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Abstract

Due to the enormous diversity of non-culturable viruses, new viruses must be characterized

using culture-independent techniques. The associated host is an important phenotypic fea-

ture that can be inferred from metagenomic viral contigs thanks to the development of sev-

eral bioinformatic tools. Here, we compare the performance of recently developed virus-

host prediction tools on a dataset of 1,046 virus-host pairs and then apply the best-perform-

ing tools to a metagenomic dataset derived from a highly diverse transiently hypersaline site

known as the Archaean Domes (AD) within the Cuatro Ciénegas Basin, Coahuila, Mexico.

Among host-dependent methods, alignment-based approaches had a precision of 66.07%

and a sensitivity of 24.76%, while alignment-free methods had an average precision of

75.7% and a sensitivity of 57.5%. RaFAH, a virus-dependent alignment-based tool, had the

best overall performance (F1_score = 95.7%). However, when predicting the host of AD

viruses, methods based on public reference databases (such as RaFAH) showed lower

inter-method agreement than host-dependent methods run against custom databases con-

structed from prokaryotes inhabiting AD. Methods based on custom databases also showed

the greatest agreement between the source environment and the predicted host taxonomy,

habitat, lifestyle, or metabolism. This highlights the value of including custom data when pre-

dicting hosts on a highly diverse metagenomic dataset, and suggests that using a combina-

tion of methods and qualitative validations related to the source environment and predicted

host biology can increase the number of correct predictions. Finally, these predictions sug-

gest that AD viruses infect halophilic archaea as well as a variety of bacteria that may be hal-

ophilic, halotolerant, alkaliphilic, thermophilic, oligotrophic, sulfate-reducing, or marine,

which is consistent with the specific environment and the known geological and biological

evolution of the Cuatro Ciénegas Basin and its microorganisms.
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Introduction

The Cuatro Ciénegas Basin (CCB) is a threatened oasis in the Chihuahuan Desert, Mexico. It

is known for its oligotrophic waters, which nevertheless host a great biological diversity,

including bacteria that are phylogenetically related to marine bacteria, despite having been iso-

lated from any ocean for tens of millions of years [1]. The presence of endemic microorgan-

isms adapted to a stoichiometry reminiscent of the Late Precambrian Supereon [2], whose

closest relatives are marine bacteria from which they diverged an estimated 770–680 and 202–

160 million years ago, respectively [3, 4], suggest that CCB diversity has evolved as a result of

the long-term environmental stability of a deep aquifer that replicates the conditions of an

ancient ocean [4, 5]. Thus, CCB aquatic systems are considered analogues of an ancient ocean

and models for the study of ecological and evolutionary processes that occurred millions of

years ago, while their arid, saline, gypsum-rich soils are considered analogues of Martian envi-

ronments that may have supported life at some point in their geological history [6, 7].

Within the CCB, there is a unique hypersaline and alkaline pond known as the Archaean

Domes (AD). Its name is linked to the presence of flexible microbial mats that swell during the

rainy season, forming dome-shaped structures due to the release of anoxic gases reminiscent

of the Archaean eon, such as methane and hydrogen sulphide [8, 9]. At this site, more than

6000 amplicon sequence variants (ASVs) were identified in 10 samples collected at a scale of

1.5 m [9]. This diversity includes a high abundance of halotolerant bacteria, as well as halo-

philic and methanogenic archaea, which are rare in the rest of the CCB [8, 9]. Finally, a highly

diverse viral community has recently been described, in which haloarchaeaviruses appear to be

an essential component, and which does not behave like those from other hypersaline or high

pH sites in the face of environmental fluctuations [10]. However, viruses in AD have yet to be

fully characterised, which is essential to dissect the virus-host relationships and interactions

that may drive microbial and viral diversity in such a unique site.

Until 1990, the International Committee on Taxonomy of Viruses (ICTV) requested detailed

information on biological properties to describe and classify new viruses. These biological prop-

erties were observed either in vitro (e.g., replication cycle, virion structure and antigenic rela-

tionships) or in natural host interactions (e.g., pathogenicity, epidemiology, and host range)

[11]. However, the development of DNA sequencing techniques, bioinformatic tools, and meth-

ods to study molecular evolution, now allows metagenomic analyses that can detect a vast diver-

sity of unknown, non-culturable viruses which cannot be described in the traditional way. For

example, of 488,130 viral populations defined from the Global Ocean Viromes 2.0 (GOV 2.0)

dataset, which consists of sequencing data from samples collected from around the world’s

oceans (including samples from the Tara Oceans Global Oceanographic Research Expedition,

the Malaspina Expedition and the Tara Oceans Polar Circle Expedition), only 10% could be tax-

onomically assigned to a known viral family [12]. As a result, the scientific community has pro-

posed incorporating metagenomic data into the ICTV taxonomy by using phenotypic traits and

phylogenetic information inferred from assembled sequences and genomes [11].

Given that viruses are heavily dependent on cellular machinery to carry out their replication

cycle, and that most viruses are named based on the host they interact with, among all the pheno-

tipic traits that can be inferred from a genomic sequence, host range is a key factor in indentifying

a virus in terms of its habitat, and the biological processes in which it might be playing a role. To

gain insights into the host range of unculturable viruses, various bioinformatic methods for virus-

host prediction have been developed over the past couple of years [13]. The publication of these

tools is typically accompanied by validation tests with estimates of precision and sensitivity, as

well as comparisons with other methods. However, most publications use different databases and

sometimes use published values to compare the precision of different methods directly [14].
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Predicting the host from a viral sequence is not an easy task, which has been evidenced by the lack

of precision or sensitivity of the different approaches. Generally speaking, homology-based meth-

ods can achieve high precision but suffer from low sensitivity. In contrast, sequence composition

methods have greater sensitivity but struggle to make correct predictions [13].

