTM 0.345 0.023 0.016 1.000 0.456 0.685 0.235 <0.001

MABiLSTM 0.635 <0.001 0.164 0.456 1.000 0.562 0.624 <0.001

CBiLSTMA 0.642 <0.001 0.046 0.685 0.562 1.000 0.253 <0.001

BiLSTMA 0.762 <0.001 0.038 0.235 0.624 0.253 1.000 <0.001

AWD-stacking <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000

https://doi.org/10.1371/journal.pone.0291594.t013
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learning of historical datasets to better capture long-term dependencies and contextual infor-

mation in time series data, which helps to improve the prediction results.

The study was a regression prediction. The RMSE, MAE, MCC and Critical difference dia-

grams were used to evaluate the experimental results. When the PH was 45 minutes, the

RMSE, MAE and MCC were 3.212mg/dL,1.605mg/dL and 0.965mg/dL respectively. When the

prediction range was 60 minutes, the RMSE, MAE and MCC were 6.346mg/dL,3.232mg/dL

and 0.932mg/dL, respectively. The CDD plots show that the proposed algorithm provides the

best prediction for all three PHs. Compared with the best non-ensemble model (SLSTM), the

proposed model has improved RMSE, MAE and MCC. The results show that the developed

model outperforms the best non-ensemble and state-of-the-art models in the literature, as

shown in Table 15.

In this study, integrating the three best base learners into the model using the fault toler-

ance of ensemble learning resulted in a more accurate prediction. However, this study only

used CGM data to build the BGL prediction model. In future work, it is recommended to

consider the effects of multiple variables on blood glucose levels, such as sleep quality, carbo-

hydrate intake, and insulin injection, and use the proposed method to predict BGL levels

using a combination of multiple variables. Specifically, this study integrated data fusion tech-

niques with the proposed method using multiple features added to the proposed model. In

addition, tuning the hyperparameters of the integrated model can improve its accuracy.

Finally, including other base learners and meta-learners in the examination would be valu-

able for future research.

Table 14. P-values related to the post-hoc Wilcoxon test comparing all predictive models with each other on 12 datasets from the T1DM data contributors to MCC.

PH Model BiLSTM SLSTM VLSTM CBiLSTM MABiLSTM CBiLSTMA BiLSTMA AWD-stacking

30 min BiLSTM 1.000 0.026 <0.001 <0.001 0.003 0.012 0.026 <0.001

SLSTM 0.026 1.000 0.034 0.677 0.109 0.050 0.092 <0.001

VLSTM <0.001 0.034 1.000 0.021 0.504 0.909 0.518 <0.001

CBiLSTM <0.001 0.677 0.021 1.000 0.151 0.012 0.021 <0.001

MABiLSTM 0.003 0.109 0.504 0.151 1.000 0.233 0.518 <0.001

CBiLSTMA 0.012 0.050 0.909 0.012 0.233 1.000 0.850 <0.001

BiLSTMA 0.026 0.092 0.518 0.021 0.518 0.850 1.000 <0.001

AWD-stacking <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

45min BiLSTM 1.000 <0.001 0.031 0.025 0.068 <0.001 0.035 <0.001

SLSTM <0.001 1.000 <0.001 0.015 0.002 0.041 <0.001 <0.001

VLSTM 0.031 <0.001 1.000 0.025 0.065 0.684 0.876 <0.001

CBiLSTM 0.025 0.015 0.025 1.000 0.969 0.791 0.204 <0.001

MABiLSTM 0.068 0.002 0.065 0.969 1.000 0.354 0.495 <0.001

CBiLSTMA <0.001 0.041 0.684 0.791 0.354 1.000 0.234 <0.001

BiLSTMA 0.035 <0.001 0.876 0.203 0.495 0.234 1.000 <0.001

AWD-stacking <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000

60min BiLSTM 1.000 <0.001 0.152 0.351 0.634 0.463 0.562 <0.001

SLSTM <0.001 1.000 <0.001 0.014 0.214 0.362 <0.001 <0.001

VLSTM 0.152 <0.001 1.000 0.106 0.244 0.354 0.524 <0.001

CBiLSTM 0.351 0.014 0.106 1.000 0.245 0.675 0.056 <0.001

MABiLSTM 0.634 0.214 0.244 0.245 1.000 0.684 0.732 <0.001

CBiLSTMA 0.463 0.362 0.354 0.675 0.684 1.000 0.451 <0.001

BiLSTMA 0.562 <0.001 0.524 0.056 0.732 0.451 1.000 <0.001

AWD-stacking <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000

https://doi.org/10.1371/journal.pone.0291594.t014
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Table 15. Comparison of different blood glucose prediction methods using RMSE and MAE as evaluation metrics.

