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Abstract

Frequent occlusion of tracking targets leads to poor performance of tracking algorithms. A

common practice in multi-target tracking algorithms is to re-identify the occluded tracking

targets, which increases the number of identity switching occurrences. This paper focuses

on online multi-object tracking and designs an anti-occlusion, robust association strategy,

and feature extraction model. Specifically, the least squares algorithm and the Kalman filter

are used to predict the trajectory of the tracking target, while the two-way self-attention

mechanism is employed to extract the features of the tracking target, as well as positive and

negative samples. After the tracking target is occluded, the association strategy is used to

assign the identity information from before the occlusion. The experimental results demon-

strate that the algorithm proposed in this paper has achieved excellent tracking performance

on the MOT dataset.

1. Introduction

Multi-object tracking, as a major branch in the field of computer vision, has been rapidly

developing in recent years and has significant application value in various fields such as intelli-

gent monitoring, action and behavior analysis, autonomous driving, virtual reality, and more.

The field of multi-object tracking is mainly divided into two categories: offline tracking

algorithms, such as MHT, Interacting Tracklets for Multi-Object Tracking, learning a neural

solver for multiple object tracking [1–3], and online tracking algorithms, such as AS2RCF,

DCOT, Tracktor++, CenterTrack, FairMot, and TransMOT [4–9]. As offline tracking algo-

rithms cannot be applied to real-time tracking, online tracking algorithms are the current

trend in multi-object tracking research.

Bewley et al. [10] proposed a simple online and real-time tracking algorithm, SORT (Simple

Online and Realtime Tracking), which cleverly decomposes the multi-object tracking problem

into three parts: the object detection part responsible for providing target bounding boxes, the

state prediction part responsible for predicting and updating trajectory information, and the

data association part responsible for solving the matching problem between targets and
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trajectories. The input image is processed by an object detection algorithm to output the posi-

tion and category of each detected target, which is then predicted and updated using Kalman

filtering. Finally, the Hungarian algorithm is used to solve the cost matrix of the predicted tar-

gets and the detected targets in the current frame with IOU matching. The SORT algorithm

has fast tracking speed but does not solve the problem of frequent identity switching. JDE

(Jointly learns the Detector and Embedding model) [11] detects objects in the image using a

detector and matches objects across frames based on the appearance features and motion pat-

terns of objects in the detection boxes. This achieves multi-object tracking and is the first

multi-object tracking algorithm to approach real-time. The algorithm has high accuracy but

results in frequent identity switching.

FairMOT addresses the problem of Anchor-based detectors not being compatible with JDE

tracking mode by using the Anchor-Free [12] object detection paradigm instead, which esti-

mates the center of the object on a high-resolution feature map. To address the problem of

multi-level feature fusion, the DLA (Deep Layer Aggregation) [13] network is selected to

improve the ResNet-34 [14] backbone network for multi-level fusion feature extraction, pro-

cessing targets of different scales and achieving excellent tracking performance. This effectively

reduces the number of identity switches. Zhang et al. [15] proposed a simple and efficient data

association method called BYTE, which used the similarity between the detection boxes and

tracking trajectories to retain high-scoring detection results while removing the background

from low-scoring detection results, thereby uncovering true targets (such as difficult samples

due to occlusion or blur) and reducing missed detections while improving the coherence of

trajectories. This approach achieves a lower number of identity switches on the MOT17 and

MOT20 [16] datasets. Zhang et al. [17] combined deep features with handcrafted features and

proposed a new Robustness Criterion for evaluation. They used an adaptive threshold to deter-

mine whether to use the Siamese network for re-detection, effectively addressing occlusion

and background clutter issues in object tracking and achieving state-of-the-art performance.

Similar object interference in object tracking often leads to tracking drift, Huang et al. [18]

introduced a compensated attention model, which incorporated attention mechanisms in the

feature extraction modules of both the template branch and search branch of the Siamese net-

work. This model enhances the feature representation of both the target and the similar back-

grounds simultaneously and improves the discriminative ability of the search branch towards

the object. Target tracking requires establishing the relationship between objects in the previ-

ous and the current image. Using a detection algorithm in a single frame can only achieve rec-

ognition but not data association. Using a single-object tracking algorithm between adjacent

images can only achieve the association of a single object but not recognition. The replacement

of old and new objects and identity detection are major challenges in multiple object tracking

(MOT). The detection model and association strategy affect the performance of MOT tracking

algorithms. The DeepSort [19] algorithm introduces the Reid (Re-identification) feature

extraction model to extract target feature information and uses cosine distance to calculate the

similarity of target feature information. The algorithm also uses Mahalanobis distance to con-

strain target motion information for data association, effectively reducing the number of iden-

tity switches. It has achieved good results on the MOT16 [20] dataset.