Here, we set out to assemble viruses from AD metagenomes and predict their hosts as a fun-

damental step in their characterization. However, given that information on the performance

of virus-host prediction tools is sparse, and most comparisons include only a handful of tools,

we first reviewed virus-host prediction methods and tools, and performed comparative evalua-

tions of some of the most popular or recently developed tools to select the tools we would use

to predict AD viruses hosts.

Materials and methods

Benchmarking of bioinformatics tools for virus-host prediction

Genomes were selected by downloading three lists (S1 File): i) NCBI complete viral genomes

(https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi) filtered by host ‘bacteria’; ii)

Virus-hostDB tabular report (https://www.genome.jp/ftp/db/virushostdb/) and; iii) RefSeq

release 217 catalog (https://ftp.ncbi.nlm.nih.gov/refseq/release/release-catalog/), filtered by

complete genomic molecule, not plasmid.

A link was established between the three tables so that if the viral genome accession had a

match in the virus-hostDB, it was checked if the host taxa had a match in the RefSeq catalog

(for a given virus with known host, check if the host has a complete genome). We found 102

hosts (bacteria species) with complete genomes. Of these, 16 bacteria were represented by

more than one genome (up to 9). In such cases all genomes were downloaded. This resulted in

1,029 phage genomes and 133 bacteria genomes, which were downloaded from NCBI

(S2 File). Given that 9 viruses were associated to more than one host (up to 5), and that there

were 37 bacteria infected by more than one virus (up to 620), we ended up with 1,046 virus-

host pairs. Following the same selection criteria we obtained 7 virus-pairs comprising 7

archaea virus genomes and 5 archaea genomes. The performance of the virus-host prediction

tools was evaluated at the genus level.

A custom script was developed (https://github.com/AleCisMar/CrisprCustomDB/blob/

main/benchmarking/compare_real-estimated.pl) to compare predicted virus-host pairs with

confirmed pairs, providing true positives (TP), false positives (FP) and false negatives (FN) for

each prediction tool. TP represents the correct identification of true pairs, while FP represents

the incorrect identification of pairs (type I error). Finally, FN includes both FPs and viruses

with unassigned hosts (NA), which represent a type II error or failure to identify true pairs.

Precision, sensitivity, and F1_score were calculated as follows:

Precision (Positive Predictive Value):

PPV ¼
TP

TP þ FP

Sensitivity (True Positive Rate):

TPR ¼
TP

TP þ FN

F1_score:

F1score ¼ 2
PPV∗TPR
PPV þ TPR

� �
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To run each program, we followed the instructions provided by the developers choosing

the parameters for which they are reported to perform the best [14–20].

Since HostPhinder [19], CrisprOpenDB [15], VirHostMatcher-Net [20], and RaFAH [18]

rely on extensive precompiled reference databases, only the 1,029 phage genomes were used as

input. Since PHP [17] provides a reference database with 60,105 potential hosts two estima-

tions were made, one using such reference database, and another using the custom database

with 133 bacterial genomes. VirHostMatcher [14] and WIsH [16] were run on the custom

database (1,029 phage genomes and 133 bacterial genomes). For VirHostMatcher, two estima-

tions were made, both with a score� 0.25. The first selects the most frequent host within the

top 30 with the most similar profiles, and the second selects the most frequent host within the

top 5 with the most similar profiles. For VirHostMatcher-Net, two estimations were also

made. One without score restriction and the other limited to predictions with a score > 0.95.

Virus-host prediction on assembled metagenomic reads

Sample collection and sequencing. Sampling was carried out at the Archaean Domes

(AD) of the Rancho Pozas Azules (26˚49’41.9" N, 102˚01’23.6" W), belonging to Pronatura

Noreste, in the Cuatro Ciénegas Basin (CCB), Coahuila, in the North of Mexico, under

SEMARNAT scientific permit number SGPA/DGVS/03121/15. Twelve samples were taken

between 2016 and 2020. For microbial mats, seven surface samples (M1 –M6 and D0) were

collected using a sterile scalpel dissection (8 cm2 / 40 cm3) and transferred to 50 mL conical

tubes. 30 cm plastic tubes were used as sediment samplers to collect two additional microbial

mat samples at 30 and 50 cm depth (D30 and D50). Three samples were collected at the shal-

low ellipsoid orange pools or orange circles (OC) [8–10]: one superficial water sample (C0) on

a 50 mL conical tube and two more at depths of 30 and 50 cm (C30 and C50). All samples were

stored in liquid nitrogen until processing.

DNA was extracted according to [21] at the Laboratorio de Evolución Molecular y Experi-

mental of the Instituto de Ecologı́a, Universidad Nacional Autónoma de México, in Mexico

City. Briefly, the extractions followed a column-based protocol with a Fast DNA Spin Kit for

Soil (MP Biomedical) [22]. Total DNA was sent to CINVESTAV-LANGEBIO, Irapuato,

México, for shotgun sequencing with Illumina Mi-Seq paired-end 2x300 technology.

All sequence reads are available on the National Centre for Biotechnology Information

(NCBI) Sequence Reads Archive (SRA) under the BioProject accession: PRJNA847603.

Read processing and assembly of metagenomic viral contigs. The read quality was

assessed with FastQC v0.11.9 [23]. Adapter removal and quality filtering were performed with

Trimmomatic v0.39 [24] using a sliding window of 4 base pairs excluding reads with an aver-

age quality of less than 30 and less than 20 nucleotides. Clean reads were assembled with

SPAdes 3.15.2 [25] using the—metaviral option. The viralVerify and viralComplete scripts

(included in the SPAdes package) were used to verify that the assembled contigs correspond to

viral genomes and to assess genome completeness, respectively. The circularity of the viral

contigs was checked. When necessary, the position of sequences was adjusted prior to gene

prediction and annotation with the help of custom scripts (available at https://github.com/

AleCisMar/GenomicTools) that make use of BLAST [26], EMBOSS [27], Prodigal [28], and

HMMER [29].