Authors Methods 30-min PH 60-min PH

RMSE MAE RMSE MAE

6 Subjects:2018 Dataset Zhu T et al. [44] CNN 21.72 - - -

Midroni et al. [43] XGBoost 20.377 - - -

Li K et al. [47] GluNet 19.28±2.76 - 31.83±3.49 -

Zhu T et al. [20] DRNN 19.04 - - -

Şahin A et al. [45] ANN 18.81 - 30.89 -

Kang G et al. [46] NPE+LSTM 17.8 - - -

Rabby. F.M et al. [21] StackLSTM 6.450 - 17.24 -

- AWD-stacking 1.598 0.809 6.809 3.475

12 Sub-jects 2018 Dataset and 2020 Dataset Yang T et al. [24] Auto-LSTM 18.930±2.155 - - -

Zhu T et al. [48] FCNN 18.64±2.60 - 31.07±3.62 -

Martinsson J et al. [56] RNN 18.867 - 31.403 -

Shuvo M M H et al. [25] DM-StackLSTM 16.06±2.74 10.64±4.10 30.89±4.31 22.07±2.96

Butt H et al. [57] Mult-LSTM 14.76 - 25.48 -

Tena F et al. [23] CE-DNN 19.57±3.03 14.06±2.15 34.93±5.29 25.95±3.61

Daniels J et al. [49] MTL-LSTM 18.8±2.3 31.8±3.9

Dudukcu et al. [22] W-DLSTM 21.90 - 35.10 -

Khadem et al. [50] Nested-DE 23.74±0.15 13.48±0.02 34.35±0.86 27.76±0.38

Kalita et al. [51] LS-GRUNet 14.85 11.04 - -

Giacoma et al. [52] LSTM-TCN 18.99 - - -

Pavan et al. [53] Shallow-Net 18.69 - 32.43 -

Kim et al. [54] RNN 21.50 - - -

Freiburghaus et al. [55] RCNN 17.45 11.22 33.67 23.25

- AWD-stacking 1.425 0.721 6.346 3.232

https://doi.org/10.1371/journal.pone.0291594.t015

Table 16. Prediction results of AWD-stacking and StackLSTM models.

Methods Datasets 30-min PH 45-min PH 60-min PH

RMSE MAE RMSE MAE RMSE MAE

AWD-stacking 2018 1.598 0.809 3.369 1.690 6.809 3.475

2020 1.252 0.633 3.055 1.520 5.883 2.988

Average 1.425 0.721 3.212 1.605 6.346 3.232

SLSTM 2018 2.001 1.259 3.789 2.271 7.555 4.252

2020 1.645 1.125 3.512 2.188 6.484 4.277

Average 1.823 1.192 3.651 2.229 7.019 4.265

An increase of X% Average 27.92% 65.32% 13.67% 38.87% 10.61% 31.96%

https://doi.org/10.1371/journal.pone.0291594.t016

PLOS ONE AWD-Stacking: An enhanced ensemble learning model for predicting blood glucose levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0291594 February 14, 2024 32 / 36

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0291594.s001
https://doi.org/10.1371/journal.pone.0291594.t015
https://doi.org/10.1371/journal.pone.0291594.t016
https://doi.org/10.1371/journal.pone.0291594


Author Contributions

Conceptualization: HuaZhong Yang.

Data curation: HuaZhong Yang.

Formal analysis: HuaZhong Yang.

Funding acquisition: Suruo Li.

Investigation: HuaZhong Yang, Zhongju Chen.

