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Abstract

As competition intensifies, an increasing number of companies opt to outsource their pack-

age distribution operations to professional Third-Party Logistics (3PL) fleets. In response to

the growing concern over urban pollution, 3PL fleets have begun to deploy Electric Vehicles

(EVs) to perform transportation tasks. This paper aims to address the Time-Dependent

Open Electric Vehicle Routing Problem with Hybrid Energy Replenishment Strategies

(TDOEVRP-HERS) in the context of urban distribution. The study considers the effect of

dynamic urban transport networks on EV energy drain and develops an approach for esti-

mating energy consumption. Meanwhile, the research further empowers 3PL fleets to judi-

ciously oscillate between an array of energy replenishment techniques, encompassing both

charging and battery swapping. Based on these insights, a Mixed-Integer Programming

(MIP) model with the objective of minimizing total distribution costs incurred by the 3PL fleet

is formulated. Given the characteristics of the model, a Hybrid Adaptive Large Neighbor-

hood Search (HALNS) is designed, synergistically integrating the explorative prowess of

Ant Colony Optimization (ACO) with the localized search potency of Adaptive Large Neigh-

borhood Search (ALNS). The strategic blend leverages the broad-based solution initiation

of ACO as a foundational layer for ALNS’s deeper, nuanced refinements. Numerical experi-

ments on a spectrum of test sets corroborate the efficacy of the HALNS: it proficiently

designs vehicular itineraries, trims down EV energy requisites, astutely chooses appropriate

energy replenishment avenues, and slashes logistics-related outlays. Therefore, this work

not only introduces a new hybrid heuristic technique within the EVRP field, providing high-

quality solutions but also accentuates its pivotal role in fostering a sustainable trajectory for

urban logistics transportation.

1. Introduction

Amid the continuous development of the economy and the accelerated pace of urbanization,

the demand for urban logistics distribution is growing rapidly [1]. Traditional urban logistics
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predominantly relies on Fuel Vehicles (FV), leading to high fuel consumption, severe noise

pollution, and significant carbon emissions, which exacerbate urban environmental degrada-

tion [2]. In contrast, Electric Vehicles (EVs), characterized by low energy consumption,

reduced noise, and minimal pollution, have emerged as an optimal solution for urban distribu-

tion and are increasingly recognized as essential tools in transport activities [3]. As per Inter-

national Energy Agency [4], global adoption rates of EVs have tripled in the past three years.

Projections from McKinsey & Company [5] suggest that by Year 2030, 10 to 50 percent of new

vehicle sales in urban settings will be electric. In alignment with this trend, leading global logis-

tics companies are actively promoting electrified transportation fleets. For instance, FedEx

aims to achieve over 50% of its distribution volume using EVs worldwide by 2030 and plans to

replace all transport vehicles with electric alternatives by 2040 [6]. Similarly, DHL intends to

operate 14,000 EVs globally by 2025, representing approximately one-third of its entire fleet

[7]. These data emphasize the salience of the Electric Vehicle Routing Problem (EVRP)

research in shaping urban logistics in response to evolving societal dynamics.

However, EVs face significant limitations in urban distribution compared to traditional

FVs. The prominent factors include a limited travel range [8] and long charging durations [9].

Urban traffic networks are complex and changeable, with congestion occurring from time to

time, leading to varying vehicle speeds that impact the power consumption by the battery and,

thus, the vehicle’s mileage. Consequently, estimating the remaining real-time range during EV

journeys poses a substantial challenge to distribution route planning [10]. While charging en

route can mitigate range anxiety, the current charging technology extends EV charging time

greatly beyond those required for refueling FVs, significantly impacting delivery efficiency.

Hence, the battery swapping strategy becomes an effective solution to offset the lengthy charg-

ing time. By establishing dedicated battery swapping stations, logistics fleets can replace EV

batteries within 10 minutes [11], markedly reducing energy replenishment durations. With

the gradual improvement of urban charging infrastructure, transportation fleets have begun to

adopt different energy replenishment methods according to actual situations. They opt for

charging stations when the recharging demand is low to save on distribution costs, while

selecting battery swapping stations when the recharging demand is high to enhance delivery

efficiency. These different strategies have varying implications for EV distribution costs and

efficiency [12]. In summary, when optimizing EV urban logistics distribution routes, planners

must consider the time-varying factors of the urban traffic network and choose appropriate

energy supplement methods for EVs based on different scenarios.

In addition, in today’s fiercely competitive market milieu, companies must strive to reduce

operating costs to gain a competitive edge. One effective strategy to achieve this target is to

hire professional Third-Party Logistics (3PL) fleets for urban distribution [13]. The Open

Vehicle Routing Problem (OVRP) exemplifies this cooperative mode. A unique feature of

OVRP is that after the completion of delivery tasks, the 3PL fleets do not need to return to the

enterprise’s depot, which greatly reduces unnecessary empty-load travel and effectively

reduces distribution costs [14]. When devising a solution for open vehicle distribution, replac-

ing traditional FVs with EVs not only saves energy costs but also reduces carbon emissions,

aligning with the expectations of social development. Currently, there are few studies on the

Open Electric Vehicle Routing Problem (OEVRP), making it highly significant for research.

Based on the aforementioned description, this research integrates authentic factors, includ-

ing the dynamic nature of urban traffic networks, diverse energy replenishment strategies, and

3PL fleets delivery, into the Electric Vehicle Routing Problem (EVRP). In this context, a novel

Time-Dependent Open Electric Vehicle Routing Problem with Hybrid Energy Replenishment

Strategies (TDOEVRP-HERS) is proposed to minimize the distribution cost of 3PL fleets paid

by the enterprise. Unlike previous research, this study considers elements such as EV self-
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weight, real-time package load, travel speed, and travel distance when predicting EV energy

consumption. It develops methods for estimating EV power consumption and travel time in

the dynamic transportation network. To solve the TDOEVRP-HERS, a hybrid metaheuristic

combining Ant Colony Optimization (ACO) and Adaptive Large Neighborhood Search

(ALNS) is designed.

The main contributions of this study are summarized as follows: (1) TDOEVRP-HERS is

studied in this paper, filling a research gap. (2) A method for estimating EV energy consump-

tion in time-varying traffic networks is devised, aiding logistics fleets to better perform EV

urban distribution. (3) The study develops a flexible hybrid energy replenishment strategy that

improves delivery efficiency and reduces the distribution cost of logistics fleets by selecting the

charging or battery swapping option based on different circumstances. (4) The research pio-

neers the combined use of ACO and ALNS specifically in the context of EVRPs. Despite each

algorithm’s individual effectiveness in solving various optimization problems, the exploration

of their combined application has remained relatively uncharted. This study leverages the

potential synergy between these two algorithms, representing an innovative contribution to

the existing body of research. The results demonstrate that the Hybrid Adaptive Large Neigh-

borhood Search (HALNS) offers enhanced problem-solving capabilities, thereby establishing a

promising new direction in the field of TDOEVRP. (5) The paper evaluates the performance

of the proposed algorithm through extensive numerical experiments and examines the eco-

nomic and environmental advantages of TDOEVRP-HERS. The experimental findings offer

valuable insights and recommendations to governmental policymakers and logistics fleet man-

agers from multiple perspectives, facilitating efforts to promote energy conservation and emis-

sion reduction within the logistics sector.

The remainder of this article unfolds as follows: The Section 2 encompasses a review of per-

tinent literature and elaborates on the innovative aspects of this study. The Section 3 intro-

duces the theoretical methodology for estimating EV power consumption and travel time in

the dynamic urban traffic network. The Section 4 formally defines the research question and

develops a Mixed-Integer Programming (MIP) model for the problem. The Section 5 details

the design of the HALNS. In the Section 6, a sequence of numerical experiments is conducted

to validate the efficacy and rationality of the proposed algorithm, accompanied by practical

recommendations related to sustainable urban distribution. Finally, the Section 7 encapsulates

the conclusion of this study.

2. Related literature review

As a well-known Combinatorial Optimization Problem (COP), the Vehicle Routing Problem

(VRP) aims to determine the optimal set of routes for delivering packages from the depot to

customers based on various objective functions [15]. Currently, researchers have applied VRPs

to distinct transportation scenarios, such as urban waste recycling [16], post-earthquake relief

distribution [17], and vaccine emergency response [18]. This paper delves into urban distribu-

tion through the lens of 3PL fleets. The introduced TDOEVRP-HERS, a VRP variant, inte-

grates time-varying vehicle speeds, varied energy replenishment strategies, and open routing.

This section offers a literature review concerning these elements and the metaheuristics

employed to address such challenges.

2.1. Research on the Time-Dependent Vehicle Routing Problem (TDVRP)

The urban transportation network exhibits time-varying dynamic nature, wherein vehicular

velocities may fluctuate across varying time periods. This variation significantly affects the EV

energy consumption and travel time cost of urban logistics distribution. Scholars initially
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focused on TDVRP, which involved studying the real-time speed impact of different weather

and congestion levels on vehicle routing [19], identifying ways to evade traffic congestion by

analyzing urban traffic’s time-varying characteristics [20], and addressing the transport of

valuable goods by proposing a secure TDVRP with time windows including pickup and deliv-

ery with uncertain demands [21]. Researchers then discovered that time-varying vehicle speeds

caused various carbon emissions due to different fuel consumption, leading to the develop-

ment of the Time-Dependent Green Vehicle Routing Problem (TDGVRP). Soysal et al. [22]

and Çimen et al. [23] established the TDGVRP model, which considered time-varying vehicle

speeds, fuel consumption, and carbon emissions. TDGVRP was later focused on cold chain

transportation by Guo et al. [24], who proposed a two-stage algorithm that enabled vehicles to

wait in place after service to avoid harsh traffic conditions. Recently, with the popularity of EV

fleets, the Time-Dependent Electric Vehicle Routing Problem (TDEVRP) is rising gradually.

TDEVRP is, in fact, a subset of TDGVRP, which considers time-varying vehicle speeds’ impact

on EVs’ energy consumption rather than FVs’ fuel consumption. Lu et al. [25] considered the

impact of charging decisions and congestion conditions on the overall delivery process based

on traditional constraints in TDEVRP. Bi and Tang [26] examined TDEVRP by incorporating

time-varying random traffic conditions and employing the analytical battery model to deter-

mine EVs’ charging and discharging patterns. They aimed to minimize the overall service time

and developed a hybrid rollout algorithm to tackle the problem. Zhang et al. [10] and Keskin

et al. [27] approached TDEVRP from different viewpoints. The former incorporated charging

during congestion periods into the objective function, while the latter considered the impact

of queuing time at charging stations on overall distribution. The literature above provides a

theoretical framework and solution methodology for TDEVRP.

2.2. Research on the Open Vehicle Routing Problem (OVRP)

OVRP has found practical application in a variety of scenarios, such as newspaper distribution

[28], express service [29], campus shuttle [30], and home health care [31]. Scholars have exam-

ined the OVRP from diverse perspectives considering different constraints. Atefi et al. [32]

developed a unique OEVRP model that utilized multiple carriers to deliver packages for a

Canadian major producer of cookies and snacks. Azadeh et al. [33] introduced a closed-open

hybrid VRP based on the cooperation model of self-operated fleets and 3PL fleets, allowing

some vehicles to return to the depot, while the rest of the vehicles do not. Niu et al. [34] dis-

cussed the OVRP of outsourcing distribution to a 3PL fleet, and demonstrated the advantages

of outsourcing logistics through cost composition analysis. Brandão [35] studied a multi-depot

OVRP with the goal of minimizing the travel distance of vehicles. Xia and Fu [36] introduced

customer satisfaction rate into the OVRP as a constraint, and constructed an optimization

model to minimize the total distribution costs. In addition, many scholars have designed vari-

ous algorithms for OVRP. Faiz et al. [37] presented two integer linear programming models

for OVRP. The first one is an arc-based mixed integer linear programming model solved by a

general-purpose solver, while the second one is based on a path-based formulation, which

solved by a column generation framework. Chen et al. [38] developed an urgency level-based

insertion heuristic to construct an initial solution, and employed a reinforcement learning

based variable neighborhood search algorithm to solve the OVRP. Brandão [39] proposed an

iterated local search algorithm for OVRP, and solved it with test sets including Solomon,

Homberger and Gehring. With the rise of green logistics in recent years, the Green Open

Vehicle Routing Problem (GOVRP) has gradually attracted attention. Niu et al. [40] consid-

ered vehicle fuel consumption and its environmental impact in GOVRP, conducted a simula-

tion experiment based on the actual road conditions in Beijing, and found that compared to

PLOS ONE Time-dependent open electric vehicle routing problem with hybrid energy replenishment strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0291473 September 14, 2023 4 / 38

https://doi.org/10.1371/journal.pone.0291473


closed routes, open routes reduced total cost by 20%, with fuel consumption costs and carbon

emission costs lowered by almost 30%. The above literature provides methodological guidance

for OEVRP. However, there is a dearth of literature on OEVRP, indicating that related

research has not received sufficient attention.