Read processing, assembly, and taxonomic assignment of metagenome-assembled

genomes. The quality of the raw data was assessed with FastQC (v0.11.8) [23] and filtered

with Trimmomatic (v0.39) [24]. The reads were then assembled using MetaSPAdes (v3.15.3)

[30], and the contigs obtained in the assembly were used to perform read binning or
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clustering, which was performed́ with MaxBin2 (v2.2.7) [31] and MetaBat2 (v2.12.1) [32]. Bin-

ning refiner (v1.4.2) software [33] was used to evaluate the percentage of contamination in the

bins. The integrity of the metagenome-assembled genomes (MAGs) was assessed using

CheckM (v1.1.3) [34] with the default settings. This resulted in 329 (35%) high quality MAGs

with> 70% completeness and< 10% contamination, and 611 (65%) MAGs with varying con-

tamination and integrity values.

For taxonomic assignment and placement of MAGs on the phylogenetic tree of life, we

used the program GTDB-tk (v1.6.0) [35], which identifies 122 and 120 marker genes of

archaea and bacteria, respectively, using HMMER [29]. Briefly, genomes are assigned to the

domain with the most identified marker genes. Selected domain-specific markers are aligned

with HMMER, concatenated into a single multiple sequence alignment, and trimmed with the

*5000-column bacteria or archaea mask used by GTDB [35].

Implementation of virus-host prediction tools on metagenomic data. As CrisprO-

penDB is the first tool to standardize CRISPR spacer-based phage host prediction [15], and has

higher precision and sensitivity than previous CRISPR spacer-based host prediction pipelines,

we wanted to use it to predict the hosts of metagenomic viral contigs (mVCs) from AD. How-

ever, we noticed that most of its predictions did not match the expected hosts given the environ-

mental background of the sampling site. We thought that this might be related to the fact that

no matter how extensive its spacer database is, if the actual hosts are uncharacterized bacteria or

archaea, the database will not have the corresponding spacers for the predictions. Therefore, we

thought that by predicting spacers from MAGs from AD and incorporating them into the large

spacer database provided by Dion et al. [15], we would be able to make more and more accurate

host predictions. However, CrisprOpenDB does not provide an easy way to add our own spac-

ers to the database of over 11 million spacers, so we decided to develop a simple script that is

inspired by CrisprOpenDB but allows to use custom databases in an easy way (CrisprCus-

tomDB available at https://github.com/AleCisMar/CrisprCustomDB).

To run CrisprCustomDB, spacers must be predicted using the CRISPRDetect tool [36]

(using an array_quality_cutoff of 3 –as recommended for FASTA files–). In Dion et al. [15]

they also use the CRISPRDetect tool to predict spacers because it is one of the few tools that

predicts the 50-30 orientation of the locus. CRISPRDetect generated 1,062 spacers (S3 File)

from all 940 MAGs. CrisprCustomDB consists of two scripts: get_blast_tables.sh and get_hos-

t_id.pl. The get_blast_tables.sh script reads the.gff file generated by CRISPRDetect to extract

the spacers in FASTA format (1,039 spacers with sequence lengths ranging from 28 to 43 bp).

A BLAST nucleotide database is then created and the mVCs (all sequences in a single multi-

FASTA file) are searched with Blastn. From the tabular output of Blastn, it keeps matches with-

out gaps and with a maximum of 2 nucleotide mismatches (true mismatches = spacer length—

alignment length + Blastn mismatches). The get_host_id.pl script reads the Blastn output tabu-

lar format created in the previous step. First, it determines whether a query mVC matches

spacers from more than one possible host. If it has only one match or multiple matches to a

single host, that host is assigned (criterion 1). If it has multiple matches to more than one pos-

sible host, it estimates for each possible host the number of spacers that match non-overlap-

ping regions in the mVC. The host with more spacers matching non-overlapping regions is

assigned (criterion 2). If possible hosts have the same number of spacers matching non-over-

lapping regions, it calculates the spacer start position relative to the corresponding CRISPR

array start position:

relative position ¼
spacer start � array start
array end � array start
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So that it ranges from 0 (closer to the 50 end) to 1. The host with the spacer closest to the 50

end is assigned (criterion 3).

To illustrate the benefit of using the above filtering and host assignment criteria, we per-

formed an additional CRISPR spacer-based host prediction using another CRISPR spacer pre-

diction tool. For this prediction, spacers were detected using the CRISPRCasTyper program (v

1.3.0) [37] with the following parameters: cctyper -t 4—prodigal single—circular. This tool was

more sensitive than the CRISPRDetect tool and produced 2,660 spacers (S3 File). All spacers

were retained regardless of their length. The mVCs were run against this spacer database using

Blastn, allowing a maximum of 2 mismatches (as calculated by Blastn). No other criteria were

used to assign possible hosts.

Virus-host predictions were also made using CrisprOpenDB [15], RaFAH [18] and PHP

[17]. As CrisprOpenDB and RaFAH provide extensive pre-computed databases, they only take

mVCs as input. For PHP, k-mer frequencies were calculated for all 940 MAGs (S3 File).

Results

Classification of virus-host prediction methods

From the literature we could glimpse a five-category classification [38] (Fig 1): i) host-depen-

dent alignment-based methods; ii) host-dependent alignment-free methods; iii) virus-depen-

dent alignment-based methods; iv) virus-dependent alignment-free methods; and v)

integrative methods. Host-dependent alignment-based methods include methods based on

homology signals, such as searching for homology between viral and host proteins, tRNAs,

viral genomes and CRISPR spacers, integrated prophages, and protein-protein interactions

(PPI). These methods are helpful for detecting recent infections but have the disadvantage that

not all viruses share genes with their hosts, which tends to make them precise, but with a low

detection rate [13]. CrisprOpenDB is a recently released tool that uses biological criteria to

standardize host predictions based on CRISPR spacers with increased sensitivity and precision

thanks to its>11 million spacers database derived from >300,000 candidate hosts [15].