Methodology: HuaZhong Yang.

Project administration: HuaZhong Yang, Jinfan Huang.

Resources: HuaZhong Yang, Zhongju Chen, Jinfan Huang.

Software: HuaZhong Yang, Zhongju Chen.

Supervision: HuaZhong Yang, Zhongju Chen.

Validation: HuaZhong Yang.

Visualization: HuaZhong Yang.

Writing – original draft: HuaZhong Yang.

Writing – review & editing: HuaZhong Yang.

References
1. Choudhury AA, Devi Rajeswari V. Gestational diabetes mellitus—A metabolic and reproductive disor-

der. Biomed Pharmacother. 2021; 143:112183. Epub 2021/09/25. https://doi.org/10.1016/j.biopha.

2021.112183 PMID: 34560536.

2. Babakhanian M, Razavi A, Rahimi Pordanjani S, Hassanabadi S, Mohammadi G, Fattah A. High inci-

dence of type 1 diabetes, type 2 diabetes and gestational diabetes in Central Iran: A six years results

from Semnan health cohort. Ann Med Surg (Lond). 2022; 82:104749. Epub 2022/10/22. https://doi.org/

10.1016/j.amsu.2022.104749 PMID: 36268322

3. Sumathi A, Meganathan S. Machine learning based pattern detection technique for diabetes mellitus

prediction. Concurrency and Computation-Practice & Experience. 2022; 34(6). https://doi.org/10.1002/

cpe.6751

4. Eizirik DL, Pasquali L, Cnop M. Pancreatic beta-cells in type 1 and type 2 diabetes mellitus: different

pathways to failure. Nat Rev Endocrinol. 2020; 16(7):349–62. Epub 2020/05/14. https://doi.org/10.

1038/s41574-020-0355-7 PMID: 32398822.

5. Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the

beta-cell (do not blame the immune system?). Nat Rev Endocrinol. 2021; 17(3):150–61. Epub 2020/12/

10. https://doi.org/10.1038/s41574-020-00443-4 PMID: 33293704

6. Zhu Y, Zhang C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: a

Global Perspective. Current Diabetes Reports. 2016; 16(1). https://doi.org/10.1007/s11892-015-0699-x

PMID: 26742932

7. Yang H, Chen Z, Yang H, Tian M. Predicting Coronary Heart Disease Using an Improved LightGBM

Model: Performance Analysis and Comparison. IEEE Access. 2023; 11:23366–80. https://doi.org/10.

1109/access.2023.3253885

8. Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus.

Nature Reviews Endocrinology. 2022; 18(9):525–39. https://doi.org/10.1038/s41574-022-00690-7

PMID: 35668219

9. Tamarai K, Bhatti JS, Reddy PH. Molecular and cellular bases of diabetes: Focus on type 2 diabetes

mouse model-TallyHo. Biochim Biophys Acta Mol Basis Dis. 2019; 1865(9):2276–84. Epub 2019/05/

15. https://doi.org/10.1016/j.bbadis.2019.05.004 PMID: 31082469.

10. De Falco I, Della Cioppa A, Giugliano A, Marcelli A, Koutny T, Krcma M, et al. A genetic programming-

based regression for extrapolating a blood glucose-dynamics model from interstitial glucose measure-

ments and their first derivatives. 2019; 77:316–28.

PLOS ONE AWD-Stacking: An enhanced ensemble learning model for predicting blood glucose levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0291594 February 14, 2024 33 / 36