2.3. Research on energy replenishment strategies in EVRP

Efficient energy supplement strategies have always been a prominent research topic in EVRP,

aiming to alleviate range anxiety and enhance delivery efficiency in EV distribution. Initially,

scholars mainly focused on charging strategies, such as full charging, which has been utilized

in the studies of Lin et al. [41], Granada-Echeverri et al. [42], and Kucukoglu et al. [43]. Full

charging strategy involves completely charging the EV before departing from the charging sta-

tion, which can effectively mitigate range anxiety. However, this strategy incurs high charging

costs and long charging durations, may easily leading to a decrease in customer satisfaction.

The strategy of partial charging, in its assessment of charging costs and service timeliness,

affords greater flexibility in charging operations. Cortés-Murcia et al. [44] and Zhou et al. [45]

presented partial charging strategies for EVs when designing EVRP charging schemes. The

antecedent enables EVs to be dispatched for multiple distribution tasks, whereas the latter

deftly employs the partial charging period to facilitate the delivery of parcels to clients closer to

the charging station. In addition, there are different charging technologies in the charging pro-

cess. Schiffer and Walther [46] and Dönmez et al. [47] proposed a linear charging function

when designing the EVRP charging scheme. The former considers a single fast-charging mode

at the charging station, while the latter considers a combination of three charging speeds: ordi-

nary charging, fast charging, and super-fast charging. In recent years, battery swapping has

emerged as a viable solution for energy replenishment in EV distribution. Jie et al. [48] and

Zhou et al. [49] discussed the EVRP considering battery swapping strategy. The former devel-

oped a hybrid algorithm to tackle the model, while the latter proposed a multi-objective whale

optimization algorithm for the model. Moreover, Raeesi and Zografos [50] devised a synchro-

nized mobile battery swapping strategy for the EVRP, involving the replacement of depleted

batteries with fully charged ones at designated times and locations by battery-swapping vans.

The literature above can offer theoretical references and methodological support for EVs’

energy replenishment strategy in distribution.

2.4. Research on metaheuristics of solving VRP

The application of efficient meta-heuristic algorithms to optimize routing problems has been a

focus of research in logistics transportation [51]. The TDOEVRP-HERS poses unique chal-

lenges due to the time-dependent nature of its constraints, alongside the specifics of 3PL fleets,

such as non-mandatory return trips, flexible energy replenishment options, and uncertain bat-

tery level consumption. Two algorithmic strategies that have shown promise in addressing

these complexities are the ACO [52] and ALNS [53]. ACO is a population-based metaheuristic

that draws inspiration from the foraging behavior of ants [54]. Its utilization in complex VRPs

has received extensive research attention. Su and Fan [55] used ACO to minimize penalty

costs in the Green Vehicle Routing Problem (GVRP), incorporating fuel consumption, carbon

emissions, and customer satisfaction constraints. Similarly, Zhang et al. [56] utilized ACO to

cut down energy usage in EVRP. Despite its successes, the original ACO has shortcomings,

leading researchers to develop the improved ACO. Zhang et al. [57] enhanced traditional

ACO with three mutation operators for the multi-objective VRP with flexible time windows,

improving local search and global exploration. Li et al. [58] adjusted pheromone update meth-

ods of ACO, focusing on optimal solutions for the multi-objective multi-depot GVRP. Jia et al.
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[59] created a bi-level ACO for EVRP with capacity constraints. The upper level, uncon-

strained by electricity, generates routes via ACO, while the lower level uses a heuristic to deter-

mine charging plans, using its solutions to update the upper level’s pheromone. ALNS is a

well-regarded metaheuristic that has successfully addressed numerous COPs. It operates by

iteratively exploring a set of candidate solutions in the neighborhood of the current solution

and adaptively selecting the most promising ones [60]. Scholars have employed ALNS to solve

many VRP variants. Sun et al. [61] addressed the time-dependent profitable pickup and deliv-

ery problem with time windows by ALNS. Chen et al. [62] discussed a VRP with time windows

and delivery robots and developed ALNS to tackle it. Kuhn et al. [63] used the ALNS to inte-

grate order picking and vehicle routing for micro-store supply. ACO is known for generating

high-quality initial solutions that respect the problem’s constraints. ALNS is particularly effec-

tive when dealing with dynamic environments, given its capacity to continually adjust and

refine solutions [64]. The combination of ACO’s global exploration and ALNS’s local exploita-

tion may lead to better-quality solutions. The comprehensive search process increases the

chance of finding optimal or near-optimal solutions for the TDOEVRP-HERS. However, the

hybrid application of these two powerful algorithms in the field of EVRP is currently under-

researched, suggesting a need for further exploration.

2.5. The research gaps

Table 1 presents a structured categorization of the literature pertinent to TDOEVRP-HERS,

drawing from the elements outlined previously. This table systematically delineates distinc-

tions among energy replenishment strategies, routing modes, and solution methodologies

within existing studies. Its design facilitates an efficient understanding of the prevailing state-

of-the-art and highlights potential research gaps or avenues addressed by this research.

The existing literature lays a solid groundwork for the in-depth investigation of EVRP in

urban distribution. However, a review of the literature has identified several gaps in research

that merit further exploration: (1) Many studies limit EVs to using charging stations as their

sole energy replenishment way during distribution. However, in reality, EV fleets have started

to adopt a variety of energy replenishment strategies in current urban distribution. As one of

the world’s largest consumers of EVs, China explicitly outlined its intention in the “New

Energy Vehicle Industry Development Plan (2021–2035)” to “accelerate the construction of

battery swap infrastructures,” indicating that battery swapping will become a primary method

of supplementing EV energy in the future. Despite some scholars have explored EVRP with

battery swapping, there remains a significant shortage of EVRP research that considers hybrid

energy replenishment strategies with both charging and battery swapping. (2) The time-vary-

ing traffic conditions of urban road networks lead to EVs traveling at varying speeds through-

out the day, with speed being the most significant factor affecting both EV travel time and

power consumption. The fluctuating vehicle speed makes calculating EV energy consumption

and remaining mileage challenging, thereby complicating the planning of urban distribution

routes. Currently, the academic community has not given sufficient attention to developing

reasonable rules for predicting EV energy consumption during urban distribution. (3) To

reduce operational costs, an increasing number of enterprises are outsourcing their logistics

transportation business. Logistics outsourcing involves a 3PL fleet that departs from the enter-

prise’s depot to perform distribution tasks without having to return to the depot upon com-

pleting the tasks, known as open route distribution. Although this cooperation mode is

gaining popularity in urban distribution, there is a dearth of literature on TDOEVRP, which

warrants further exploration. To fill these research gaps, this study investigates TDOEVR-

P-HERS, considering customer demand, service time, EV capacity, time-varying speed,
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different energy supplement strategies, and open routing. A MIP model is constructed to mini-

mize the total distribution cost of transport fleets, and a HALNS is designed to tackle this

model. The study’s results provide decision-making references for companies interested in hir-

ing environmental-friendly 3PL fleets and governments seeking to promote sustainable urban

logistics.

3. Calculation of EV power consumption and travel time in a

dynamic transportation network

The road network in urban areas is characterized by its time-varying nature, meaning that the

speed of vehicles may fluctuate during various time periods when traveling on urban roads.

The time taken to traverse the road segment (i,j) depends not only on the road distance but

also on the EV’s starting time, traveling speed, and real-time load. The vehicle may require sev-

eral time periods to travel from node i to node j. Therefore, this study refers to the method pro-

posed by Liu et al. [20] to partition a day of 24 hours into multiple equal time periods.H
represents the length of a time period, and n represents the number of time periods in a day,

Table 1. A summary of relevant works.

Year Authors Constraints Solution method

EV FV TDVS CR OR CS BSS ACbA NbA HM others

2016 Lin et al. [41]
p p p p

2017 Schiffer and Walther [46]
p p p p

2018 Bi and Tang [26]
p p p p p

2018 Atefi et al. [32]
p p p

2018 Niu et al. [34]
p p p p

2018 Zhang et al. [56]
p p p p

2019 Keskin et al. [27]
p p p p p

2019 Azadeh et al. [33]
p p p p

2019 Xia and Fu [36]
p p p

2019 Faiz et al. [37]
p p p

2019 Jie et al. [48]
p p p p p

2019 Zhang et al. [57]
p p p p

2020 Lu et al. [25]
p p p p p

2020 Zhang et al. [10]
p p p p p

2020 Brandão [35]
p p p

2020 Chen et al. [38]
p p p

2020 Su and Fan [55]
p p p

2020 Sun et al. [61]
p p p p

2021 Kucukoglu et al. [43]
p p p p

2021 Zhou et al. [45]
p p p p p

2021 Chen et al. [62]
p p p

2021 Kuhn et al. [63]
p p p

2022 Guo et al. [24]
p p p p p

2022 Dönmez et al. [47]
p p p p p

2022 Zhou et al. [49]
p p p p

2022 Jia et al. [59]
p p p p

- This work
p p p p p p p p

* EV: Electric Vehicle. FV: Fuel Vehicle. TDVS: Time-Dependent Vehicle Speed. CR: Closed Routing. OR: Open Routing. CS: Charging Strategy. BSS: Battery Swapping

Strategy. ACbA: Ant Colony-based Algorithm. NbA: Neighborhood-based Algorithm. HM: Hybrid Metaheuristics.

https://doi.org/10.1371/journal.pone.0291473.t001
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i.e., n = 24/H. T represents the set of time periods in a day, i.e.,

T ¼ f½0;T1�; ½T1;T2�; :::; ½Tn� 1;Tn�g, where [0,T1] represents the first time period of a day, and

[Tn−1,Tn] represents the n-th time period. Additionally, [TR−1,TR] signifies the R-th time

period of a day, where R2{1,2,. . .,n−1,n}, and TR−TR−1 =H. The traveling speed of EV k on

road segment (i,j) during the R-th time period is denoted as vRijk. By combining the EV energy

consumption calculation methods proposed by Goeke and Schneider [65] and Basso et al. [8],

the energy consumption eRijk generated by EV k when traveling at speed vRijk on road segment

(i,j) during the R-th time period can be calculated as follows:

eRijk ¼ �
dφdð
½gsinyij þ Cr � gcosyij�ðLþ uijkÞ

3600
þ
RcAwrðvRijkÞ

2

76140
ÞvRijkt

R
ijk ð1Þ

where ϕd denotes the output efficiency parameter of the driving motor, φd denotes the output

efficiency parameter of the battery. Other factors influencing EV energy consumption include

the rolling resistance coefficient (Cr), air resistance coefficient (Rc), air density (ρ), and the

windward area of the vehicle (Aw). θij is the slope of road segment (i,j), and g is the gravita-

tional acceleration. L denotes the self-weight of the EV, and uijk denotes the remaining load of

EV k traveling on road (i,j). tRijk is the travel time of EV k on road section (i,j) during the R-th

time period.