Host-dependent alignment-free methods include those based on sequence composition

(e.g., similarity in codon usage, similarity in oligonucleotide composition, and GC content),

which rely on the notion that viruses, being genetic parasites, approximate their nucleotide

composition to that of the host over time. This genomic mimicry may allow viruses to use the

Fig 1. Classification of virus-host prediction methods. RaFAH uses host-dependent alignment-based methods to build part of its

training database (red discontinuous lines). Integrative methods (iPHoP–blue lines; PHISDetector–green lines; VirHostMatcher-Net–

yellow lines) attempt to exploit the virtues of a different number of methods. PPI = protein-protein interactions.

https://doi.org/10.1371/journal.pone.0291402.g001
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same tRNAs for protein synthesis or to evade the detection and degradation mechanisms of

foreign nucleic acids. However, viruses can have similar sequence profiles independently,

which can lead to a high false positive rate [13]. VirHostMatcher, which evaluates virus-host

genome similarity through d*2 distance from 6-mer profiles [14], WIsH, which uses 8-mer

profiles and Hidden Markov models (HMMs) [16] and PHP, which uses 4-mer profiles and a

Gaussian model [17], are some well-known similar host-dependent alignment-free methods.

These alignment-free strategies also include methods based on co-abundance profiles, which

rely on the notion that viruses can only be found in the environment in which their host is also

found. This profiling method requires the calculation of correlations of normalized abundance

profiles of phage and bacteria in different environmental samples. However, they entail a

major drawback: predator-prey interactions–such as those described by the kill-the-winner

model [39, 40]–can generate positive or negative correlations, depending on where the interac-

tion was at the time the sample was taken.

Instead of relying on host databases, virus-dependent methods depend on databases storing

viruses with known hosts, to which query viruses are related either through homology signals

(alignment-based) or their similarity in oligonucleotide composition (alignment-free). On the

one hand, a machine-learning approach named Random Forest Assignment of Hosts

(RaFAH) [18] is a virus-dependent alignment-based method that builds a part of its training

database from CRISPR spacers, the presence of horizontally transferred genes and common

tRNAs to ultimately associate the query virus to a virus with a known host through similarity

in protein content. On the other hand, HostPhinder [19] is a virus-dependent alignment-free

method that compares 16-mer profiles between query viruses and a database of 2,196 phages

with known hosts.

Finally, integrative methods attempt to exploit the virtues of different methods like Vir-

HostMatcher-Net [20], which integrates host-dependent alignment-based methods (CRISPR

spacers) and host-dependent alignment-free methods (VirHostMatcher or WIsH) in a net-

work framework, PHISDetector [41], which integrates BLAST [26], CRISPR spacers, pro-

phage, and PPI analyses through a set of machine learning approaches, or iPHoP, which uses

machine learning algorithms to compute taxonomy-aware scores for BLAST, CRISPR, Vir-

HostMatcher, WIsH, and PHP, and integrates them with RaFAH results to obtain a final com-

posite score [38].

Benchmarking of bioinformatics tools for virus-host prediction

The best three performing tools for complete bacteria and phage genomes datasets (F1_score)

were RaFAH, PHP, and VirHostMatcher-Net. They were followed by WIsH, VirHostMatcher,

CrisprOpenDB, and HostPhinder at the bottom (Table 1).

CrisprOpenDB made 392 predictions, of which 259 were correctly estimated. These results

translate into a sensitivity of 24.76%, a precision of 66.07%, and an F1_score of 36.02% (Fig 2).

Alignment-free methods evaluated here make predictions by comparing the oligonucleo-

tide profile of a virus to either the oligonucleotide profile of viruses with a known host (Hos-

tPhinder) or the oligonucleotide profile of bacteria (VirHostMatcher, WIsH, PHP). Although

HostPhinder predicted 1,044 pairs, most predictions were incorrect (677). Hence, it had the

lowest performance of the alignment-free methods (Fig 2), with a sensitivity of 35.09%, a preci-

sion of 35.15%, and an F1_score of 35.12%.

VirHostMatcher was executed with two different criteria: i) selecting the most frequent

host among the top thirty and; ii) selecting the most frequent host among the top five. When

using the first criterion, VirHostMatcher generated more predictions (743 compared to 638)

and produced more false positives (284 compared to 34). As a result, it achieved lower
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sensitivity (43.88% compared to 57.74%), precision (61.78% compared to 94.67%), and

F1_score (51.31% compared to 71.73%).

Among these methods, WIsH and PHP emerged as the top predictors, achieving the

maximum number of pairs (1,046). WIsH demonstrated a sensitivity, precision, and

F1_score of 75.91%, whereas PHP appeared as the best-performing alignment-free method

(Fig 2) with a sensitivity, precision, and F1_score of 91.01%. PHP was also tested against a

reference database with 60,105 potential hosts provided by the authors. However, this test

resulted in fewer predictions (1,001) and lower sensitivity (52.58%), precision (54.95%), and

F1_score (53.74%).

VirHostMatcher-Net was executed using two approaches: first, by setting a prediction

threshold with a score > 0.95 and, second, without any score restrictions. Restricting the final

host assignment to predictions with higher scores resulted in higher accuracy (91.81% vs.

88.05%) at the expense of lower sensitivity (79.25% vs. 88.05%) and, as a consequence, a lower

F1_score (85.07% vs. 88.05%). Meanwhile, RaFAH achieved an accuracy, sensitivity, and

F1_score of 95.70%, making it the algorithm with the best overall performance (Fig 2).