In this paper, we first propose a dual-path self-attention mechanism model, which uses a

cyclic shift to construct a large number of target negative samples for training. The self-atten-

tion mechanism is used to extract global features of the targets, thereby improving the model’s

robustness and feature extraction ability. To address the problem of frequent target identity

switching in existing multi-object tracking algorithms due to occlusion, we propose a new

association strategy. Different algorithms are used to predict the motion trajectory of targets

that are frequently occluded and targets that are occluded for a long time. Some detection
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boxes are set as high-value detection boxes, which are used to associate the targets that have

just emerged from occlusion effectively reducing the number of identity switches during

tracking.

The experimental results show that our optimized algorithm in this paper achieves excellent

performance on the MOT dataset. Specifically, our proposed tracking algorithm performs sig-

nificantly well under high resolution and high object detection confidence conditions.

2. Network model design based on self-attention mechanism

In this paper, we design a new dual-path attention feature extraction module, as shown in Fig 1.

2.1 Fusion of cyclic shift and self-attention mechanism

The target detection boxes in dense multi-object detection often contain a large amount of

background area, and there are many small targets, making the commonly used feature extrac-

tion models less effective. In this paper, a large number of negative samples are constructed by

cyclically shifting the tracking targets for training. Each negative sample has the same upper

and lower bounds in each channel, and it can be assumed that each color component of any

randomly selected pixel is independently and identically distributed. The Attention mecha-

nism [22] is used to select a small amount of important information from a large amount of

information, and the global association weights are used to perform the weighted sum for the

input, reducing dependence on external information and focusing on capturing internal corre-

lations in the data or features. After adding the feature information of the positive samples at

the channel level and using the self-attention mechanism, the model can converge to the opti-

mal solution faster. Finally, ResNet50 is used as the backbone for training, and the Cycle-

Attention module is shown in Fig 2. In this paper, the two-dimensional image is reduced in

dimension, and the number of cyclic shifts is 1/16, 1/8, and 1/4 of the original image.

Fig 1. Feature extraction model diagram. Images republished from Vidsplay.com [21] under a CC BY license, with

permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g001

Fig 2. Cycle-attention module. Images republished from Vidsplay.com [21] under a CC BY license, with permission,

original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g002
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The network feature extraction module proposed in this paper that enhances the model’s

generalization ability and robustness, enabling better handling of interference caused by back-

ground and motion. With the application of our proposed model, the tracking algorithm’s per-

formance has significantly improved, as demonstrated in the ablation experiments in Section

4.1.

3. High value prediction box target association strategy

We propose a more robust association strategy, which selects an appropriate trajectory predic-

tion algorithm based on the number of lost frames caused by the occlusion of the target detec-

tion box. The high-value prediction boxes are used for association, effectively reducing the

number of identity switches during the tracking process.

3.1 High value prediction box selection and matching

When common multiple object tracking algorithms such as DeepSORT perform target track-

ing tasks, detection boxes in the non-deterministic state will be discarded (the non-determin-

istic state refers to the box not being detected in three consecutive frames). In Fig 3, the

predicted box is successfully matched, but the 81th detection box did not enter the determin-

istic state. In Fig 4, the predicted box is mismatched, and in Fig 5, the lack of appropriate detec-

tion boxes for association leads to identity switching.

The discarded non-determined detection boxes still have association value and are retained

in the association strategy proposed in this paper. Meanwhile, the detection boxes that are

deleted due to exceeding the maximum lifespan are also retained. This type of the detection

boxes also has association value for long-term target occlusion. Typically, most long-term

occluded targets lose suitable matching boxes due to the detection box exceeding the

Fig 3. Prediction box matching (81). Images republished from Vidsplay.com [21] under a CC BY license, with

permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g003
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Fig 5. Prediction box identity switching (65). Images republished from Vidsplay.com [21] under a CC BY license,

with permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g005

Fig 4. Prediction box mismatch. Images republished from Vidsplay.com [21] under a CC BY license, with

permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g004
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maximum lifespan, which leads to association failure. We set these two types of detection

boxes as high-value detection boxes and associates them after target occlusion in this paper.