Let dij denote the distance between node i and node j. Let dRijk denote the remaining distance

that EV k still needs to travel on road segment (i,j) at the end of the R-th time period. Under

the time-varying urban road network, the following are procedures to calculate the power con-

sumption Eijk and travel time Tijk that EV k requires to traverse road segment (i,j):
Procedure 1: The power consumption and travel time generated by EV k during the R-th

time period when it leaves node i. Let @Rik denote the moment when EV k departs from node i
within the R-th time period, i.e., TR� 1 � @

R
ik � TR. Therefore, the feasible travel time of EV k

during the R-th time period is TR � @Rik. Consequently, the distance traveled by EV k on road

segment (i,j) during the R-th time period is FRijk ¼ v
R
ijkðTR � @

R
ikÞ. If FRijk � dij, it implies that EV

k has covered the distance between node i and node j within the R-th time period, hence

dRijk ¼ 0, Tijk ¼ tRijk ¼ dij=v
R
ijk, and Eijk ¼ eRijk. The calculation process is complete. If FRijk < dij, it

signifies that EV k cannot travel from node i to node j during the R-th time period. Conse-

quently, dRijk ¼ dij � F
R
ijk, and tRijk ¼ TR � @

R
ik. Therefore, the energy consumption of EV k during

the R-th time period is eRijk. Proceed to Procedure 2.

Procedure 2: Computation of EV k‘s power consumption and travel time on road segment

(i,j) after the R-th time period. Step 1: Set ξ = 1. Step 2: Calculate the possible travel distance

FRþxijk of EV k during the (R+ξ)th time period, where FRþxijk ¼ v
Rþx
ijk � H. If FRþxijk < dRþx� 1

ijk , it means

that EV k still cannot travel to node j in the (R+ξ)th time period. Consequently, the travel time

of EV k during the (R+ξ)th time period is tRþxijk ¼ H, and the remaining distance to node j is

dRþxijk ¼ d
Rþx� 1

ijk � FRþxijk . The energy consumption of EV k during this time period is eRþxijk . Let ξ =

ξ+1 and proceed to Step 2. If FRþxijk � d
Rþx� 1

ijk , it means that EV k can travel to node j during the

(R+ξ)th time period, then the travel time of EV k during this time period is tRþxijk ¼ d
Rþx� 1

ijk =vRþxijk ,

and the energy consumption of EV k during this time period is eRþxijk . Proceed to Procedure 3.

Procedure 3: Computation of the total power consumption and travel time for EV k tra-

versing road segment (i,j). Eijk ¼
XRþx

x¼R

exijk, Tijk ¼
XRþx

x¼R

txijk. The calculation process is complete.
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4. Problem and mathematical model

In this section, the TDOEVRP-HERS is formally defined, followed by a presentation of the

mathematical formulation that captures the key objectives and constraints of the problem. Fac-

tors including energy replenishment strategies, time-dependent vehicle speed, open routing,

real-time load, fixed EV usage costs, vehicle travel costs, customer service costs, and energy

costs are considered. The goal is to minimize the aggregate of these costs by efficiently dis-

patching EVs from 3PL fleets and devising optimal vehicle routes.

4.1. Problem framework

This subsection introduces and analyzes the TDOEVRP-HERS in urban distribution. A retail

company, lacking its own self-operated transportation fleets, delegates all package distribution

tasks to a professional 3PL fleet. This 3PL fleet employs homogeneous EVs to deliver identical

products to customers scattered all over a city. The objective is to minimize the total operating

costs for the 3PL fleet, utilizing up to K vehicles. A complete graph G = {V,A} is defined where

V = {0,1,. . .,n} is the set of all vertices, 0 stands for the depot, and A = {(i,j):i,j2V and i6¼j} is the

set of arcs connecting nodes. Each arc (i,j)2A has an associated distance dij. Unlike other stud-

ies, the infrastructure for EV energy replenishment in this study is bifurcated into two types:

Charging stations (F) and battery swapping stations (B). So, C ¼ Vnðf0g [ F [ BÞ is the set of

customer nodes.

Each customer i2C is assigned one and only one EV to fulfill their delivery requirement,

with the customer possessing a non-negative demand Di and a designated service time si. Spe-

cifically, before departing from the retail company’s depot, all EVs within the 3PL fleet load

the maximum load capacity ofW kilograms in goods for distribution. Concurrently, the EV

fleet is fully charged and primed for action. During the transportation process, priority is

accorded to EVs for customer service. However, should an EV find its energy insufficient to

sustain the task, it must undertake an energy replenishment. According to the remaining deliv-

ery tasks, the EV can choose to replenish the battery level at either a charging station or a bat-

tery swapping station. Once the energy replenishment is completed, the EV resumes serving

the remaining customers. Upon completion of all transportation tasks, the EV fleet can pro-

ceed to other enterprises for additional distribution tasks, without having to return to the retail

company’s depot. The schematic of the TDOEVRP-HERS is depicted in Fig 1.

In this problem, all the necessary parameters, such as EVs’ maximal loadW and battery

capacity Q, depot coordinates, customers’ location, delivery volume, and service time, are

known. The study aims to optimize the 3PL fleet’s transportation routes, while meeting all cus-

tomers’ distribution demands, and minimizing the total distribution costs that the retail enter-

prise has to pay. Distribution costs include EV fixed dispatch costs, travel costs, customer

service costs, as well as charging and battery swapping costs. Please see S1 Appendix for all the

parameters and decision variables used.

4.2. Assumptions

To clearly construct the MIP model, the ensuing assumptions are defined: (1) Each EV in the

3PL fleet is dispatched at most once, and the delivery volume of each customer is less than EV

capacity. (2) Urban traffic network affects EV speed, which varies with time. (3) The energy

expenditure of EVs is affected by a gamut of factors encompassing vehicular self-weight, travel

velocity, real-time load, and traversed distance. (4) Once an EV enters a charging station or

battery swapping station, it can directly replenish energy without having to wait in line. To

ensure the timeliness of distribution, the logistics fleet limits each EV to enter a charging sta-

tion only once, whereas the number of times it enters a battery swapping station is unlimited.
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(5) The charging station adopts a full charging strategy with a constant charging rate, while the

battery swapping station has a fixed battery swapping time and the battery level of EVs

becomes full upon completion of battery swapping.

4.3. TDOEVRP-HERS model

Based on the problem description and variables mentioned earlier, the optimization model of

TDOEVRP-HERS is built below:

min P1 þ P2 þ P3 þ P4 ð2Þ

P1 ¼ c1

X

i20

X

j2C

X

k2K

xijk ð3Þ

P2 ¼ c2

X

i2V

X

j2V

X

k2K

Tijkxijk ð4Þ

P3 ¼ c3

X

i2C

X

k2K

siwik ð5Þ

P4 ¼ c4

X

i2F

X

k2K

sikyik þ c5

X

j2B

X

k2K

zjk ð6Þ

The objective function (2) minimizes the total distribution cost for the 3PL fleet. This cost

includes the fixed vehicle dispatching cost (P1), travel cost (P2), customer service cost (P3), and

energy cost (P4). Notably, P4 is the sum of charging and battery swapping costs. Expressions for

these costs within the framework of TDOEVRP-HERS are presented in Formulas (3) to (6).

Fig 1. Schematic of the TDOEVRP-HERS.

https://doi.org/10.1371/journal.pone.0291473.g001
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In tandem with objective function (2), the study addresses various constraints, organized

into five distinct groups: arc and vertex constraints, vehicle capacity constraints, battery level

constraints, time constraints, and binary constraints. The arc and vertex constraints are pre-

sented through constraints (7) to (10), while vehicle capacity constraints are articulated by

constraints (11) and (12). The battery level constraints are captured by constraints (13) to (18),

and time-related restrictions are laid out in constraints (19) to (22). Lastly, constraint (23)

enforces a binary constraint.

X

i20

X

j2C

xijk � 1; 8k 2 K ð7Þ

X

k2K

wik ¼ 1;8i 2 C ð8Þ

X

i2V

xijk ¼
X

l2V

xjlk; 8j 2 C [ F [ B; 8k 2 K; i 6¼ j; j 6¼ l ð9Þ

X

i2F

yik � 1;8k 2 K ð10Þ

Constraint (7) stipulates that each EV is dispatched at most once. By enforcing this restric-

tion, the same EV is not redundantly assigned to multiple delivery routes, thereby exerting an

indirect effect on the costs associated with vehicle dispatch (P1). Constraint (8) necessitates

that each client is visited uniquely once. In the context of the objective function, this constraint

aids in minimizing the travel and service costs (P2 and P3), as it discourages unnecessary

detours or repeat visits. Constraint (9) enforces flow conservation among customer locations,

battery swapping stations, and charging stations. This constraint indirectly impacts energy

costs (P4) by influencing the distribution of EVs and their energy replenishment. Constraint

(10) states that each EV is allowed to be recharged at most once on the route. Regarding the

objective function, this constraint directly affects the energy cost component (P4) by placing a

cap on recharging events, which can influence the allocation of EVs and their corresponding

energy consumption patterns.

X

i2C

Diwik �W; 8k 2 K ð11Þ

l
2

ik ¼ l
1

ik � Di; 8i 2 C; k 2 K ð12Þ

Constraint (11) asserts that the duty payload apportioned to an individual EV must not

transgress its supreme capacity. From the perspective of the objective function, this constraint

influences the travel and energy costs (P2 and P4) by constraining the goods that each EV can

carry. Inefficient or overloaded routes that could potentially inflate costs are avoided. Con-

straint (12) states that the load of an EV after serving a client is determined by subtracting the

client’s demand from the load before service. This constraint directly impacts the customer

service cost (P3), as it influences the load adjustments after each service operation.

S2

0k ¼ Q; 8k 2 K ð13Þ

S1

ik ¼ S
2

ik; 8i 2 C; 8k 2 K ð14Þ
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S1

jk � ðS
2

ik � EijkÞxijk þ Qð1 � xijkÞ; 8i; j 2 V; 8k 2 K; i 6¼ j ð15Þ

S1

ik � 0;8i 2 V; 8k 2 K ð16Þ

qik ¼ Q � S
1

ik; 8i 2 F; 8k 2 K ð17Þ

S2

ik ¼ Q; 8i 2 B; 8k 2 K ð18Þ

Constraint (13) mandates every EV to be completely charged prior to its departure from

the depot. This constraint directly affects the energy cost (P4), as it ensures that the initial

energy state of each EV is at its maximum capacity, thus minimizing the need for immediate

recharging or swapping. Constraint (14) expounds that the EV battery level remains

unchanged at customer points. This constraint impacts the energy cost (P4) by maintaining a

consistent energy level throughout the service process, which in turn affects the EV’s overall

energy consumption. Constraint (15) upholds the energy equilibrium of each EV during its

transit from the preceding node i to the subsequent node j, considering the energy consump-

tion along the arc (i,j). This constraint directly influences the energy cost (P4) by accounting

for the energy consumed during travel and distribution tasks. Constraint (16) ensures that

EV’s remaining energy is not negative when it reaches any node. This constraint affects the fea-

sibility of the solution and indirectly impacts the EV dispatching cost (P1) by preventing sce-

narios where an EV’s energy level becomes insufficient for completing the assigned tasks.

Constraint (17) defines the amount of charging at a charging station, which directly affects the

energy cost (P4) by determining the energy replenishment needed during the route. Constraint

(18) indicates that when the EV departs from the battery swapping station, its battery level

becomes full. This constraint impacts the energy cost (P4) by ensuring that the EV commences

its journey with a fully charged battery after swapping.

t2ik ¼ t
1

ik þ siwik; 8i 2 C; 8k 2 K ð19Þ

t1jk � ðt
2

ik þ TijkÞxijk þ ð1 � xijkÞM; 8i; j 2 V; 8k 2 K; i 6¼ j ð20Þ

sik ¼ 60 �
qik
Z � pe

; 8i 2 F; 8k 2 K ð21Þ

t2ik ¼ t
1

ik þ sikyik þ φzik; 8i 2 F [ B; 8k 2 K ð22Þ

Constraint (19) embodies the correlation amongst the EV’s arrival time, service duration,

and departure time at a customer vertex. This constraint affects both the travel cost (P2) and

the customer service cost (P3) in the objective function. Constraint (20) signifies the temporal

interdependence between the EV’s exit time from the present node i and its entry time at the

ensuing node j. This constraint impacts the travel cost (P2) within the objective function, as it

makes the EV’s route go through different traffic conditions. Constraint (21) calculates EV’s

charging duration at a charging station. This constraint directly affects the energy cost (P4)

within the objective function, as it influences the charging-related expenses incurred during

the distribution process. Constraint (22) signifies the time relationship before and after the EV

replenishes energy at a charging station or battery swapping station. This constraint impacts

the objective function by regulating the timing of energy replenishment, thereby affecting both
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the energy cost (P4) and the overall distribution efficiency.

xijk;wik; yik; zik 2 f0; 1g ð23Þ

Constraint (23), a binary constraint, introduces a discrete decision-making element into

the optimization framework. The binary constraint adds a layer of restriction to the optimiza-

tion process, as the decision to activate or deactivate certain components directly affects the

distribution costs captured by the objective function. Depending on the problem specifics,

constraint (23) might influence the allocation of vehicles to particular routes, the utilization of

charging or battery swapping stations, or the selection of specific distribution tasks.