https://doi.org/10.1016/j.biopha.2021.112183
https://doi.org/10.1016/j.biopha.2021.112183
http://www.ncbi.nlm.nih.gov/pubmed/34560536
https://doi.org/10.1016/j.amsu.2022.104749
https://doi.org/10.1016/j.amsu.2022.104749
http://www.ncbi.nlm.nih.gov/pubmed/36268322
https://doi.org/10.1002/cpe.6751
https://doi.org/10.1002/cpe.6751
https://doi.org/10.1038/s41574-020-0355-7
https://doi.org/10.1038/s41574-020-0355-7
http://www.ncbi.nlm.nih.gov/pubmed/32398822
https://doi.org/10.1038/s41574-020-00443-4
http://www.ncbi.nlm.nih.gov/pubmed/33293704
https://doi.org/10.1007/s11892-015-0699-x
http://www.ncbi.nlm.nih.gov/pubmed/26742932
https://doi.org/10.1109/access.2023.3253885
https://doi.org/10.1109/access.2023.3253885
https://doi.org/10.1038/s41574-022-00690-7
http://www.ncbi.nlm.nih.gov/pubmed/35668219
https://doi.org/10.1016/j.bbadis.2019.05.004
http://www.ncbi.nlm.nih.gov/pubmed/31082469
https://doi.org/10.1371/journal.pone.0291594


11. Kudva YC, Carter RE, Cobelli C, Basu R, Basu AJDc. Closed-loop artificial pancreas systems: physio-

logical input to enhance next-generation devices. 2014; 37(5):1184–90.

12. Mohammadzadeh A, Kumbasar TJASC. A new fractional-order general type-2 fuzzy predictive control

system and its application for glucose level regulation. 2020; 91:106241.

13. Facchinetti AJS. Continuous glucose monitoring sensors: past, present and future algorithmic chal-

lenges. 2016; 16(12):2093.

14. Vettoretti M, Facchinetti A, Sparacino G, Cobelli CJIToBE. Type-1 diabetes patient decision simulator

for in silico testing safety and effectiveness of insulin treatments. 2017; 65(6):1281–90.

15. Pesl P, Herrero P, Reddy M, Xenou M, Oliver N, Johnston D, et al. An advanced bolus calculator for

type 1 diabetes: system architecture and usability results. 2015; 20(1):11–7.

16. Zhang L, Shang X, Sreedharan S, Yan X, Liu J, Keel S, et al. Predicting the Development of Type 2 Dia-

betes in a Large Australian Cohort Using Machine-Learning Techniques: Longitudinal Survey Study.

JMIR Med Inform. 2020; 8(7):e16850. Epub 2020/07/29. https://doi.org/10.2196/16850 PMID:

32720912

17. Cui S, Yin Y, Wang D, Li Z, Wang Y. A stacking-based ensemble learning method for earthquake casu-

alty prediction. Applied Soft Computing. 2021; 101. https://doi.org/10.1016/j.asoc.2020.107038

18. Jaradat MA, Sawaqed LS, Alzgool MM. Optimization of PIDD2-FLC for blood glucose level using parti-

cle swarm optimization with linearly decreasing weight. Biomedical Signal Processing and Control.

2020; 59. https://doi.org/10.1016/j.bspc.2020.101922

19. Li K, Daniels J, Liu C, Herrero P, Georgiou P. Convolutional Recurrent Neural Networks for Glucose

Prediction. IEEE J Biomed Health Inform. 2020; 24(2):603–13. Epub 2019/04/05. https://doi.org/10.

1109/JBHI.2019.2908488 PMID: 30946685.

20. Zhu T, Li K, Chen J, Herrero P, Georgiou P. Dilated Recurrent Neural Networks for Glucose Forecasting

in Type 1 Diabetes. J Healthc Inform Res. 2020; 4(3):308–24. Epub 2020/04/12. https://doi.org/10.

1007/s41666-020-00068-2 PMID: 35415447

21. Rabby MF, Tu Y, Hossen MI, Lee I, Maida AS, Hei X. Stacked LSTM based deep recurrent neural net-

work with kalman smoothing for blood glucose prediction. BMC Med Inform Decis Mak. 2021; 21

(1):101. Epub 2021/03/18. https://doi.org/10.1186/s12911-021-01462-5 PMID: 33726723

22. Dudukcu HV, Taskiran M, Yildirim T. Blood glucose prediction with deep neural networks using

weighted decision level fusion. Biocybernetics and Biomedical Engineering. 2021; 41(3):1208–23.

https://doi.org/10.1016/j.bbe.2021.08.007

23. Tena F, Garnica O, Lanchares J, Hidalgo JI. Ensemble Models of Cutting-Edge Deep Neural Networks

for Blood Glucose Prediction in Patients with Diabetes. Sensors (Basel). 2021; 21(21). Epub 2021/11/