The association process is shown in Fig 6.

When performing association in a certain frame, the mismatched detection boxes are asso-

ciated with both the high-value detection boxes and the predicted boxes. The feature informa-

tion is extracted by our proposed network module, and the corresponding cosine distance is

calculated. The one with the smallest cosine distance is the most suitable association item.

Moreover, the high-value detection boxes are only used once when associated to prevent fre-

quent switching caused by different tracking targets competing for high-value detection boxes

in a short video frame.

After using the association strategy described in this paper, Fig 7 shows a successfully

matched predicted bounding box and an undetermined detection box with ID 44 retained. Fig

8 shows a mismatched predicted bounding box, and Fig 9 shows a successfully matched

Fig 6. Matching flow chart.

https://doi.org/10.1371/journal.pone.0291538.g006
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Fig 7. Prediction box matching (44). Images republished from Vidsplay.com [21] under a CC BY license, with

permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g007

Fig 8. Prediction box mismatch. Images republished from Vidsplay.com [21] under a CC BY license, with

permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g008
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predicted bounding box with the high-value predicted box with ID 44 successfully associated

with a previously mismatched detection box after the tracked target becomes no occluded

blocks.

3.2 Introducing the least square method to reduce ID switching under

frequent occlusion

When tracking targets that are occluded, algorithms such as DeepSORT and SORT use Kal-

man filters to predict trajectories. However, when targets are frequently occluded, there are

fewer actual measurement data available, which can result in inaccurate Kalman gain calcula-

tions and large deviations between the estimated and true states of the Kalman filter. This can

lead to large prediction errors in the trajectory and failed association between the detection

box and the tracked target after the occlusion ends, causing identity switches. In this paper, we

introduce the least squares algorithm to fit the target’s motion trajectory in response to fre-

quent occlusions. Using fewer video frames, our algorithm can effectively predict the target’s

motion trajectory.

The target’s motion trajectory can be considered linear during short-term intervals, and the

least squares method finds the best function match for the data by minimizing the squared

error. During the target tracking process, the center point coordinates (xi, yi) of the target

tracking box are retained for each frame. When the target experiences a short-term occlusion,

the number of center point coordinates equals the number of motion trajectory information,

denoted as n.

The least squares error function is constructed as shown in Eq (1).

S ¼
Xn

i¼1

½yi � ðaxi þ bÞ�2 ð1Þ

Fig 9. Prediction box identity switching (44). Images republished from Vidsplay.com [21] under a CC BY license,

with permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g009
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In the equation, S represents the fitting error; n represents the number of motion trajectory

information; xi, yi represent the trajectory information, that is, the center point coordinates; a,

b represent the slope and intercept of the trajectory.

@

@a
S2 ¼

@

@a

Xn

i¼1

½yi � ðaxi þ bÞ�2 ¼ 0 ð2Þ

@

@b
S2 ¼

@

@b

Xn

i¼1

½yi � ðaxi þ bÞ�2 ¼ 0 ð3Þ

ðf ðxÞ � gðxÞÞ0 ¼ f 0ðxÞ þ g 0ðxÞ ð4Þ

By taking the partial derivative of in Eq (2) and Eq (3) and setting it to 0, the minimum

value of the extreme point of S2 can be calculated. The trajectory information of the target, xi,
yi, is known, so the problem is transformed into solving a, b, the trajectory parameters.

Taking a as a constant, find the partial derivative of and apply it to Eq (4) to get Eq (5).

Xn

i¼1

xi

 !

∗aþ n∗b ¼
Xn

i¼1

yi ð5Þ

By using the least squares algorithm to convert known center point coordinates and trajec-

tory information into motion trajectory, when the occlusion of the target ends and the pre-

dicted bounding box needs to be matched with a detection box, we use the target matching

strategy described in Section 3.1 for association, as shown in Fig 10.