5. Algorithm design

The ALNS metaheuristic was originally introduced by Pisinger and Ropke [66] and has since

been adapted to various optimization problems. For instance, Koch et al. [67] employed an

ALNS framework for an integrated vehicle routing problem with complex loading constraints

involving pickups and deliveries. In a similar vein, Žulj et al. [68] devised a hybrid ALNS that

integrates tabu search components for tackling an order batching problem. Notably, Seydan-

lou et al. [69] tailored a multi-neighborhood search algorithm to address sustainable closed-

loop supply chain management in Iran’s agricultural sector. Moreover, Fathollahi-Fard et al.

[70] applied an ALNS approach to the generalized quadratic assignment problem and intro-

duced an efficient Benders reformulation based on reformulation linearization technique

inequalities. Given this versatility, the ALNS metaheuristic presents a promising foundation

for the TDOEVRP-HERS. Expanding upon this foundation, the current framework is

extended into a HALNS, drawing inspiration from the ACO metaheuristic. Subsection 5.1

elaborates on the general structure of the HALNS metaheuristic, followed by Subsections 5.2

to 5.5, which provide detailed insights into the distinct constituents of the complete HALNS

algorithm.

5.1. General framework of HALNS

Algorithm 1. The pseudocode of HALNS
1: ACO generates initial solution initialSol
2: Global optimal solution bestSol  initialSol
3: Current solution currentSol  initialSol
4: while the termination condition is not met do
5: Use roulette rules to choose the destruction operator and repair
operator.
6: Use the destruction operator on currentSol, and then use the
repair operator to repair it, and get an updated solution updateSol.
7: if updateSol is better than bestSol then
8: bestSol  updateSol
9: currentSol  updateSol
10: else if updateSol is better than currentSol then
11: currentSol  updateSol
12: else
13: if simulated annealing criterion acceptance then
14: currentSol  updateSol
15: end if
16: end if
17: Update the scores of destruction operators and repair operators.
18: if the number of iterations to update operator weights has been
reached then
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19: Update the weights of destruction operators and repair opera-
tors, and reset the score to zero.
20: end if
21: end while

The proposed HALNS ingeniously integrates the ALNS technique with the ACO method,

synergizing their respective strengths. The ALNS, with its capability for intensive local search,

is coupled with the ACO’s global exploration potential. This fusion is achieved by initializing

the solution process using ACO’s probabilistic approach, generating diverse initial solutions

that serve as a foundation for ALNS to perform more refined local searches. The adaptability

of ALNS complements the ACO’s explorative prowess, enabling it to fine-tune solutions and

guide the search towards promising regions of the solution space. This harmonized approach

leverages the ALNS to enhance the solutions found by ACO, ultimately contributing to

improved convergence and solution quality. The implementation framework of HALNS is

meticulously outlined in Algorithm 1. The process begins by designing an ACO to generate a

higher-quality initial solution. Next, five destruction operators—Random Removal (RdR),

Basic Worst Removal (BWR), Related Removal (RlR), Single Point Removal (SPR), and Sta-

tion-based Removal (SbR)—are introduced. In addition, three repair operators are included:

Improved Random Insertion (IRdI), Improved Greedy Insertion (IGI), and Improved Regret

Insertion (IRgI). During the ALNS iteration, these operators are randomly selected to work on

the current solution. Simultaneously, an appropriate acceptance criterion is established to

adaptively adjust the operators’ weights and update the current and optimal solutions. The ter-

mination conditions for the algorithm may include the maximum number of iterations or the

longest runtime.

5.2. The construction of the initial solution

The quality of the initial solution significantly influences the ensuing optimization of the

ALNS, and a superior initial solution increases the likelihood of achieving a satisfactory solu-

tion. Given the characteristics of the TDOEVRP-HERS, the study employs the ACO to procure

an improved initial solution. First, all ants are allocated to depot 0. Each ant then embarks on

its journey. Based on the transition probability Formula (24), ants employ a roulette-wheel

selection process to choose the customer nodes they visit. These selected customer points are

added sequentially to the current route until the ants are no longer eligible to continue cus-

tomer visits. At this point, the ants are reset to depot 0 and initiate their journey anew. This

operation is repeated until all customers in the area have been visited by the ants.

Pmij ¼

½tij�
b1 ½Wij�

b2

X

s2unvisitm

ð½tis�
b1 ½Wis�

b2Þ
; j 2 unvisitm

0; j 2 visitedm

ð24Þ

8
>>><

>>>:

where Pmij is the transition probability for antm to travel from node i to node j. unvisitm is

the set of customer nodes that antm has yet to visit. visitedm is the set of customer nodes that

antm has already visited. τij is the pheromone heuristic parameter, and ϑij is the expectation

heuristic parameter, ϑij = 1/dij. β1 and β2 are the weights for pheromone and expectation heu-

ristic factors, respectively.
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Once all ants have completed visiting all customers, a global pheromone update is executed

on the current travel plan, comprising all ants, as per Formula (25).

tnewij ¼ t
old
ij ð1 � rhoÞ þ

XM

m¼1

Dtmij ð25Þ

Dtmij ¼
f =Distancem; if ant m travel through arc ði; jÞ

0; otherwise
ð26Þ

(

where toldij is the pheromone before update, while tnewij is the updated pheromone. rho is the

pheromone evaporation rate with 0�rho<1. Set rho = 0.2. Dtmij signifies the pheromone incre-

ment on arc (i,j) for antm. f is a constant that represents the amount of pheromone secreted

by an ant in each travel. Set f = 5. Distancem is the total distance traveled by antm.

The specific steps of the ACO are as follows:

Step 1: Parameter initialization. Begin by inputting the necessary test data, which include

the location coordinates of all nodes in the transport network, customer delivery volume, EV’s

maximum load and battery capacity, congestion time, and time-dependent vehicle speed. Let

IterAnt represent the current iteration, set IterAnt = 1. LetmaxIterAnt represent the maximum

number of iterations, setmaxIterAnt = 200. LetminLen represent the shortest distance among

all ants’ travel, setminLen = Inf. Let antNum represent the number of ants, set antNum = 30.

Let initialRoute represent the initial optimal travel route.

Step 2: Determine whether the IterAnt satisfies the relationship of IterAnt�maxIterAnt. If it

satisfies this condition, assign antm withm = 1, and proceed to Step 3 (Here, tabum is the ant

m‘s taboo list, and tabum = ;); otherwise, advance to Step 11.

Step 3: Determine whetherm satisfiesm�antNum, and if so, enter Step 4; otherwise, skip

to Step 9.

Step 4: Place antm in depot 0 and assign it the maximum allowable load.

Step 5: Based on the transition probability (Formula 24), select a customer node that fulfills

the constraints and add it into the current solution. Then, remove this node from antm‘s unvi-
sitm set, and place it in antm‘s tabum set.

Step 6: Repeat the operation of Step 5 until antm no longer meets the requirements to visit

any of the remaining customer nodes.

Step 7: Reposition antm to depot 0 and reset antm‘s maximum load. Determine whether

the unvisitm is an empty set. If unvisitm 6¼ ;, revert to Step 5; otherwise, save antm‘s total travel

distance antLenm to the iterLeniter set, and save antm‘s travel routes antSolm to the iterSoliter
set, proceeding subsequently to Step 8.

Step 8: Letm =m+1, clear the taboo list tabum, reset the unvisitm set, and then proceed to

Step 3.

Step 9: Analyze all travel distances within the iterLeniter set to derive the optimal travel dis-

tance bestLeniter and the optimal travel routes bestRouteiter. If bestLeniter�minLen, setminLen
= bestLeniter and update the globally optimal routes as initialRoute = bestRouteiter. Conversely,

if bestLeniter>minLen, then set bestLeniter =minLen and bestRouteiter = initialRoute. Subse-

quently, pheromones along the route are updated following Formula (25) before progressing

to Step 10.

Step 10: Let IterAnt = IterAnt+1, return Step 2.

Step 11: Following the principle of greed, insert the charging station or battery swapping

station into the optimal initial route, initialRoute, according to the battery level constraints.

This process culminates in the acquisition of the initial solution, initialSol, tailored for ALNS.
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5.3. Operator design

In this study, a comprehensive set of destruction and repair operators are employed within the

HALNS. In addition to the fundamental RdR, BWR, and RlR operators, the algorithm intro-

duces two novel operators, SPR and SbR, within the destruction phase, thereby contributing

originality to the approach. Moreover, to enhance the algorithm’s performance, three

improved repair operators—IRdI, IGI, and IRgI—are adapted from the existing literature.

This judicious combination facilitates the efficient restoration of solutions. The sequence of

operations unfolds as follows: five destruction operators—RdR, BWR, RlR, SPR, and SbR—

disassemble the currentSol, which is then reconstructed using the repair operators—IRdI, IGI,

and IRgI. Throughout this iterative process, redundant charging or battery swapping stations

within currentSol are methodically removed, and new energy replenishment strategies are

reintegrated during the repair phase to address route infeasibility. For a visual depiction, refer

to Fig 2, where the leftmost image presents currentSol, the central image demonstrates the out-

come of applying the destruction operator (resulting in the removal of six customers and three

energy replenishment stations), and the rightmost image showcases updateSol following the

repair operator’s intervention.

5.3.1. Destruction operator. The destruction operator selectively removes a predeter-

mined number of customer nodes from the current solution. Given a total customer count, n,

the quantity r designated for removal is determined by the equation r = [α×n]. In this equation,

α represents the removal ratio, and the [] is the rounding symbol. Set α = 0.1. The customers

removed through this operation are subsequently added to the unvisited customer set, Cunvisit,
while any invalid routes and superfluous charging or battery swapping stations are discarded.

The general structure of destruction operators is offered in Algorithm 2.

Algorithm 2. The general framework of destruction operators
input: A currentSol and the number of requests to be removed r
output: A partial_solution
1: Initialize removal list (Cunvisit  ;)
2: Use roulette rules to randomly choose a destroy heuristic based on
their weights
3: while termination criteria are not met do
4: Apply the selected destruction operator to remove a request r
5: Cunvisit  Cunvisit[{r}
6: end while

(1) RdR: Randomly remove r customer nodes from the current solution. Algorithm 3 illus-

trates the implementation framework of the RdR operator.

Algorithm 3. The general framework of the RdR operator

Fig 2. Schematic of the route destruction and repair.

https://doi.org/10.1371/journal.pone.0291473.g002
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1: Initialize i  0, Cunvisit  ;
2: partial_solution  currentSol
3: while i<r do
4: Randomly choose a route pathD to destroy, and randomly remove a
customer node o from pathD.
5: Cunvisit  Cunvisit[{o}
6: If pathD has no customer nodes, delete pathD.
7: i++
8: end while
9: Update partial_solution, i.e., remove nodes within Cunvisit from
currentSol.
10: Remove redundant charging or battery swapping stations within
partial_solution.

(2) BWR: The cost of a customer node i in the current solution is denoted as cost(s,i) = f(s)
−f−i(s). Here, f(s) represents the objective value of the current solution, and f−i(s) is the

objective value after removing customer node i. Initially, BWR calculates the objective

value of the current solution. Subsequently, it computes the objective values after the

removal of different customer nodes. After that, it derives the cost associated with each cus-

tomer node. Finally, it selects the customer node with the highest cost for removal and

repeats above step until r customer nodes have been removed. This strategy was proposed

by Hemmelmayr et al. [71]. Algorithm 4 illustrates the implementation framework of the

BWR operator.

Algorithm 4. The general framework of the BWR operator
1: Initialize removal list (Cunvisit  ;)
2: partial_solution  currentSol
3: Compute cost(s,i) for all customers i2C.
4: while |Cunvisit|<r do
5: Select the customer node o with the highest cost(s,i) for removal.
6: C  C\{o}, Cunvisit  Cunvisit[{o}
7: Compute cost(s,i) for all customers i2C.
8: end while
9: Update partial_solution, i.e., remove nodes within Cunvisit from
currentSol.
10: Remove redundant charging or battery swapping stations within
partial_solution.