14. https://doi.org/10.3390/s21217090 PMID: 34770397

24. Yang T, Yu X, Ma N, Wu R, Li H. An autonomous channel deep learning framework for blood glucose

prediction. Applied Soft Computing. 2022; 120. https://doi.org/10.1016/j.asoc.2022.108636

25. Shuvo MMH, Islam SK. Deep Multitask Learning by Stacked Long Short-Term Memory for Predicting

Personalized Blood Glucose Concentration. IEEE J Biomed Health Inform. 2023;PP. Epub 2023/04/06.

https://doi.org/10.1109/JBHI.2022.3233486 PMID: 37018303.

26. Marling C, Bunescu R. The OhioT1DM Dataset for Blood Glucose Level Prediction: Update 2020.

CEUR Workshop Proc. 2020; 2675:71–4. Epub 2021/02/16. PMID: 33584164

27. Loumponias K, Tsaklidis G. Kalman filtering with censored measurements. J Appl Stat. 2022; 49

(2):317–35. Epub 2020/08/25. https://doi.org/10.1080/02664763.2020.1810645 PMID: 35707209

28. Totis G, Dombovari Z, Sortino M. Upgraded Kalman Filtering of Cutting Forces in Milling. Sensors

(Basel). 2020; 20(18). Epub 2020/09/25. https://doi.org/10.3390/s20185397 PMID: 32967178

29. Ferreira G, Mateu J, Porcu E. Multivariate Kalman filtering for spatio-temporal processes. Stochastic

environmental research and risk assessment: research journal. 2022; 36(12):4337–54. Epub 2022/07/

28. https://doi.org/10.1007/s00477-022-02266-3 PMID: 35892061

30. Dudek G, Pelka P, Smyl S. A Hybrid Residual Dilated LSTM and Exponential Smoothing Model for Mid-

term Electric Load Forecasting. IEEE Trans Neural Netw Learn Syst. 2022; 33(7):2879–91. https://doi.

org/10.1109/TNNLS.2020.3046629 PMID: 33417572

31. Zerveas G, Jayaraman S, Patel D, Bhamidipaty A, Eickhoff C. A Transformer-based Framework for

Multivariate Time Series Representation Learning. Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery & Data Mining2021. p. 2114–24.

32. Maulud D, Abdulazeez AM. A Review on Linear Regression Comprehensive in Machine Learning. Jour-

nal of Applied Science and Technology Trends. 2020; 1(4):140–7. https://doi.org/10.38094/jastt1457

33. Bian C, He H, Yang S. Stacked bidirectional long short-term memory networks for state-of-charge esti-

mation of lithium-ion batteries. Energy. 2020; 191. https://doi.org/10.1016/j.energy.2019.116538

PLOS ONE AWD-Stacking: An enhanced ensemble learning model for predicting blood glucose levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0291594 February 14, 2024 34 / 36

https://doi.org/10.2196/16850
http://www.ncbi.nlm.nih.gov/pubmed/32720912
https://doi.org/10.1016/j.asoc.2020.107038
https://doi.org/10.1016/j.bspc.2020.101922
https://doi.org/10.1109/JBHI.2019.2908488
https://doi.org/10.1109/JBHI.2019.2908488
http://www.ncbi.nlm.nih.gov/pubmed/30946685
https://doi.org/10.1007/s41666-020-00068-2
https://doi.org/10.1007/s41666-020-00068-2
http://www.ncbi.nlm.nih.gov/pubmed/35415447
https://doi.org/10.1186/s12911-021-01462-5
http://www.ncbi.nlm.nih.gov/pubmed/33726723
https://doi.org/10.1016/j.bbe.2021.08.007
https://doi.org/10.3390/s21217090
http://www.ncbi.nlm.nih.gov/pubmed/34770397
https://doi.org/10.1016/j.asoc.2022.108636
https://doi.org/10.1109/JBHI.2022.3233486
http://www.ncbi.nlm.nih.gov/pubmed/37018303
http://www.ncbi.nlm.nih.gov/pubmed/33584164
https://doi.org/10.1080/02664763.2020.1810645
http://www.ncbi.nlm.nih.gov/pubmed/35707209
https://doi.org/10.3390/s20185397
http://www.ncbi.nlm.nih.gov/pubmed/32967178
https://doi.org/10.1007/s00477-022-02266-3
http://www.ncbi.nlm.nih.gov/pubmed/35892061
https://doi.org/10.1109/TNNLS.2020.3046629
https://doi.org/10.1109/TNNLS.2020.3046629
http://www.ncbi.nlm.nih.gov/pubmed/33417572
https://doi.org/10.38094/jastt1457
https://doi.org/10.1016/j.energy.2019.116538
https://doi.org/10.1371/journal.pone.0291594