Virus-host predictions on metagenomic viral contigs from Archaean

Domes, Cuatro Ciénegas Basin, Mexico

To predict the host of metagenomic viral contigs (mVCs) from Archaean Domes (AD) at Cua-

tro Ciénegas Basin (CCB), based on CRISPR spacers predicted on metagenome-assembled

genomes (MAGs) from the same dataset, we employed two related approaches. The first

approach involved conducting a Blastn search using 2,660 spacers, with a maximum of 2 mis-

matches as the only criterion. The second approach involved CrisprCustomDB, using 1,062

spacers to solve problematic host assignments. Additionally, we performed predictions using

CrisprOpenDB, PHP, and RaFAH, as these tools demonstrated superior performance in their

respective categories. Since HostPhinder showed lower performance than all other alignment-

free methods, and PHP and RaFAH outperformed VirHostMatcher-Net, we did not make pre-

dictions with these tools. While the ordinary CRISPR approach, CrisprCustomDB, and PHP

were executed on data derived from the AD MAGs, CrisprOpenDB and RaFAH only required

the mVCs, as they relied on their extensive pre-compiled reference databases.

Table 1. Precision, sensitivity, and F1_score estimates of the different virus-host prediction tools.

Software Actual virus-host pairs Predicted pairs NA True positive False positive False negative Precision Sensitivity F1_score

HostPhinder 1046 1044 2 367 677 679 0.3515 0.3509 0.3512

CrisprOpenDB 1046 392 654 259 133 787 0.6607 0.2476 0.3602

VirHostMatcher† 1046 743 303 459 284 587 0.6178 0.4388 0.5131

PHP§ 1046 1001 45 550 451 496 0.5495 0.5258 0.5374

VirHostMatcher¶ 1046 638 408 604 34 442 0.9467 0.5774 0.7173

WisH 1046 1046 0 794 252 252 0.7591 0.7591 0.7591

VirHostMatcher-Net* 1046 903 143 829 74 217 0.9181 0.7925 0.8507

VirHostMatcher-Net 1046 1046 0 921 125 125 0.8805 0.8805 0.8805

PHP 1046 1046 0 952 94 94 0.9101 0.9101 0.9101

RaFAH 1046 1046 0 1001 45 45 0.957 0.957 0.957

†Prediction using score� 0.25 and selecting the most frequent host among top 30.
§Using PHP reference database with 60,105 prokaryotic genomes.
¶Prediction using score� 0.25 and selecting the most frequent host among top 5.

*Prediction using score > 0.95.

https://doi.org/10.1371/journal.pone.0291402.t001
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Despite using spacer databases of radically different sizes, both CrisprCustomDB (1,062

spacers) and CrisprOpenDB (11,674,395 spacers) made only five predictions. The standard

CRISPR approach made 8 predictions, while PHP and RaFAH made 54 and 87 predictions

respectively (Fig 3). RaFAH had the lowest consistency with other methods. There were 84

predictions made by RaFAH alone (97.7% of its predictions), 45 by PHP alone (83.33% of its

predictions) and 4 by CrisprOpenDB alone (80% of its predictions). All predictions made by

CrisprCustomDB and the standard CRISPR approach were shared with other methods. Two

of the predictions made by CrisprCustomDB were only consistent with the standard CRISPR

approach, while the remaining three were consistent with both the standard CRISPR approach

and PHP. CrisprOpenDB had only one prediction consistent with PHP. The standard CRISPR

approach had two additional predictions consistent with PHP only and one consistent with

Fig 2. Precision, sensitivity, and F1_score estimates of the different virus-host prediction tools. VirHostMatcher† was tested with a score� 0.25 and

selected the most frequent host within the top 30. VirHostMatcher¶ was tested with the same parameters but selecting the most frequent host within the top 5.

PHP§ was tested against a reference database of 60,105 potential hosts. For VirHostMatcher-Net*, only predictions with a score> 0.95 were kept. Bars are

color-filled based on the method classification. Host-dependent, alignment-based = light blue; host-dependent, alignment-free = light red; virus-dependent,

alignment-based = light green; virus-dependent, alignment-free = light orange; integrative = light purple.

https://doi.org/10.1371/journal.pone.0291402.g002
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both PHP and RaFAH. Finally, there were two additional predictions made by PHP that were

shared with RaFAH (Fig 3). Although PHP had a low proportion of predictions consistent

with other methods (16.67%), it had the highest number of shared predictions (9 predictions),

followed by the standard CRISPR approach (8 predictions), CrisprCustomDB (5 predictions),

RaFAH (3 predictions) and CrisprOpenDB (1 prediction).

For both standard CRISPR (8 predictions) and CrisprCustomDB (5 predictions), all predic-

tions were consistent with what would be expected given known environmental conditions

and types of organisms specific to AD (Fig 3). These included halophilic, sulfate-reducing, and

sulfur-oxidizing bacteria (Table 2). CrisprOpenDB had only two predictions consistent with

the environment (40% of its predictions) (halophilic and thiosulfate-reducing bacteria), while

PHP had 36 (66.67% of its predictions, including several types of archaea, as well as halophilic,

sulfate-reducing, sulfur-oxidizing, thermophilic, haloalkaliphilic, halotolerant, and marine

bacteria) and RaFAH 10 (11. 49% of its predictions, including halophilic archaea, as well as

Fig 3. Virus-host predictions consistent between methods or with the environment. The main plot shows the number of consistent predictions between

methods. The inset plot shows the percentage of predictions consistent with the environment. Set sizes: CrispCustomDB = 5; CrisprOpenDB = 5; CRISPR = 8;

PHP = 54; RaFAH = 87.

https://doi.org/10.1371/journal.pone.0291402.g003
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Table 2. 46 host predictions on mVCs from Archaean Domes Pond, Cuatro Ciénegas, Mexico, designated as reliable according to different criteria.