(3) RlR: Initially, a customer node i is randomly selected for removal and placed in the Cunvisit
set. The similarity function is then used to calculate the similarity between each customer

node in the current solution and the removed node. The node with the highest similarity in

the current solution is selected for removal and added to the Cunvisit set. Subsequently, a cus-

tomer node is randomly selected from Cunvisit, and the similarity calculation process is

repeated, leading to the removal of the node with the highest similarity. This step is repeated

until r customer nodes have been removed. The similarity function used in this paper is

defined as follows:

Idenði; jÞ ¼ a1dij þ a2jDi � Djj þ Zij ð27Þ

where α1 and α2 represent weight coefficients satisfying the condition α1+α2 = 1. Set α1 = 0.6,

α2 = 0.4. dij signifies the distance between two customer nodes, and |Di−Dj| represents the dif-

ference in delivery volume between two nodes. If nodes i and j are on the same route, then ηij
= 5; otherwise, ηij = 0.
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(4) SPR: SPR is an approach that involves the defined areas between two energy replenishment

stations, or between a replenishment station and a depot, known as a station service area.

This process initiates by randomly selecting a service area and a customer node within that

area as an operational point. Subsequently, all customer nodes either to the left or right of

the operational point within the service area are deleted. The number of removed nodes is

counted as rd, leaving a remaining removal capacity, denoted as ra, where rd�r and ra = r
−rd. If ra>0, another station service area is randomly selected and the same removal opera-

tion is performed, with a simultaneous update of ra. In the final round of the removal opera-

tion, if a situation where rd>ra arises, ra nodes are randomly chosen for removal from the

set of rd nodes. Algorithm 5 illustrates the implementation framework of the SPR operator.

Algorithm 5. The general framework of the SPR operator
1: Initialize removal list (Cunvisit  ;)
2: partial_solution  currentSol, ra  r
3: Count all service areas and put them into the set Serve.
4: while ra>0 do
5: Randomly select a station service area i2Serve.
6: Randomly select a customer node o within service area i.
7: All m customer nodes either to the left or right of node o within
service area i are deleted.
8: rd  m, Cunvisit  Cunvisit[m, Serve  Serve\{i}
9: if rd>ra
10: ra nodes are randomly chosen for removal from the set of rd
nodes.
11: ra  0
12: end if
13: ra  ra−m
14: end while
15: Update partial_solution, i.e., remove nodes within Cunvisit from
currentSol.
16: Remove redundant charging or battery swapping stations within
partial_solution.

(5) SbR: SbR begins with the random selection of either a charging station or a battery-swap-

ping station. From the route associated with this selected station, the nearestm customer

nodes are removed, wherem can be divisible by r. This procedure is repeated until r cus-

tomer nodes have been removed. The study setsm = 10. Algorithm 6 illustrates the imple-

mentation framework of the SbR operator.

Algorithm 6. The general framework of the SbR operator
1: Initialize m  10, Cunvisit  ;
2: partial_solution  currentSol
3: while |Cunvisit|<r do
4: Randomly select a station i2F[B.
5: Get routes associated with this selected station i.
6: Find the nearest m customer nodes on associated routes to station
i and remove them.
7: Cunvisit  Cunvisit[m
8: end while
9: Update partial_solution, i.e., remove nodes within Cunvisit from
currentSol.
10: Remove redundant charging or battery swapping stations within
partial_solution.

5.3.2. Repair operator. Given that the basic random repair operator, greedy repair opera-

tor, and regret repair operator do not account for the impact of customer node re-insertion on
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route feasibility, this paper proposes three advanced repair operators: IRdI, IGI, and IRgI.

Each repair operator involves a two-stage restoration process. The first stage focuses on ensur-

ing the feasibility of customer delivery routes, while the second stage attends to the feasibility

of vehicle energy consumption.

(1) IRdI: From the removed customer set Cunvisit, randomly select one customer and identify

all permissible insertion locations based on load constraints. Subsequently, an insertable

position is randomly selected for customer insertion. Repeat this step until all r customers

have been reintegrated into the solution. Subsequently, routes that fail to meet power con-

straints, as determined by time-varying factors and energy consumption estimates, undergo

repair via the insertion of energy replenishment stations. Algorithm 7 illustrates the imple-

mentation framework of the IRdI operator.

Algorithm 7. The general framework of the IRdI operator
1: Initialize reintegrated_count  0
2: while reintegrated_count<r do
3: Randomly select a customer node o2Cunvisit.
4: Identify locations where node o allows insertion.
5: Randomly select a permissible position to insert into
partial_solution.
6: reintegrated_count = reintegrated_count+1.
7: updateSol  partial_solution, Cunvisit  Cunvisit\{o}
8: end while
9: Ensure that updateSol meets time-dependent energy consumption con-
straints by potentially inserting energy replenishment stations.

(2) IGI: Initiate by randomly selecting one customer from the set of removed customers, Cunvi-
sit. Identify all feasible insertion positions for this customer, considering load constraints.

Subsequently, compute the objective value addition resulting from the insertion of the cus-

tomer at these potential locations. Choose the location that contributes the least added

value for customer insertion. Continue this procedure until all removed r customers have

been reintegrated into the solution. Afterward, assess the routes considering time-depen-

dent factors and energy consumption estimates, and incorporate energy-supplementary

stations into routes that do not satisfy power constraints for the necessary adjustments.

Algorithm 8 illustrates the implementation framework of the IGI operator.

(3) IRgI: Initially, identify all possible insertion locations for the removed r customers, in

accordance with load constraints. Next, calculate the additional objective value incurred by

inserting customers at different feasible positions. Define customer i‘s regret value, Rei, as

Rei ¼ VC1
i � VC

2
i , where VC1

i represents the least objective value added post customer i
insertion, and VC2

i signifies the second smallest additional objective value following the

insertion of customer i. Compare the regret values of the removed r customers, and choose

the one with the largest regret value for insertion at the location with the least objective

value increased. Repeat this process until r customers have been reintroduced into the solu-

tion. Ultimately, accommodate any routes failing to meet power constraints by incorporat-

ing charging or battery swapping stations, drawing upon time-varying considerations and

energy consumption estimates for guidance.

Algorithm 8. The general framework of the IGI operator
1: Initialize reintegrated_count  0
2: while reintegrated_count<r do
3: Randomly select a customer node o2Cunvisit.
4: Identify set feasible_locations where node o allows insertion.
5: best_location  NULL, least_added_value  INFINITY
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6: for each position2feasible_locations do
7: Calculate added_value in the objective function when node o is
inserted at position.
8: if added_value<least_added_value then
9: least_added_value  added_value, best_location  position
10: end if
11: end for
12: reintegrated_count = reintegrated_count+1.
13: Insert node o at best_location, updateSol  partial_solution,
Cunvisit  Cunvisit\{o}
14: end while
15: Ensure that updateSol meets time-dependent energy consumption con-
straints by potentially inserting energy replenishment stations.

5.4. Acceptance criteria

The acceptance criteria for this research utilize the simulated annealing approach as proposed

by Adulyasak et al. [72]. During the iterative process, if the updated solution updateSol demon-

strates better performance than the current solution currentSol, the updated solution is

retained. Otherwise, the updated solution is maintained with a probability of

p ¼ e� ðzðupdateSolÞ� zðcurrentSolÞÞ=T . The initial temperature is set to T0 = 10000 and follows a cooling

schedule defined by Tn = cTn−1, where the cooling rate c = 0.995. The entire search process

concludes once the number of iterations reaches a predefined maximum limit.

5.5. The specific realization of the adaptive process

The fundamental principle of ALNS involves the adaptive adjustment of an operator’s weight

based on its historical performance. Initially, all operators are assigned equal weight and score,

with this study setting the initial operator weight to 10 and the score to 0. Throughout the algo-

rithm’s iterative process, the destruction and repair operators are first selected following the

roulette wheel rule. Subsequently, these operators are scored differently based on the quality of

the updated solution (updateSol) after each iteration. When the number of iterations attains

the pre-set threshold, the weights of the operators are updated. As a result, operators with

greater weights are more likely to be selected in subsequent iterations.

The search process of ALNS employed in this study consists of Na stages, each of which

must execute Nb iterations. Thus, the maximum number of iterations,maxIter = Na�Nb. Set Na
= 4, Nb = 50, i.e.,maxIter = 200. Assume the weight of operator i in stage j as ωij and the usage

probability of operator i in stage j as pij. Then, under the current weight, pij can be calculated

by the formula pij ¼ oij=
X

h2H
ohj, whereH represents the set of operators to which operator i

belongs. Define the score of operator i in stage j as εij. In this study, four levels of scores are

established, and the update rules for εij are as follows:

εij ¼

εij þ 50; if updateSol � bestSol

εij þ 20; if bestSol < updateSol � currentSol

εij þ 10; if currentSol < updateSol; andupdateSol is accepted

εij; otherwise

ð28Þ

8
>>>>><

>>>>>:

In the scoring scheme, the corresponding destruction and repair operators accrue points

based on the quality of the updated solution relative to both the global optimal and the current

solution. Specifically, if the updated solution surpasses the global optimal solution, the opera-

tors involved receive an additional 50 points. If the updated solution, while not surpassing the
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global optimal, improves upon the current solution, the operators gain 20 points. In cases

where the updated solution is not an improvement over the current one but is still accepted,

the operators are credited with 10 points. Lastly, if the updated solution neither improves

upon the current solution nor is accepted, no points are added to the corresponding destruc-

tion and repair operators.

The update rules of the operator weights are as follows:

oiðjþ1Þ ¼

oij; pij ¼ 0

ð1 � yÞoij þ y
pij

εij
; pij > 0

ð29Þ

8
><

>:

where ωi(j+1) denotes the weight of operator i in stage (j+1), θ is the weight adjustment coeffi-

cient, indicating the importance of historical weight and operator performance when the oper-

ator weight is updated. Set θ = 0.3. Additionally, πij represents the number of times operator i
is selected during the Nb iterations of stage j. Should operator i not be utilized during the cur-

rent stage j, its weight remains unchanged in the subsequent stage. Following a weight update,

both εij and πij are reset to zero.

6. Experiments and analysis

This section offers a detailed account of the test works conducted on the proposed model and

algorithm. It covers data preparation, algorithm parameter tuning, experimental evaluations

of the superiority of the TDOEVRP-HERS and HALNS, and a thorough analysis of the

computational experiences with the HALNS.

6.1. Data description

Currently, there is no standardized test dataset specifically tailored for TDOEVRP-HERS, and

the geographical distribution of customers varies when 3PL fleets undertake transportation

tasks for different enterprises. Consequently, this study refines Solomon’s VRP test sets [73],

encompassing clustered distribution test sets (C-type), random distribution test sets (R-type),

and randomly clustered distribution test sets (RC-type), utilizing these improved test instances

as the experimental dataset. Notably, numerous scholars have generated new test instances

based on Solomon’s test sets. For example, Schneider et al. [74] employed the Solomon test

sets as a benchmark and introduced 21 charging stations into each test instance, thereby creat-

ing the EVRP experimental dataset they necessitated.

Building upon the work of Schneider et al., this study further improves the test instances by

converting some of the charging station nodes into battery swapping station nodes. Therefore,

new test sets tailored for TDOEVRP-HERS are constructed. Each test instance consists of one

depot, 100 customers, five charging stations, and five battery swapping stations. The data pro-

vided in these test instances include the coordinates of all vertices, as well as the delivery vol-

umes and service durations for each customer.