For long occlusions of a tracked target, there are more actual measurement values available,

and the Kalman gain calculation is more accurate. Therefore, we use the Kalman filter for pre-

diction that is more appropriate. Assuming that the dynamic system has multiple random

Fig 10. Least squares handling occlusion. Images republished from Vidsplay.com [21] under a CC BY license, with

permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g010
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variables that follow a Gaussian distribution, and each variable has a mean of μ and a variance

of σ2:

1. The covariance matrix measures the correlation between random variables; the value of the

matrix represents the degree of correlation between variables.

2. At each time point, there exists the best estimate x̂ and covariance matrix P for all variables.

3. There is uncertainty in the dynamic system, and there exist process noise w and measure-

ment noise v at each time point.

X̂k ¼
1

k
ðz1 þ z2 þ z3 þ � � � þ zkÞ ð6Þ

X̂k ¼ X̂k� 1 þ
1

k
zk � X̂k� 1

� �
ð7Þ

X̂k ¼ X̂k� 1 þ Kðzk � X̂k� 1Þ ð8Þ

where X̂ is the estimated value, k is the time unit, K is the Kalman gain, and z is the measured

value.

Assuming the inter-frame displacement follows a linear constant velocity model,

x ¼ ½u; v; s; r; _u; _v; _s�T , the horizontal and vertical coordinates denoted by u and v respectively,

the tracked target center are obtained. The area of the bounding box is represented by s, and r
represents the aspect ratio of the bounding box. Information on the changes in the state corre-

sponding to the states is introduced to describe the motion state.

By definition of the estimated value, the estimated value at time k in Eq (6) can be trans-

formed from the measured value at time k and the estimated value at time k-1, as shown in Eq

(7). Eq (8) defines K as 1=k, which is the Kalman gain. When there are multiple random vari-

ables, data fusion is used to solve for K.

P ¼

sx
2 sxsy sxsz

sysx sy
2 sysz

szsx szsy sz
2

0

B
B
@

1

C
C
A ð9Þ

In the equation, x, y, z are assumed random variables; σx2, σy2, σz2 are the variances of the

random variables; σxσy, σxσz, σyσz are the covariances between the random variables; P is the

covariance matrix.

The random variables at time unit k are correlated, and the covariance matrix is constructed

based on the assumed random variables and their corresponding variances and covariances.

The values in the P matrix indicate the degree of linkage between the variables [23].

When a tracking target is detected, initialize the state vector and its covariance, and use Eq

(10) and Eq (11) for state prediction.

Xk ¼ AXk� 1 þ Buk� 1 þ wk� 1 ð10Þ

zk ¼ HXk þ vk ð11Þ

In the equation, Xk represents the system prediction information at time k; zk represents the

measurement information at time k; w represents the process noise; v represents the measure-

ment noise; A, B, H are the parameter matrices of the motion equation.
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The Kalman filter seeks the optimal Kalman gain under the influence of noise, that is, the

minimum trace of the covariance matrix of the error Xk � X̂k.

K ¼ Pk� 1H
TðHPk� 1H

T þ RÞ� 1
ð12Þ

X̂k ¼ X̂k� 1 þ Kð z!k � HkX̂k� 1Þ ð13Þ

Pk ¼ Pk� 1 � KHPk� 1 ð14Þ

where R represents the noise matrix.

After calculating the Kalman gain K, we use Eqs (13) and (14) to update the tracked target

state information. When the long occlusion of the target ends, we also use the association strat-

egy described in the paper to associate the detection box with the tracked target, as shown in

Fig 11, where the identity information of ID 6 is successfully associated.

3.3 Integration of association strategy

The anti-occlusion association strategy proposed in this paper is integrated with the Deepsort

algorithm. The implementation process is as follows:

Algorithm: anti-occlusion association strategy
Input: unmatched detetctions u_detections; high value tracks miss_-
tracks; all tracks tracks; Euclidean distance threshold edt; scale
threshold st; track missing tims mt; matched detetctions matches;
Output: Matched predicted and detected boxes
Initialization: cos_value; replace_track  None;
for detection in u_detections do

for track in miss_tracks do
/* ed stands for Euclidean distance, and sd stands for scale

information */
ed  compute u_detection and track ed
sd  compute u_detection and track sd
if ed < edt and sd < st then

save track

Fig 11. Kalman filter predicts trajectories. Images republished from Vidsplay.com [21] under a CC BY license, with

permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g011
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end
cos_matrix  compute save track and detecion cosine_distance
cos_value  min(cos_matrix)
replace_track  track
end
for track in tracks do