Contig CRISPR CrisprCustomDB CrisprOpenDB PHP RaFAH Supporting evidence Reference

C50N1L42 Desulfovibrionales;
Desulfovermiculus

NA NA Desulfovibrionales;
Desulfohalobiaceae

Desulfovibrionales;
Desulfovibrio

Halophilic; sulfate-

reducing

[8, 9, 42]

M5N2L438 Halorhodospira Halorhodospira NA Halorhodospira Pseudomonas Halophilic [43]

M6N1L439 Halorhodospira Halorhodospira NA Halorhodospira Pseudomonas Halophilic [43]

C30N1L64 Thiohalorhabdus/
Thiohalospira

Thiohalorhabdus* NA Thiohalorhabdus Vibrio Halophilic; sulfur-

oxidizing

[42, 44]

C0N5L506 Desulfobacterales NA NA Desulfobacterales Clostridium Sulfate-reducing [8]

M1N5L607 Desulfobacterales Desulfobacterales NA NA Pseudoalteromonas Sulfate-reducing [8]

C0N1L394 Desulfohalobiaceae;
Desulfovermiculus

NA NA Desulfohalobiaceae Bacteroides Halophilic; sulfate-

reducing

[8, 9, 42]

M4N1L642 Halochromatium Halochromatium Thiobacillus NA Kingella Halophilic [45]

C0N2L458 NA NA Gammaproteobacteria;
Halomonas

Gammaproteobacteria;
Halochromatium

Thauera Halophilic [42, 45]

M5N6L415 NA NA NA Archaea;Hadarchaeia Archaea;Haloarcula Archaea [8]

M6N2L524 NA NA NA Halobacteriales;
Halorubrum

Halobacteriales;
Haloarcula

Halophilic archaea [8]

M1N1L790 NA NA Halanaerobium NA Clostridium Halophilic;

thiosulfate-reducing

[8, 9, 42]

D30N111L NA NA NA Archaeoglobaceae Pseudomonas Archaea [8]

D30N2L48 NA NA NA Bathyarchaeia Veillonella Archaea [8]

D30N115L NA NA NA Nanoarchaeia Bacillus Archaea [8]

M4N1L424 NA NA NA Dichotomicrobium Parabacteroides Thermohalophilic [46]

D30N1L56 NA NA NA Aminicenantaceae Clostridium Deep marine

sediments

[47]

M3N8L364 NA NA NA Anaerolineae Vibrio Deep marine

sediments

[48]

M1N5L608 NA NA NA Anaerolineae Fusobacterium Deep marine

sediments

[48]

M5N3L645 NA NA NA Anaerolineae Kingella Deep marine

sediments

[48]

C50N2L80 NA NA NA Anaerolineae Vibrio Deep marine

sediments

[48]

D50N2L80 NA NA NA Anaerolineae Vibrio Deep marine

sediments

[48]

M5N8L404 NA NA NA Bipolaricaulia Leptotrichia Hypersaline

sediments

[49]

M6N4L404 NA NA NA Bipolaricaulia Leptotrichia Hypersaline

sediments

[49]

D30N50L3 NA NA NA Bipolaricaulia Vibrio Hypersaline

sediments

[49]

C50N1L90 NA NA NA Chitinivibrionales Prevotella Haloalkaliphilic [50]

M1N25L46 NA NA NA Chitinivibrionales Chlamydia Haloalkaliphilic [50]

D30N6L39 NA NA NA Chitinivibrionales Porphyrobacter Haloalkaliphilic [50]

M1N22L26 NA NA NA Chitinivibrionales Pseudomonas Haloalkaliphilic [50]

M5N4L592 NA NA NA Halothiobacillaceae Faecalibacterium Halotolerant;

halophilic

[51]

M6N2L592 NA NA NA Halothiobacillaceae Faecalibacterium Halotolerant;

halophilic

[51]

M5N7L416 NA NA NA Wenzhouxiangella Burkholderia Haloalkaliphilic [52]

M6N3L417 NA NA NA Wenzhouxiangella Burkholderia Haloalkaliphilic [52]

(Continued)
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halophilic, sulfate-reducing, thermophilic, oligotrophic, and marine bacteria) predictions con-

sistent with the environment. PHP also had the highest number of predictions consistent with

the environment, followed by RaFAH, the standard CRISPR approach, CrisprCustomDB, and

CrisprOpenDB.

Consistency between the source environment and the predicted host biology (taxonomy,

habitat, lifestyle, or metabolism) may indicate a true prediction. However, the likelihood of a

true prediction increases with support from a greater number of tools. Of the 46 predictions

consistent with the environment, there were 35 predictions supported by only one method, 7

predictions supported by two methods, and 4 predictions supported by three methods

(Table 2). The latter include contig C50N1L42 assigned to Desulfobacterota by ordinary

CRISPR, PHP, and RaFAH, and three contigs assigned to Proteobacteria (contigs M5N2L438

and M6N1L439 assigned to Halorhodospira, and contig C30N1L64 assigned to Thiohalorhab-
dus) by ordinary CRISPR, CrisprCustomDB, and PHP. It is worth noting that the ordinary

CRISPR approach assigned two candidate hosts for contig C30N1L64 (Thiohalorhabdus /Thio-
halospira), which was successfully solved by CrisprCustomDB by assigning Thiohalorhabdus
as the candidate host with the spacer closest to the 50 end. Such a prediction was also supported

by PHP. Predictions supported by two methods include contigs C0N5L506 and C0N1L394

assigned to Desulfobacterales and Desulfohalobiaceae, respectively, by CRISPR ordinary and

PHP, contigs M1N5L607 and M4N1L642 assigned to Desulfobacterales and Halochromatium,

respectively, by CRISPR ordinary and CrisprCustomDB, contig C0N2L458 assigned to Gam-
maproteobacteria by CrisprOpenDB and PHP, and contigs M5N6L415 and M6N2L524

assigned to Archaea and Halobacteriales by PHP and RaFAH, respectively.