To meet the test requirements of this paper, the following data are supplemented: (1) Refer-

ring to the update frequency of the traffic congestion index in Beijing, set the duration of each

time period asH = 15 minutes, thereby dividing the whole day into 96 time periods. (2) The

earliest working time for the enterprise’s depot is set as 7:00 a.m. During the traffic peak hours

of morning (8:00–9:00) and evening (17:30–19:00), the third-party EV fleet operated at a speed

of 20 km/h on the road. (3) The EV fleet is assumed to operate with three time-varying speeds

during normal time periods. Utilize the remainder function χ = mod(R,3) to determine these

three different velocity values, where R represents the R-th time period. When χ takes the
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value 1, 2, or 0, respectively, it corresponds to the respective time-varying travel speeds of the

EV as 54 km/h, 72 km/h, or 42 km/h. (4) The remaining parameters of the numerical experi-

ment in this paper are set as follows: ϕd = 1.184692, φd = 1.112434, g = 9.8 m/s2, θij = 0˚, Cr =

0.012, L = 3000 kg, Rc = 0.7, Aw = 3.8 m2, ρ = 1.2041 kg/m3,W = 800 kg, Q = 50 kWh, η = 90%,

pe = 60 kW, φ = 10 min, c1 = 120 yuan/vehicle, c2 = 0.5 yuan/min, c3 = 0.4 yuan/min, c4 = 0.7

yuan/min, c5 = 50 yuan/time.

The prescribed methodologies within the HALNS framework are implemented using the

MATLAB R2020b software and performed on a microcomputer, furnished with a 3.60 GHz

processor and a memory capacity of 16 GB of RAM.

6.2. Parameter tuning

An initial series of experiments is undertaken to fine-tune the parameters of the ALNS meta-

heuristic, as detailed in Table 2. For this purpose, 27 representative instances, as proposed by

Ticha et al. [75], are chosen. These include the SOL instances r101, r105, c103, c104, rc101,

and rc105, each with 50 customers, and the NEWLET instances 1, 2, and 3, each comprising

50 customers and 100 nodes. These nine instances are considered for three correlation tiers:

No-Correlation (NC), Weak Correlation (WC), and Strong Correlation (SC).

Utilizing these instances, the following procedure is embraced. Initially, the parameters of

the RlR heuristic are tuned. The ALNS scheme is then implemented, limited to this destruction

operator and the IGI operator. Successively, attention is directed to one of the parameters, test-

ing several values for it. For each value, the tuning instances are solved five times; the value

that consistently manifests the best average solution quality is ultimately adopted.

For the SbR heuristic, an identical methodology is applied. Other parameters are systemati-

cally adjusted in a similar manner, but the comprehensive ALNS scheme is employed rather

than relying on individual destruction and repair heuristics.

6.3. Experimental evaluation of the proposed model and algorithm

This section aims to validate the superiority of the proposed model and algorithm through five

distinct experiments. Each experiment corresponds to a separate subsection and focuses on a

specific aspect of the model or algorithm. Two experiments, found in Subsections 6.3.1 and

6.3.5, are dedicated to examining the effectiveness of the HALNS algorithm. Subsection 6.3.1

evaluates the efficiency of the HALNS in solving test sets featuring diverse geographic distribu-

tions of customers. Subsection 6.3.5 assesses the HALNS’s robustness to environmental

Table 2. Parameter values.

Operations Parameters Selected value

Related Removal Weight associated with distance: α1 0.6

Weight associated with demand: α2 0.4

Route dependency between node i and node j: ηij 5

Station-based Removal The number of customers allowed to be removed at a time:m 10

Acceptance criteria Initial temperature: T0 10000

Cooling rate: c 0.995

Adaptive strategy Initial operator weights 10

Get a new global best solution 50

Get an improved solution 20

Ger an accepted non-improving solution 10

Weight adjustment coefficient: θ 0.3

https://doi.org/10.1371/journal.pone.0291473.t002
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disturbances, with a specific emphasis on its ability to achieve high-quality solutions amidst

varying levels of traffic congestion. The other three experiments, detailed in Subsections 6.3.2,

6.3.3, and 6.3.4, are designed to validate the advantages of the TDOEVRP-HERS model. Sub-

section 6.3.2 investigates whether switching from FVs to EVs indeed leads to a reduction in

the overall transportation costs of logistics fleets while also promoting a sustainable urban

environment. Subsection 6.3.3 analyzes whether a hybrid energy replenishment strategy out-

performs a single replenishment strategy. Finally, Subsection 6.3.4 examines whether employ-

ing a 3PL fleet is more economical and environmentally friendly than utilizing a self-operated

fleet. In this way, the five experiments comprehensively evaluate the performance of the

HALNS algorithm and the TDOEVRP-HERS model, providing valuable insights for practi-

tioners and policymakers.

6.3.1. EV route planning for different test instances. Various test instances, featuring

diverse customer geographic distributions, serve to ascertain the feasibility of the HALNS pro-

posed herein. Table 3 shows the test results, where TN signifies the test set name, TC signifies

the total distribution cost incurred by the 3PL fleet (in yuan), FC signifies the fixed EV dis-

patching cost (in yuan), SC signifies the customer service cost (in yuan), DC signifies the vehi-

cle travel cost (in yuan), EC signifies the EV energy replenishment cost (in yuan), EN signifies

the number of energy replenishment times for all EVs, DN signifies the number of EVs

enabled for distribution, RT signifies the running time of HALNS (in second), and AVE

denotes the average value.

The test results depicted in Table 3 reveal that: (1) The fixed EV dispatching costs, travel

costs, and customer service costs account for an average of 29.27%, 39.48%, and 18.30% of the

total distribution costs, respectively, totaling 87.04%. This finding suggests that vehicle fixed

dispatching costs, travel costs, and customer service costs remain the primary factors affecting

distribution costs in urban distribution. In practice, when enterprises engage 3PL fleets for

urban distribution, they should require the fleet to use EVs with larger capacities to minimize

the number of EVs dispatched. At the same time, to avoid increased travel costs due to traffic

congestion, logistics fleets should consider the effect of time-varying vehicle speeds on travel

time when performing distribution tasks. Furthermore, it is recommended that fleet managers

train fleet members to reduce customer service time and improve service efficiency, which can

not only reduce the service cost that enterprises have to pay for the fleet, but also improve the

competitiveness of the transport fleet. These efforts can ultimately reduce the total distribution

Table 3. Test results for different test sets.

TN TC FC DC SC EC EN DN RT

C101 989.05 360.00 358.57 200.00 70.48 2.00 3.00 238.56

C102 1000.63 360.00 368.44 200.00 72.19 2.00 3.00 211.47

R101 1113.75 240.00 459.87 200.00 213.88 4.00 2.00 258.58

R102 1134.46 240.00 480.70 200.00 213.76 4.00 2.00 270.08

RC101 1156.86 360.00 444.34 200.00 152.52 3.00 3.00 265.48

RC102 1139.44 360.00 424.00 200.00 155.44 3.00 3.00 281.32

C201 1072.75 360.00 415.96 200.00 96.79 2.00 3.00 248.05

C202 1038.80 360.00 406.98 200.00 71.82 2.00 3.00 239.94

R201 1055.75 240.00 443.63 200.00 172.12 4.00 2.00 257.85

R202 1092.29 240.00 458.52 200.00 193.77 4.00 2.00 270.69

RC201 1156.24 360.00 463.43 200.00 132.81 3.00 3.00 258.32

RC202 1168.23 360.00 454.08 200.00 154.15 3.00 3.00 262.41

AVE 1093.19 320.00 431.54 200.00 141.64 3.00 2.67 255.23

https://doi.org/10.1371/journal.pone.0291473.t003
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cost of the fleet and foster stronger collaborations between enterprises and 3PL fleets. (2) EV

energy replenishment costs during distribution account for a range of 6.91% to 19.20% of the

total distribution cost, with an average of 12.82%. It is noteworthy that the majority of EVs on

distribution routes only require a single energy supplement at most to complete transportation

tasks. Thus, using EVs for urban distribution has a negligible effect on distribution efficiency.

Compared to traditional FVs, EVs incur lower energy consumption and offer additional

advantages such as zero emissions and reduced noise levels. Embracing EVs for urban distri-

bution can aid logistics fleets in reducing energy consumption and gaining cost edges, all while

decreasing the environmental impact of transport activities. This aligns with the vision of pol-

icymakers who seek to promote green and sustainable development of urban distribution. (3)

The HALNS’s running time ranged from a minimum of 211.47 seconds to a maximum of

281.32 seconds, with an average of 255.23 seconds. This result indicates that the HALNS pro-

posed in this study can provide high-quality EV distribution and energy replenishment route

planning solutions that meet decision objectives in a reasonable period, demonstrating both

high efficiency and feasibility.

Fig 3 illustrates the EV distribution and energy replenishment route planning solutions for

the C103, C203, R103, and RC203 test instances. The solutions for each test instance involving

100 customers are shown clearly and distinctly in the figure, with few instances of route

detours and intersections. Based on test cases reflecting a realistic delivery scale, the proposed

algorithm demonstrates its potential to consider various practical factors and offer valuable

guidance for the transportation route optimization of logistics fleets.

6.3.2. Comparative tests of TDOEVRP and TDOFVRP. A comparative experiment is

conducted to analyze the differences in urban distribution costs between the utilization of EVs

and FVs. Multi-type test sets are employed while keeping relevant parameters unchanged.

Fig 3. EV route planning solutions for different test instances.

https://doi.org/10.1371/journal.pone.0291473.g003
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While FVs do not account for energy supplement time during distribution, they generate fuel

consumption and carbon emissions. Following the methodology and experimental parameters

employed by Liu et al. [20] for calculating fuel consumption and carbon emissions of FVs in

their VRP study, the associated costs are incorporated into the distribution expenses of the

logistics fleet. Table 4 presents the results of comparative experiments between TDOEVRP

and TDOFVRP (Time-Dependent Open Fuel Vehicle Routing Problem), where TD signifies

the total EV travel distance, GC signifies fuel consumption costs, and CC signifies carbon

emission costs incurred by FVs. Remaining symbols maintain their previously established

definitions.

The test results depicted in Table 4 reveal that: (1) Using EVs instead of FVs for urban dis-

tribution offers significant cost savings for logistics fleets. Specifically, substituting EVs for FVs

leads to an average reduction of 31.03% in distribution costs, with the energy consumption

cost for the logistics fleet decreasing from an average of 36.56% to 12.36% of the total distribu-

tion cost—a remarkable decline of 66.20%. This finding highlights the advantages of EV fleets

in urban distribution, including energy savings and reduced operational expenses. To enhance

competitiveness, logistics fleets should adopt EVs for their distribution operations, which

aligns with society’s call for sustainable development within the logistics industry. Government

departments should promote EV distribution by strengthening the construction and manage-

ment of EV energy replenishment infrastructures and enhancing the convenience and safety

of EV fleet use. (2) Using EVs for urban distribution leads to a mere 4.69% average increase in

total distance traveled compared to using FVs. This finding can be attributed to the well-devel-

oped energy replenishment infrastructure in urban areas, which makes it easy for EVs to locate

nearby charging stations or battery swapping stations. Additionally, using FVs for urban distri-

bution generates an average carbon emission cost of 14.60 yuan, while EVs produce no carbon

emissions, improving urban air quality and promoting sustainable logistics transportation.

However, it is worth noting that the carbon emission cost of FV distribution accounts for only

0.92% of the total distribution cost, which is less than 1% of the proportion, indicating that

logistics fleets do not prioritize reducing emissions when using FVs for urban distribution.

This result suggests that China’s current carbon price is too low to incentivize logistics fleets to

curtail emissions actively. Therefore, Chinese policymakers should formulate more reasonable

carbon trading-related policies to promote sustainable logistics transportation.

6.3.3. Comparative tests of different energy replenishment strategies. A comparative

experiment is conducted to assess the effects of various energy replenishment strategies on EV

distribution costs, including Hybrid Energy Replenishment Strategy (HERS), Pure Charging

Strategy (PCS), and Pure Battery Swapping Strategy (PBSS). The experiment uses multiple

types of test sets while keeping the other parameters unchanged. The comparative test results

of the three energy replenishment strategies are presented in Table 5, where TT is the total

Table 4. Test results of EV urban distribution and FV urban distribution.