/* time_since_update represents the number of frames since
the predicted bounding box disappeared */

if t. time_since_update < = mt do
Movement track  get last suares ftting

else do
Movement track  get Kalman filter

end
ed  compute u_detection and track ed
sd  compute u_detection and track sd
if ed < edt and sd < st then

save track
end
cos_matrix  compute save track and detecion cosine_distance
value  min(cos_matrix)
if cos_value < value do

use miss_track
miss_track remove track

else do
use tracks track

end
if track not in matches do

matchs add track
else do

return
end

end

Our proposed association strategy effectively solves the problem of target identity switching

caused by short-term and long-term occlusions, as shown in Fig 12. The top-left (375 frames)

and top-right (417 frames) differ by 42 frames, while the bottom-left (816 frames) and bottom-

right (1017 frames) differ by 201 frames.

The target was occluded for 200 frames, and our proposed algorithm in this paper success-

fully matched the predicted bounding box with the detected bounding box.

In the ablation experiment (Section 4.1), our proposed association strategy can effectively

reduce the number of identity switches. Moreover, in the MOT17 test dataset, compared with

other algorithms that use the same detection framework, our proposed algorithm has a lower

number of identity switches.

4. Experimental results and discussion

We use YOLOv5 as the pedestrian detection framework. The model uses pre-trained weights

from the COCO dataset [24], and the feature extraction model is trained on the Market data-

set. The pedestrian tracking dataset used is the MOT16 dataset.

4.1 Ablation experiment

Tables 1 and 2 show the experimental results for the DeepSort algorithm with YOLOv5, the

experimental data by using our proposed optimized model, and the experimental data by
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using our optimized model with our proposed association strategy, with pedestrian confidence

scores of 0.3 and 0.5, respectively.

We apply the association strategy and feature extraction model in this paper to MOT15

[26], MOT17, and MOT20 datasets. Experimental results are shown in Tables 3–5, where the

detection model confidence threshold is set to 0.3. The MOT17 dataset uses the default DPM

[27], Faster-RCNN [28], and SDP [29] three detection inputs.

Due to the low resolution of the MOT15 dataset, the association strategy and feature extrac-

tion model in this paper resulted in a decrease in MOTA and HOTA metrics.

The experimental results show that our proposed optimization model and association strat-

egy have improved the MOTA, IDF1, and HOTA metrics. The number of identity switches on

the MOT16 dataset was reduced by 30.2% (confidence threshold of 0.3) and 26.3% (confidence

threshold of 0.5). On the MOT17 dataset, the total number of identity switches is reduced by

20%. The HOTA index is evaluated through three sub-tasks detection, association and posi-

tioning. In Fig 13, our algorithm is compared with the DeepSORT algorithm on the HOTA

index. In terms of association accuracy AssA and HOTA score, we have improved the similar-

ity threshold alpha algorithm for different positioning in this paper.

On the MOT20 and MOT15 datasets, the total number of identity switches was reduced by

24.6% and 16.8%, respectively. The detection model of the MOT16 dataset was changed, and

experiments were conducted using the DPM [26] detector and CenterNet [30] detector, and

the experimental results are shown in Tables 6 and 7.

Fig 12. Algorithmic occlusion processing. Images republished from Vidsplay.com [21] under a CC BY license, with

permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g012

Table 1. MOT16 ablation experiment (confidence 0.3).

Method MOTA" MOTP# IDF1" HOTA" IDSW# ML# FN# HZ

Deepsort [19]+Yolov5 46.4 77.1 53 42.9 654 144 60975 16

Ours-Model 46.7 77.1 53.4 43.2 537 143 60516 13

Ours-Model+Ours-Association-strategy 46.7 77.1 55.5 44.1 456 141 58323 13

https://doi.org/10.1371/journal.pone.0291538.t001
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Table 2. MOT16 ablation experiment (confidence 0.5).

Method MOTA" MOTP# IDF1" HOTA" IDSW# ML# FN# HZ

Deepsort [19]+Yolov5 48.5 77.8 53.5 42.9 513 168 62962 16

Ours-Model 48.8 77.8 54.7 43.7 422 163 61774 14

Ours-Model+Ours-Association-strategy 49.1 77.7 55.8 44.6 378 156 60582 14

The multi-object tracking metrics are as follows:

MOTA: This measure combines three error sources: false positives, missed targets, and identity switches.