If we consider predictions consistent with the environment to be true positives, RaFAH

would be the tool with the lowest precision (11.5%), followed by CrisprOpenDB (40%), PHP

(66.67%), and ordinary CRISPR and CrisprCustomDB (both with 100%). In this respect, the

Table 2. (Continued)

Contig CRISPR CrisprCustomDB CrisprOpenDB PHP RaFAH Supporting evidence Reference

M1N1L521 NA NA NA Halofilum Vibrio Marine solar saltern [53]

M5N28L50 NA NA NA Gemmatimonadetes Haloarcula Halophilic archaea [8]

M6N4L511 NA NA NA Gemmatimonadetes Haloarcula Halophilic archaea [8]

C0N2L195 NA NA NA Halanaerobiales Alistipes Halophilic;

thiosulfate-reducing

[8, 9, 42]

M4N3L527 NA NA NA Phycisphaerales Pseudomonas Marine [54]

M1N3L461 NA NA NA Rhodothermales Alistipes Thermohalophilic;

haloalkaliphilic

[55, 56]

D30N26L5 NA NA NA Petrotogales Fusobacterium Thermophilic [57]

C0N1L567 NA NA NA Halanaerobiales Clostridium Halophilic [58]

C30N1L45 NA NA NA NA Salinispora Marine sediments [59]

M1N6L535 NA NA NA NA Desulfotomaculum Thermophilic;

sulfate-reducing

[60]

M1N8L483 NA NA NA NA Thermus Thermophilic [61]

M5N19L71 NA NA NA NA Caulobacter Oligotrophic [62]

M6N6L714 NA NA NA NA Caulobacter Oligotrophic [62]

Reliable predictions, either through consistency between methods or consistency between the source environment and the predicted host biology (taxonomy, habitat,

lifestyle, or metabolism), are underlined. Where applicable, the lowest common taxonomic rank and the lowest taxonomic rank achieved by each tool are separated

by”;”. The full list of predictions can be found in the S4 File.

*Assigned using criterion 3: Multiple hosts matching the same number of regions. Host with spacer closest to the 5’ end.

https://doi.org/10.1371/journal.pone.0291402.t002
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ordinary CRISPR approach, CrisprCustomDB, and PHP, all of which were run against custom

databases derived from MAGs, seem to have better performance compared to RaFAH and

CrisprOpenDB, which use extensive pre-compiled databases of viruses with known host and

known spacers, respectively. However, all CRISPR spacer-based tools seem to lack sensitivity

compared to RaFAH and PHP. Finally, it is worth mentioning that RaFAH was the only tool

that correctly predicted the host of Escherichia virus FX174, which was used as a positive con-

trol for DNA sequencing (S4 File).

Discussion

The increasing number of virus-host prediction tools prompted us to perform a comparative

evaluation of the most popular and recently released tools (Fig 1). Optimization of precision

and sensitivity estimates within each approach has been achieved by either using more exten-

sive reference databases (e.g., CrisprOpenDB), by leveraging the power of different machine

learning algorithms (PHP, RaFAH, VirHostMatcher-Net, PHISDetector, iPHoP), or by inte-

grating different methods (VirHostMatcher-Net, PHISDetector, iPHoP). The publication of

these tools is typically accompanied by validation tests with estimates of precision and sensitiv-

ity, as well as comparisons with other methods. However, most publications use different data-

bases and sometimes use published values to compare the precision of different methods [14]

directly. So far, Roux et al. [38] have compared the largest number of methods showing that

host-dependent alignment-based methods can achieve high precision but suffer from low sen-

sitivity. In contrast, host-dependent alignment-free methods have greater sensitivity but strug-

gle to make correct predictions, while virus-dependent alignment-based methods such as

RaFAH present both high sensitivity and precision. However, virus-dependent methods may

underperform when predicting the host of novel viruses, which also affects, to a lesser extent,

host-dependent alignment-based methods but not alignment-free methods [38].

Unfortunately, due to disk space limitations and to the size of the databases, we could not

evaluate either PHISDetector [41] or iPHoP [38]. Since there is a discrepancy in the perfor-

mance of PHISDetector compared to VirHostMatcher-Net [38, 41], we can only conclude

which tool performs the best once we compare them under the same methodological frame-

work. As for iPHoP, this is probably the best-performing integrative tool [38], as it integrates

RaFAH into its host prediction algorithm, which has shown better performance than VirHost-

Matcher-Net both here (Fig 2) and in its original publication [18].

According to the literature, it is understood that following iPHoP, PHISDetector (com-

pared with VirHostMatcher-Net, PHP, WIsH and VirHostMatcher) [41] and RaFAH

(reported with higher F1_score than the combination of CRISPR, BLAST and tRNAs, followed

by VirHostMatcher-Net, WIsH, HostPhinder, and CRISPR, BLAST and tRNAs individually)

[18] are the most precise tools. They are likely to be followed by VirHostMatcher-Net (more

precise than similarity networks, CRISPR, BLAST, WIsH, and VirHostMatcher) [20], PHP

(reported less precise than CRISPR and BLAST, which, however, have very low sensitivity, but

are more precise than WIsH and VirHostMatcher) [17] and WIsH (reported to be more pre-

cise than VirHostMatcher, especially for incomplete or short viral genomes) [16]. Lastly, Cris-

prOpenDB (reported to have similar precision to WIsH) [15], HostPhinder (reported to be

more precise than BLAST) [19], and VirHostMatcher (compared to values published by

Edwards et al. [13] appears to have similar precision to homology methods—BLAST, pro-

phage, and CRISPR—and higher than early implementations of the k-mer method, abundance

profiling and GC content) [14] appear to be the least precise tools.