TN TDOEVRP TDOFVRP

TC TD EC TC TD GC CC

C104 1012.78 559.83 70.67 1506.34 511.98 527.68 13.28

R104 1108.42 714.62 183.14 1607.36 691.12 611.43 15.38

RC104 1132.64 709.86 136.66 1629.58 688.85 599.30 15.08

C204 1067.80 644.38 92.52 1549.24 608.24 541.27 13.62

R204 1100.51 704.67 175.28 1598.73 666.73 594.06 14.95

RC204 1145.95 725.49 153.26 1631.47 701.58 607.68 15.29

AVE 1094.68 676.48 135.26 1587.12 644.75 580.24 14.60

https://doi.org/10.1371/journal.pone.0291473.t004
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distribution time for all EVs (in minutes), which encompasses EVs’ travel time on the route,

customer service time, and energy replenishment time, and ET is the total energy replenish-

ment time for all EVs (in minutes). Remaining symbols maintain their previously established

definitions.

The test results depicted in Table 5 reveal that: (1) In each test instance, the EV energy

replenishment time achieved with PBSS is significantly lower than the other two strategies.

Compared to HERS, PBSS reduces EV energy supplement time by a range of 51.30% to

69.25%, with an average saving of 58.20%. Compared to PCS, PBSS exhibits even more sub-

stantial savings in EV energy supplement time, with an impressive average time-saving of

79.80%. However, it should be noted that PBSS comes with higher distribution costs for logis-

tics fleets. The total distribution costs incurred by PBSS are the highest among all test

instances. On average, the use of PBSS increases the distribution cost of the logistics fleet by

4.74% compared to PCS. Therefore, when the 3PL fleet undertakes distribution tasks for enter-

prises, it is crucial to assess the urgency of customer package delivery. If there are time-sensi-

tive customers, opting for battery swapping stations for EV energy replenishment can enhance

delivery efficiency. On the other hand, if customers do not prioritize timeliness, charging sta-

tions can be utilized to reduce distribution costs. (2) Although HERS does not offer the opti-

mal solution in terms of both total distribution cost and total distribution time, it exhibits a

modest increase in distribution cost of only 2.65% on average compared to PCS, which has the

lowest distribution cost. Similarly, compared to PBSS, which achieves the shortest distribution

time, HERS shows a slight increase in distribution time by an average of 2.94%. Despite PCS

being cost-effective, it requires an average of 5.69% more distribution time than HERS. Like-

wise, although PBSS reduces distribution time, it incurs an average of 1.90% higher distribu-

tion costs than HERS. These findings highlight the ability of HERS to strike a balance between

total distribution costs and distribution efficiency, providing flexibility in energy replenish-

ment operations during transportation tasks. Therefore, using HERS to support the urban dis-

tribution of EV fleets is a more scientific and reasonable approach.

6.3.4. Comparative tests of open routing and closed routing. A comparative experiment

is conducted to analyze the differences in urban distribution route planning between self-oper-

ated transport fleets and 3PL fleets. Multi-type test sets are utilized while keeping the relevant

parameters unchanged. It should be noted that the self-operated transport fleet follows a closed

routing, which requires returning to the enterprise’s depot upon completing the distribution

task. Conversely, the 3PL fleet adopts an open routing, eliminating the need to return to the

depot after task completion. The test results are presented in Table 6, where TCSR denotes the

proportion of total distribution cost saved by hiring a 3PL fleet instead of a self-operated trans-

port fleet (in %), and TDSR denotes the proportion of total distribution distance saved by hir-

ing a 3PL fleet (in %). Remaining symbols maintain their previously established definitions.

Table 5. Test results for different energy replenishment strategies.

TN HERS PBSS PCS

TC TT ET TC TT ET TC TT ET

C105 1007.10 1282.18 65.04 1020.17 1240.33 20.00 991.96 1322.38 103.83

R105 1070.84 1470.82 82.14 1088.34 1436.68 40.00 1001.68 1545.74 194.03

RC105 1141.21 1460.95 73.69 1157.13 1424.26 30.00 1145.04 1602.24 169.58

C205 1083.54 1433.33 69.37 1123.98 1357.96 30.00 1076.64 1483.19 125.23

R205 1087.02 1502.04 85.00 1105.03 1470.05 40.00 1021.88 1588.12 189.08

RC205 1122.05 1422.36 74.36 1140.78 1391.55 30.00 1103.65 1522.42 162.21

AVE 1085.29 1428.61 74.93 1105.90 1386.81 31.67 1056.81 1510.68 157.33

https://doi.org/10.1371/journal.pone.0291473.t005
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The test results depicted in Table 6 reveal that: (1) Engaging a 3PL fleet leads to an average

savings of 6.20% and 5.61% in total distribution cost and time, respectively, compared to

deploying a self-operated transport fleet. This advantage stems from the fact that when a third-

party EV fleet is hired, EVs are not required to return to the company’s depot after completing

the distribution task. As a result, the empty travel time of EVs is reduced, leading to decreased

travel costs in logistics transportation. Therefore, for companies with an imperfect warehouse

network layout, specifically lacking multiple depots, opting for a third-party EV fleet instead of

a self-operated fleet can effectively reduce their operational expenses. (2) Hiring a 3PL fleet

leads to a considerable reduction in EV travel distance compared to dispatching a self-operated

transport fleet, with an average decrease of 9.35%. This finding highlights the potential for fur-

ther optimizing EV distribution-energy supplement route planning when employing 3PL

fleets, resulting in more efficient distribution solutions for EVs. Therefore, promoting this col-

laboration model is recommended for practical logistics distribution.

6.3.5. Robustness analysis of HALNS under different traffic conditions. While keeping

other experimental parameters constant, five distinct combinations of traffic conditions (Ⅰ, Ⅱ,

Ⅲ,Ⅳ, Ⅴ) are designed. These conditions are outlined in detail in Table 7, where STC repre-

sents severe traffic congestion during the current time period, MTC represents mild traffic

congestion during the current time period, TFS indicates that the traffic flows smoothly during

the current time period, and the values provided represent the average travel speeds of EVs

under the respective traffic scenarios (in km/h). Employing the RC107 test set for experimen-

tation, the test results are presented in Table 8, where DT denotes the travel time on the routes

(in min), and PU denotes the total energy consumption of all transport EVs (in kWh).

Remaining symbols maintain their previously established definitions.

The test results depicted in Table 8 reveal that: (1) The enhancement of traffic conditions

yields a gradual reduction in the travel time of EVs during transit. Transitioning from traffic

scenario Ⅰ to scenario Ⅴ, the en-route travel time of EVs diminishes by 42.62%. This finding

Table 6. Test results of open routing and closed routing.

TN Open routing Closed routing TCSR TDSR

TC TT TD TC TT TD

C106 1002.36 1279.26 562.50 1093.05 1376.03 626.16 8.30% 10.17%

R106 1107.02 1473.55 706.69 1162.77 1545.78 812.59 4.79% 13.03%

RC106 1131.06 1459.17 725.88 1195.33 1544.59 762.46 5.38% 4.80%

C206 1063.31 1438.46 648.26 1136.80 1520.12 704.33 6.46% 7.96%

R206 1119.37 1508.03 708.35 1166.29 1577.66 797.80 4.02% 11.21%

RC206 1142.90 1431.86 735.15 1245.90 1536.31 806.98 8.27% 8.90%

AVE 1094.34 1431.72 681.14 1166.69 1516.75 751.72 6.20% 9.35%

https://doi.org/10.1371/journal.pone.0291473.t006

Table 7. Average speeds of EVs in different traffic conditions.

Traffic scenarios Different traffic conditions and their time distributions

STC TFS MTC TFS STC

[07:00–9:00] [09:00–12:00] [12:00–14:00] [14:00–17:00] [17:00–19:00]

Ⅰ 20 35 30 35 20

Ⅱ 25 45 40 45 25

Ⅲ 30 55 50 55 30

Ⅳ 35 65 60 65 35

Ⅴ 40 75 70 75 40

https://doi.org/10.1371/journal.pone.0291473.t007
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emphasizes the affirmative significance of ameliorated urban traffic on transport efficiency. (2)

While the amelioration of traffic conditions boosts the transportation efficiency of 3PL fleets, it

also leads to a notable escalation in energy consumption. Shifting from traffic scenario Ⅰ to sce-

nario Ⅴ, the energy consumption of EVs rises by 190.26%. Heightened energy consumption

necessitates more frequent energy supplements. Consequently, EVs fail to achieve the lowest total

distribution cost in traffic transport scenario Ⅴ, but instead achieve it in transportation scenario

Ⅲ. This is attributed to the fact that the transition from transportation scenarioⅢ to scenario Ⅴ
results in a 75.87% increase in energy replenishment costs, whereas the reduction in travel costs

amounts to only 16.81%. The rate of increase in energy costs surpasses the decrease in travel

costs. Thus, it becomes apparent that when planning the transportation route for the urban distri-

bution fleet, fleet managers must establish a reasonable travel speed range to strike the optimal

balance between efficiency and total cost. (3) In comparison to traffic scenarioⅢ, which boasts

the lowest total distribution cost, the average disparity between the total distribution cost of other

traffic scenarios and scenarioⅢ is 3.46%. This minor gap in distribution costs showcases the

adaptability and route optimization capabilities of the HALNS based on real-time traffic condi-

tions and time-dependent constraints. When traffic conditions deteriorate, the proposed HALNS

prioritizes the delivery of customers in closest proximity to minimize travel time. Conversely,

when traffic conditions improve, the HALNS adeptly schedules the insertion of energy-supple-

mentary stations, effectively striking a balance between energy costs and congestion impacts.

6.4. Algorithm comparative test

To assess the efficacy of the proposed HALNS, a series of comparative analyses are performed,

spanning two experimental categories: comparisons with an exact solver and other metaheur-

istics. For small-scale computations, outcomes from the HALNS are juxtaposed with those

from the widely-recognized CPLEX solver, while for large-scale computations, HALNS’s opti-

mized results are set against those from two renowned metaheuristics. These benchmarks

facilitate a thorough appraisal of the HALNS’s performance across varying scales, underscor-

ing its aptitude and preeminence in addressing large-scale optimization challenges.

6.4.1. Comparison with exact solver. In order to validate the proposed mathematical

model and assess the performance of the HALNS algorithm, the CPLEX solver version 12.6 is

used to address small-scale test instances. These results are then juxtaposed against those pro-

duced by the HALNS. To ensure the generality of the experiment, selected subsets from

Goeke’s dataset [76] are utilized, with certain charging station coordinates adjusted to battery-

swapping station coordinates to accommodate experimental requirements. Each test instance

is run through HALNS 10 times to discern the optimal result. The findings are tabulated in

Table 9. Within the table, NC denotes the number of customers, NS indicates the number of

charging stations, NB signifies the number of battery swapping stations, and ‘gap’ highlights

the gap between the ALNS-derived solution and that from CPLEX. Remaining symbols main-

tain their previously established definitions.

Table 8. Test results of the TDOEVRP-HERS in different traffic scenarios.

Traffic scenarios TC TT DT EC EN PU

Ⅰ 1219.85 1819.70 1319.70 0.00 0.00 107.86

Ⅱ 1214.73 1629.45 1109.45 100.00 2.00 143.74

Ⅲ 1157.57 1490.87 910.23 142.45 3.00 182.47

Ⅳ 1173.58 1430.83 835.01 196.07 5.00 240.88

Ⅴ 1189.12 1369.37 757.19 250.53 6.00 313.07

https://doi.org/10.1371/journal.pone.0291473.t008
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Table 9 delineates that the HALNS is adept at efficiently tackling small-scale TDOEVRPs-

HERS. Given the lower number of vertices, HALNS consistently identifies exact solutions that

coincide with those derived from the CPLEX solver. However, considering the NP-hard nature

of TDOEVRP-HERS, the computational duration for CPLEX escalates dramatically with

increasing instance size. As a result, CPLEX’s average execution time for all test instances

clocks in at 105.83 seconds, in stark contrast to HALNS’s mere average of 2.26 seconds. This

observation accentuates HALNS’s proficiency in navigating towards optimal solutions while

preserving exceptional efficiency.

6.4.2. Comparison with other metaheuristics. To further validate the superiority of

HALNS, an Ant Colony System (ACS) and a Genetic Algorithm (GA) are developed to tackle

the TDOEVRP-HERS. The parameter settings of ACS align with the work studied by Li et al.

[77], while the parameter settings of GA follow the experimental setup of Park et al. [78].

Multi-type test sets are used to compare the performance of HALNS, ACS, and GA. Table 10

reports the test results, with the symbols retaining their previously defined meanings.