MOTP: Accurate location of tracking.

IDF1: The ratio of correctly identified detections over the average number of ground-truth and computed detections.

HOTA [25]: Geometric mean of detection accuracy and association accuracy. Averaged across localization thresholds.

IDSW: Number of Identity Switches (ID switch ratio = #ID switches / recall)

ML: The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.

FN: The total number of false negatives (missed targets).

HZ: Processing speed.

https://doi.org/10.1371/journal.pone.0291538.t002

Table 4. MOT17 ablation experiment.

Method MOTA" MOTP# IDF1" HOTA" IDSW# ML# FN# HZ

Deepsort [19] 72.1 81.3 69 56.8 2299 185 124741 6

Ours-Model 72.4 81.3 70 58 1961 177 120243 4

Ours-Model+Ours-Association-strategy 72.5 81.2 69.5 57.1 1841 177 124311 4

https://doi.org/10.1371/journal.pone.0291538.t004

Table 3. MOT15 ablation experiment (confidence 0.3).

Method MOTA" MOTP# IDF1" HOTA" IDSW# ML# FN# HZ

Deepsort [19]+Yolov5 42.9 76.9 55.3 43.4 375 89 18617 31

Ours-Model 42.7 76.9 54 42.4 340 87 18943 28

Ours-Model+Ours-Association-strategy 42.8 76.8 54.6 42.5 312 86 18635 28

https://doi.org/10.1371/journal.pone.0291538.t003

Table 5. MOT20 ablation experiment (confidence 0.3).

Method MOTA" MOTP# IDF1" HOTA" IDSW# ML# FN# HZ

Deepsort [19]+Yolov5 15.6 73.3 18.3 14.9 3961 1564 1012823 14

Ours-Model 15.9 73.2 19.1 15.3 3426 1560 1007605 11

Ours-Model+Ours-Association-strategy 16.4 73.2 20.1 15.7 2986 1546 1000388 11

https://doi.org/10.1371/journal.pone.0291538.t005

Table 6. MOT16 ablation experiment DPM.

Method MOTA" MOTP# IDF1" HOTA" IDSW# ML# FN# HZ

Deepsort+DPM [19, 27] 28.4 78.4 34.2 27.8 458 318 85498 7

Ours-Model 28.8 78.4 35 28.3 395 312 84912 7

Ours-Model+Ours-Association-strategy 29.2 78.3 36.6 29.7 338 312 83601 7

https://doi.org/10.1371/journal.pone.0291538.t006
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4.2 MOT challenge

Conduct experiments on the official datasets MOT16 and MOT17. For the public detection

evaluation, we follow the works in OUTrack_fm_p [31] to refine the public detections and

keep the bounding boxes that are close to the tracked objects. The performance of the tracking

algorithm in this paper can be found in Tables 8 and 9.

4.3 Results evaluation

When tracking algorithms such as SORT and DeepSORT use Kalman filters to predict trajec-

tories, frequent occlusions can lead to ID switches in the tracked targets. In this paper, the least

squares method and Kalman filter are introduced to handle long-term and short-term occlu-

sions separately, resulting in more reasonable predictions of object tracking bounding boxes.

The average density of the object tracking dataset is relatively high, and frequent occlusions

lead to more background clutter. The feature information extracted by the ReID model is

often insufficient. In this paper, we design a dual-path self-attention mechanism module that

combines cyclic shift operations with self-attention mechanisms. Our module exhibits higher

robustness and feature extraction capabilities. In the ablation experiment (Section 4.1), our

Fig 13. Comparison results of HOTA indicators.

https://doi.org/10.1371/journal.pone.0291538.g013

Table 7. MOT16 ablation experiment CenterNet.

Method MOTA" MOTP# IDF1" HOTA" IDSW# ML# FN# HZ

Deepsort+CenterNet [19, 30] 54.6 80.4 60 47.7 594 90 52644 5

Ours-Model 58.1 81.6 62.3 49.4 488 91 53392 5

Ours-Model+Ours-Association-strategy 58.5 81.6 59 47.6 450 88 56116 5

https://doi.org/10.1371/journal.pone.0291538.t007

Table 8. MOT16 test set comparison experiment.