34. Lui CF, Liu Y, Xie M. A Supervised Bidirectional Long Short-Term Memory Network for Data-Driven

Dynamic Soft Sensor Modeling. IEEE Transactions on Instrumentation and Measurement. 2022; 71:1–

13. https://doi.org/10.1109/tim.2022.3152856

35. Dikshit A, Pradhan B, Alamri AM. Long lead time drought forecasting using lagged climate variables

and a stacked long short-term memory model. Sci Total Environ. 2021; 755(Pt 2):142638. Epub 2020/

10/14. https://doi.org/10.1016/j.scitotenv.2020.142638 PMID: 33049536.

36. Koh NT, Sharma A, Xiao J, Peng X, Woo WL, editors. Solar Irradiance Forecast using Long Short-Term

Memory: A Comparative Analysis of Different Activation Functions. 2022 IEEE Symposium Series on

Computational Intelligence (SSCI); 2022: IEEE.

37. Li G, Zheng Y, Liu J, Zhou Z, Xu C, Fang X, et al. An improved stacking ensemble learning-based sen-

sor fault detection method for building energy systems using fault-discrimination information. 2021;

43:102812.

38. Khan W, Walker S, Zeiler W. Improved solar photovoltaic energy generation forecast using deep learn-

ing-based ensemble stacking approach. Energy. 2022; 240. https://doi.org/10.1016/j.energy.2021.

122812

39. Han Y, Fan C, Geng Z, Ma B, Cong D, Chen K, et al. Energy efficient building envelope using novel

RBF neural network integrated affinity propagation. Energy. 2020; 209. https://doi.org/10.1016/j.

energy.2020.118414

40. Wang C. A sample entropy inspired affinity propagation method for bearing fault signal classification.

Digital Signal Processing. 2020;102. https://doi.org/10.1016/j.dsp.2020.102740

41. Chicco D, Jurman GJBg. The advantages of the Matthews correlation coefficient (MCC) over F1 score

and accuracy in binary classification evaluation. 2020; 21:1–13.

42. Saugel B, Grothe O, Nicklas JYJA, Analgesia. Error grid analysis for arterial pressure method compari-

son studies. 2018; 126(4):1177–85.

43. Midroni C, Leimbigler PJ, Baruah G, Kolla M, Whitehead AJ, Fossat YJh. Predicting glycemia in type 1

diabetes patients: experiments with XGBoost. 2018; 60(90):120.

44. Zhu T, Li K, Herrero P, Chen J, Georgiou P, editors. A Deep Learning Algorithm for Personalized Blood

Glucose Prediction. KHD@ IJCAI; 2018.

45. Şahin A, Aydın A. Personalized Advanced Time Blood Glucose Level Prediction. Arabian Journal for

Science and Engineering. 2021; 46(10):9333–44. https://doi.org/10.1007/s13369-020-05263-2

46. Gu K, Dang R, Prioleau T, editors. Neural physiological model: A simple module for blood glucose pre-

diction. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology

Society (EMBC); 2020: IEEE.

47. Li K, Liu C, Zhu T, Herrero P, Georgiou P. GluNet: A Deep Learning Framework for Accurate Glucose

Forecasting. IEEE J Biomed Health Inform. 2020; 24(2):414–23. Epub 2019/08/02. https://doi.org/10.

1109/JBHI.2019.2931842 PMID: 31369390.