The test results depicted in Table 10 reveal that: (1) In each test instance, HALNS consis-

tently outperforms ACS and GA in terms of total distribution cost and travel distance. On

average, HALNS achieves savings of 3.37% in distribution cost and 3.18% in travel distance

compared to ACS, and 5.09% in distribution cost and 4.31% in travel distance against GA,

respectively. Fig 4 visually illustrates the gaps in the objective function values among the three

algorithms, clearly showing HALNS routinely yielding the most favorable objective function

values. Meanwhile, Fig 5 showcases the EV distribution route schemes generated by HALNS,

ACS, and GA for test set C208. Unmistakably, the HALNS-generated solution delineates the

most coherent distribution routes with minimal situations of route detours and intersections.

In addition, the energy replenishment stations selected in the HALNS solution are conve-

niently located near the served customers, while the solutions generated by ACS and GA allo-

cate some energy supplement stations far away from customers to the transport fleet,

suggesting that ACS and GA may not reasonably optimize the energy supplement route in

transportation, which will affect distribution timeliness and lower customer satisfaction. These

findings exhibit the effectiveness of HALNS in optimizing logistics distribution routes,

improving logistics distribution efficiency, and reducing logistics distribution costs. (2)

Table 9. Small-scale experimental results.

TN NC NS NB CPLEX HALNS gap

TC RT TC RT

c101C5 5 2 1 252.58 20.65 252.58 0.61 0.00

c101C10 10 3 2 400.09 88.39 400.09 1.43 0.00

c103C15 15 3 2 414.42 201.72 414.42 4.49 0.00

c202C10 10 4 1 375.64 82.74 375.64 1.36 0.00

c202C15 15 4 1 522.65 196.43 522.65 5.28 0.00

r102C10 10 2 2 387.24 81.98 387.24 1.53 0.00

r105C5 5 2 1 209.23 19.78 209.23 0.83 0.00

r201C10 10 3 1 285.65 86.33 285.65 1.47 0.00

r202C15 15 4 2 478.72 217.45 478.72 4.50 0.00

rc102C10 10 2 2 497.03 82.91 497.03 1.42 0.00

rc105C5 5 3 1 244.53 21.43 244.53 0.71 0.00

rc201C10 10 3 1 421.95 85.67 421.95 1.40 0.00

rc202C15 15 3 2 480.59 190.32 480.59 4.34 0.00

AVE 10.38 2.92 1.46 382.33 105.83 382.33 2.26 0.00

https://doi.org/10.1371/journal.pone.0291473.t009
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Despite the strong optimization capabilities of the HALNS, it demands an average of 17.58%

more running time than the ACS and 15.52% more than the GA. Fig 6 highlights the time-con-

suming calculation burden of the three algorithms through a line graph when processing dif-

ferent test instances. This result can be attributed to three key aspects of the HALNS:

operational complexity, depth of search, and adaptivity overhead. Firstly, HALNS integrates

multiple destroy and repair heuristics, enabling it to explore a broader solution space and

thereby increasing its potential to uncover high-quality solutions. However, the utilization of

these operators tends to be computationally taxing, and thus extends the overall processing

time. Secondly, the adaptive nature of the HALNS means that it will often perform a more

thorough and exhaustive search of the solution space, as compared to ACS or GA. This deeper

exploration can yield better results but requires more processing time. Finally, unlike simpler

algorithms like ACS or GA, HALNS incorporates an adaptivity mechanism where it modifies

the use of different operators based on their performance. This feature enhances the flexibility

and robustness of HALNS, but it contributes to the increased running time as the algorithm

Table 10. The results of algorithm comparative test.

TN HALNS ACS GA

TC TD RT TC TD RT TC TD RT

C108 985.61 560.69 216.20 1003.16 578.41 167.04 1007.47 577.99 178.72

R108 1086.89 706.54 231.47 1135.61 711.59 193.68 1185.61 742.15 196.27

RC108 1137.81 728.62 224.97 1163.36 738.14 185.37 1215.70 742.01 179.10

C208 1065.27 650.32 218.69 1093.36 661.78 179.05 1124.51 667.95 183.98

R208 1103.65 712.40 235.85 1137.62 751.30 201.57 1142.04 754.02 194.99

RC208 1134.01 721.13 225.66 1151.99 739.40 188.31 1155.23 731.91 199.51

C109 993.57 571.43 221.53 1022.23 589.35 169.35 1027.19 591.74 181.63

R109 1079.90 701.45 240.02 1138.55 720.28 206.19 1177.40 739.46 194.53

RC109 1142.96 735.19 217.48 1194.53 764.62 177.56 1217.61 778.53 181.92

C209 1063.46 647.28 211.74 1102.63 670.19 173.26 1122.77 678.86 191.06

R209 1114.37 719.53 227.91 1168.75 767.41 199.68 1167.39 770.05 192.56

RC209 1140.85 732.95 231.79 1191.07 764.03 186.95 1205.46 781.52 209.42

AVE 1087.36 682.29 225.28 1125.24 704.71 185.67 1145.70 713.02 190.31

https://doi.org/10.1371/journal.pone.0291473.t010

Fig 4. Objective function values of each algorithm for solving large-scale problems.

https://doi.org/10.1371/journal.pone.0291473.g004
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needs to constantly evaluate and adjust the weights assigned to various heuristics. Conse-

quently, optimizing the solving efficiency of HALNS, without compromising solution quality,

will significantly influence its broader application in future contexts.

6.5. Sensitivity analysis

Upon validating the superior performance of the proposed HALNS, sensitivity analyses are

performed on the destruction and repair operators to assess their efficiency and influence on

computational costs. For these evaluations, test set R101 is specifically chosen, and the average

changes between the initial and final solutions, as determined by the HALNS algorithm, are

calculated. These findings are tabulated in Table 11. To scrutinize the efficacy of each operator,

the HALNS is executed using a singular pair of destruction-repair operators, and improve-

ments in the solutions are documented. A subsequent analysis, focusing on the individual per-

formance of the destruction and repair operators, processes the average changes noted in

Table 11 for each operator and visually represents them in Fig 7.

Results from Table 11 indicate that the optimal pair of heuristics is the combination of RlR

with IGI and IRgI. These two pairings yield an average enhancement of approximately 120%

from the initial to the final solution. Upon examining Fig 7, it is evident that RlR serves as the

most effective destruction operator (Fig 7(A)), while IGI stands out as the superior repair oper-

ator (Fig 7(B)), showcasing a 12.20% overall improvement when compared to IRdI.

Fig 5. The EV distribution solution of each algorithm.

https://doi.org/10.1371/journal.pone.0291473.g005

Fig 6. The processing time of each algorithm for solving large-scale problems.

https://doi.org/10.1371/journal.pone.0291473.g006
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In conclusion, the operators employed in the proposed HALNS are pivotal in shaping

computational costs. They enhance search ability by adeptly selecting and integrating elements

during the solution formulation. By carefully choosing the most fitting destruction and repair

operators, the HALNS can traverse the solution space with greater efficacy and attain marked

enhancements in solution quality with diminished computational demands.

6.6. Discussion

Optimization algorithms have evolved remarkably, fostering advancements across various

domains, ranging from online learning, scheduling, and transportation to medicine and data

classification. Given the increasing complexity of contemporary decision problems, incorpo-

rating advanced algorithms will be instrumental in deriving more effective solutions. The deci-

sion problem tackled in this research, the TDOEVRP-HERS, predominantly relied on the

HALNS algorithm. While HALNS offers significant merits, it becomes imperative to juxtapose

it with other advanced optimization methods to foster comprehensive solution frameworks.

Advanced optimization techniques, such as hybrid heuristics, metaheuristics, hyperheuris-

tics, self-adaptive algorithms, island algorithms, and polyploid algorithms, bring forth

Table 11. Sensitivity analysis on the performance of destruction and repair operators.

Destruction

operators

Repair

operators

Relative changes on the solutions by the pair of destruction-repair

operators

RdR IRdI 96%

IGI 118%

IRgI 115%

BWR IRdI 103%

IGI 110%

IRgI 107%

RlR IRdI 104%

IGI 120%

IRgI 120%

SPR IRdI 98%

IGI 106%

IRgI 105%

SbR IRdI 100%

IGI 108%

IRgI 114%

https://doi.org/10.1371/journal.pone.0291473.t011

Fig 7. Performance of destruction (a) and repair (b) operators.

https://doi.org/10.1371/journal.pone.0291473.g007
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specialized capabilities, enabling researchers to address the nuanced facets of complex decision

problems. Their adaptability and customizability render them suitable for a plethora of appli-

cations. For instance, an online-learning-based evolutionary many-objective algorithm has

been manifested to optimize decision-making in dynamic environments [79]. Adaptive poly-

ploid memetic algorithms have demonstrated effectiveness in scheduling applications, such as

optimizing truck schedules at cross-docking terminals [80]. In the realm of VRP, algorithms

that accommodate both exact and metaheuristic methodologies have been applied, ensuring

robust solutions even in multi-objective settings [81].

Given the myriad applications of these algorithms, their relevance to TDOEVRP-HERS

cannot be understated. Hybrid meta-heuristic algorithms, for instance, have shown consider-

able promise in supply chain network designs under uncertain conditions [82], suggesting

potential adaptability for electric vehicle routing under time-varying traffic networks. Simi-

larly, the customizability offered by hyper-heuristics can be of paramount importance, espe-

cially when devising metaheuristics for continuous optimization [83]. This points towards

their potential utility in fine-tuning the solutions for TDOEVRP-HERS.

In conclusion, while the HALNS has proven its merit in this research, the vast landscape of

advanced optimization algorithms holds significant promise. By embracing a multifaceted

approach that incorporates insights from various algorithms and domains, the research com-

munity can pave the way for more affluent, nuanced solutions to intricate decision problems

like TDOEVRP-HERS.

7. Conclusions

The study investigates the TDOEVRP-HERS as applicable to urban distribution. Therefore, an

approach is devised to estimate EV energy consumption within a dynamic urban traffic net-

work. In focusing on third-party logistics distribution, a MIP model is developed with the

objective of minimizing the 3PL fleet’s total distribution costs. Based on the model’s character-

istics, a HALNS is designed to tackle the model. Comprehensive numerical experiments are

conducted to verify the feasibility of the proposed model and algorithm. The key findings of

the experiments are as follows:

1. Cost components: Principal determinants affecting transportation fleets’ distribution costs

encompass fixed vehicle dispatching, travel expenses, and customer service costs. Employ-

ing EVs in urban transit settings does not lead to exorbitant costs. In fact, EVs are more

energy-efficient than FVs, enhancing the competitive edge of 3PL fleets. Their low-carbon

footprint further accentuates urban logistical transport’s sustainability, mitigating green-

house gas emissions and conserving the urban environment.

2. 3PL fleets’ flexibility: The capacity of 3PL fleets to provide adaptable distribution solutions

negates the necessity to return to the depot post-task, optimizing route planning and reduc-

ing travel distances. Leveraging the benefits of energy conservation and low emissions by

EVs, they can substantially diminish greenhouse gas emissions, endorsing eco-friendly

transportation practices. Especially given the rising inclination towards low-emission zones

in cities, collaboration with third-party EV fleets becomes essential for enterprises.

3. Energy supplement strategies: The battery swapping method, while enhancing distribution

efficacy, entails higher costs. Conversely, the EV charging approach is cost-effective but

time-intensive. The hybrid strategy, though not optimal in terms of cost and time, exhibits

minimal cost variance when compared to the charging method and mirrors the battery-

swapping technique in distribution time. Recognizing the diverse energy demands of
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varying routes and schedules, hybrid strategies grant the 3PL fleet the leeway to customize

energy top-ups.

Based on the above findings, recommendations emerge. Enterprises, especially those grap-

pling with non-optimized warehousing networks, should actively contemplate synergies with

third-party EV fleets. Not only does this present an avenue for operational cost reductions, but

it also ushers in a shift towards eco-friendly urban logistics.

While this research offers a robust foundation, it is circumscribed to the dynamics of urban

distribution, focusing primarily on 3PL distribution scenarios. Thus, broader applications may

require additional nuances. Future directions will investigate the potential applicability and

modifications of the HALNS algorithm in other logistical scenarios and delve deeper into how

destruction-and-repair operators in various urban settings might improve the route planning

of 3PL fleets.
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