Method MOTA" IDF1" HOTA" IDSW# ML# FN#

OUTrack_fm_p [31] 69.3 66.7 54.5 1298 124 41177

Lif_TsimInt [32] 57.5 64.1 49.6 335 263 72868

MPTC [35] 62.9 65.1 51.1 685 240 63565

Tracktor++ [6] 54.4 52.5 42.3 682 280 79149

KCF16 [33] 48.8 47.2 37.2 906 289 86567

Ours 64.0 62.4 51.0 838 124 47849

https://doi.org/10.1371/journal.pone.0291538.t008
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proposed feature extraction model shows improvements in accuracy metrics. The more accu-

rate the object detection model, the higher the accuracy improvement achieved by our model.

Common object tracking algorithms usually consider cases where the number of object detec-

tion frames is low (during frequent occlusions) or when the tracking boxes have been absent

for a long time. In the case of a low number of detection frames, the detection box is not used,

while in the case of a long absence of tracking boxes, the detection boxes are often neglected to

prevent computational overhead, resulting in increased identity switches of the tracked targets.

The correlation strategy designed in this paper considers these types of detection boxes and

effectively reduces the number of identity switches during object tracking. As shown in Section

3.3, the high-value detection boxes selected in this paper are used only once during target asso-

ciation, reducing identity switches while preventing false detections and additional costs. In

the ablation and comparative experiments, our algorithm achieves a lower ML while reducing

the number of identity switches.

MOT15. MOT15 consists of 11 sequences in various indoor or outdoor public pedestrian

scenes. Both our model and correlation strategy can reduce the number of identity switches.

This dataset has a lower resolution, resulting in less pixel information and the loss of some

details and crucial information. Our model uses cyclic shifts to construct negative samples,

which are suitable for low-resolution targets but are more susceptible to background noise,

leading to decreased accuracy. In future work, super-resolution reconstruction or image

Table 9. MOT17 test set comparison experiment.

Method MOTA" IDF1" HOTA" IDSW# ML# FN#

PermaTrack [34] 73.1 67.2 54.2 3571 450 123508

OUTrack_fm_p [31] 69.0 66.8 55.5 3639 615 140457

Byte_Track [15] 67.4 70 56.1 1331 735 172636

MPTC [35] 62.6 65.8 51.7 4074 750 198338

Lif_TsimInt [32] 58.2 65.2 50.7 1022 791 217944

TADN [36] 54.6 49.0 54.8 4472 464 141580

Tracktor++ [6] 53.5 52.3 42.1 2072 861 248047

JBNOT [37] 52.6 50.8 41.3 3050 844 232659

FAMNet [38] 52.0 48.7 0.0 3072 787 253616

Ours 63.2 61.8 50.5 2616 414 157581

https://doi.org/10.1371/journal.pone.0291538.t009

Fig 14. The result of the target complete occlusion experiment. Images republished from Vidsplay.com [21] under a

CC BY license, with permission, original copyright [2023].

https://doi.org/10.1371/journal.pone.0291538.g014
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enhancement methods will be considered to make our model applicable to low-resolution

datasets.

MOT17. The MOT17 dataset contains seven different sequences in both the training and

testing sets. It has a higher average target density, and frequent occlusions occur during target

motion. In the ablation experiment (Section 4.1), our proposed model and correlation strategy

can reduce the number of identity switches. In the comparative experiment (Section 4.2), our

algorithm achieves higher accuracy and fewer identity switches compared to recent good

algorithms.

Figs 7–9, 12 demonstrate the tracking results of the correlation strategy in this paper when

dealing with scenarios of fewer detection frames and more disappearing frames. Additionally,

we present selected tracking results for occluded targets, such as in Figs 14 and 15. Our pro-

posed algorithm can correctly assign the correct IDs even in cases of complete occlusion (ID

36) and partial occlusion (ID 31,38), effectively reducing the number of switches during object

tracking.

5. Conclusion

In this paper, we propose a new network feature extraction module that is more accurate in

extracting features. It has a high model robustness and a strong generalization ability. To

address the occlusion problem in multi-object tracking, an occlusion-resistant association

strategy is designed that uses appropriate algorithms to predict trajectories and makes reason-

able use of high-value predicted boxes. The experiments show that our proposed optimization

algorithm achieves excellent performance on various indicators of the MOT dataset. The more

accurate the detection model is, the better the optimization algorithm in this paper performs.
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