48. Zhu T, Li K, Herrero P, Georgiou PJIToBE. Personalized blood glucose prediction for type 1 diabetes

using evidential deep learning and meta-learning. 2022; 70(1):193–204.

49. Daniels J, Herrero P, Georgiou PJIJoB, Informatics H. A multitask learning approach to personalized

blood glucose prediction. 2021; 26(1):436–45.

50. Khadem H, Nemat H, Elliott J, Benaissa MJB. Blood Glucose Level Time Series Forecasting: Nested

Deep Ensemble Learning Lag Fusion. 2023; 10(4):487.

51. Kalita D, Mirza KB, editors. LS-GRUNet: glucose forecasting using deep learning for closed-loop diabe-

tes management. 2022 IEEE 7th International conference for Convergence in Technology (I2CT);

2022: IEEE.

52. Cappon G, Prendin F, Facchinetti A, Sparacino G, Del Favero SJIToBE. Individualized Models for Glu-

cose Prediction in Type 1 Diabetes: Comparing Black-box Approaches To a Physiological White-

box One. 2023.

53. Pavan J, Prendin F, Meneghetti L, Cappon G, Sparacino G, Facchinetti A, et al., editors. Personalized

Machine Learning Algorithm based on Shallow Network and Error Imputation Module for an Improved

Blood Glucose Prediction. KDH@ ECAI; 2020.

54. Kim D-Y, Choi D-S, Kim J, Chun SW, Gil H-W, Cho N-J, et al. Developing an individual glucose predic-

tion model using recurrent neural network. 2020; 20(22):6460.

55. Freiburghaus J, Rizzotti A, Albertetti F, editors. A deep learning approach for blood glucose prediction

of type 1 diabetes. Proceedings of the Proceedings of the 5th International Workshop on Knowledge

Discovery in Healthcare Data co-located with 24th European Conference on Artificial Intelligence (ECAI

2020), 29–30 August 2020, Santiago de Compostela, Spain; 2020: 29–30 August 2020.

PLOS ONE AWD-Stacking: An enhanced ensemble learning model for predicting blood glucose levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0291594 February 14, 2024 35 / 36

https://doi.org/10.1109/tim.2022.3152856
https://doi.org/10.1016/j.scitotenv.2020.142638
http://www.ncbi.nlm.nih.gov/pubmed/33049536
https://doi.org/10.1016/j.energy.2021.122812
https://doi.org/10.1016/j.energy.2021.122812
https://doi.org/10.1016/j.energy.2020.118414
https://doi.org/10.1016/j.energy.2020.118414
https://doi.org/10.1016/j.dsp.2020.102740
https://doi.org/10.1007/s13369-020-05263-2
https://doi.org/10.1109/JBHI.2019.2931842
https://doi.org/10.1109/JBHI.2019.2931842
http://www.ncbi.nlm.nih.gov/pubmed/31369390
https://doi.org/10.1371/journal.pone.0291594


56. Martinsson J, Schliep A, Eliasson B, Mogren O. Blood Glucose Prediction with Variance Estimation

Using Recurrent Neural Networks. J Healthc Inform Res. 2020; 4(1):1–18. Epub 2019/12/01. https://

doi.org/10.1007/s41666-019-00059-y PMID: 35415439

57. Butt H, Khosa I, Iftikhar MA. Feature Transformation for Efficient Blood Glucose Prediction in Type 1

Diabetes Mellitus Patients. Diagnostics (Basel). 2023; 13(3). Epub 2023/02/12. https://doi.org/10.3390/

diagnostics13030340 PMID: 36766445

PLOS ONE AWD-Stacking: An enhanced ensemble learning model for predicting blood glucose levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0291594 February 14, 2024 36 / 36

https://doi.org/10.1007/s41666-019-00059-y
https://doi.org/10.1007/s41666-019-00059-y
http://www.ncbi.nlm.nih.gov/pubmed/35415439
https://doi.org/10.3390/diagnostics13030340
https://doi.org/10.3390/diagnostics13030340
http://www.ncbi.nlm.nih.gov/pubmed/36766445
https://doi.org/10.1371/journal.pone.0291594