To test the above interpretations about the performance of virus-host prediction tools,

we downloaded 1,029 and 133 complete phages and bacterial genomes, respectively. (S1 and
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PLOS ONE | https://doi.org/10.1371/journal.pone.0291402 February 1, 2024 13 / 21

https://doi.org/10.1371/journal.pone.0291402


S2 Files), making up 1,046 virus-host pairs. We did not present the results of archaea viruses

and their respective hosts, because we could only retrieve seven pairs following the method

described in the Materials and Methods section (see results in S5 File where host-depen-

dent, alignment-free methods show the highest precision, sensitivity and F1_scores). In

addition, some of the virus-host prediction tools evaluated here are explicitly trained on

bacteria and their corresponding phages (e.g. [15]) and, therefore, cannot be used to evalu-

ate their performance on viruses of archaea. The performance of the virus-host prediction

tools was evaluated at the genus level because performance comparisons are often consistent

across taxonomic ranks [14, 16–18, 20, 41], and because it may be more biologically infor-

mative than higher taxonomic rank predictions.

As expected [13, 17, 38], CrisprOpenDB showed high precision at the expense of sensitivity.

Although it had the lowest sensitivity of the tools compared, it had a significant increase in sen-

sitivity compared to CrisprCustomDB (not shown). For CrisprCustomDB, 1,349 spacers (S2

File) were found in 40 of the 133 bacterial genomes (30%), but it only managed to make 28 pre-

dictions (sensitivity < 3%), which is 364 less than CrisprOpenDB. This demonstrates the bene-

fit of using a database of> 11 million spacers. Although CrisprOpenDB has increased the

sensitivity of CRISPR-based methods, they still need to catch up with newer sequence compo-

sition methods that have high sensitivity and improved precision. This was the case for Vir-

HostMatcher, WIsH and PHP, which achieved sensitivity and precision >50%. In contrast,

HostPhinder had a higher sensitivity than CRISPR-based methods, but the lowest precision of

all methods compared. This result suggests that relying solely on transferring the host of the

most similar virus may be a greedy and unreliable approach, especially when dealing with a

highly diverse viral community with many unknown viruses.

VirHostMatcher did not perform better when assigning the most frequent taxon among a

more significant number of possible hosts (up to 30) with a score� 0.25, contrary to what has

been reported [14]. Instead, using this consensus criterion among the top 30 scoring hosts

yielded a precision even lower than that of CrisprOpenDB and WIsH, which is known to per-

form better with incomplete contigs [16], while assigning host among the top 5 reached the

second highest precision overall. Such discrepancies may depend on the distribution of taxa

within the studied dataset. For instance, while increasing the n possible hosts criterion, one

can expect a higher probability of finding multiple high-scoring instances of a particular host

only by chance on a highly diverse dataset.

PHP allows predictions to be made with custom databases and provides a database of

60,105 bacterial genomes within the program’s repository. Using this reference database, PHP

obtains the second-lowest precision overall, while the custom database (133 bacterial genomes)

elevated PHP as the most accurate and sensitive sequence composition method. This result

implies that using an extensive reference database does not necessarily enhance the perfor-

mance of virus-host prediction tools, unless the actual hosts are present. Thus, PHP may be a

suitable tool, especially when working with metagenome-assembled genomes (MAGs) and

metagenomic viral contigs (mVCs) from the same metagenome. Also, although not directly

tested, host-dependent alignment-free methods such as PHP were noticeably more effortless

to set up and faster to execute than integrative methods and virus and host-dependent align-

ment-based methods.

RaFAH achieved the highest precision, sensitivity, and F1_score on the test data collection.

However, only a couple of its predictions on the metagenomic dataset were consistent with

those of CRISPR-based methods, PHP, or the environment from which the metagenomes

were generated. The metagenomic data analyzed here came from samples taken within the

Cuatro Ciénegas Basin (CCB) which, despite being a desert oasis with oligotrophic waters, is

known for sheltering diverse groups of microorganisms, many of which are endemic and
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related to marine microorganisms [1, 7]. Such diversity is believed to have evolved as a result

of the long-standing environmental stability of a deep aquifer that recreates an ancient ocean

conditions, and which nourishes the aquatic systems of CCB through the movement of

groundwater produced by the magmatic pouch deep in the Sierra San Marcos y Pinos [5]. Spe-

cifically, the environment from which samples were extracted is a shallow pond characterized

by high pH and salinity known as Archaen Domes (AD) [8–10]. It has been shown that AD

harbors a great diversity of bacteria on a short spatial scale [9] and is one of the most diverse

archaeal communities in the world [8]. Such diversity includes sulfate-reducing Proteobacteria
and extreme halophilic Euryarchaeota [42]. In addition, a highly diverse viral community has

recently been described where haloarchaeaviruses constitute an essential part [10]. Therefore,

predictions pointing to halophilic archaea, as well as halophilic, halotolerant, alkaliphilic, ther-

mophilic, oligotrophic, sulfate-reducing, sulfur-oxidizing or marine bacteria, were considered

consistent with the environment in question (Table 2).

Although using only spacers predicted from MAGs can result in dramatically lower sensi-

tivity than relying on an extensive CRISPR spacers database, CrisprCustomDB produced more

reliable predictions than CrisprOpenDB and was able to discriminate between possible hosts

for contig C30N1L64 (further supported by PHP). On the one hand, this demonstrates the

benefit of predicting hosts from ad hoc databases built using archaeal and bacterial MAGs

from the same dataset, especially for highly diverse datasets that are likely to have a high pro-

portion of novel viruses, such as the one tested here [10]. On the other hand, the fact that the

ordinary CRISPR approach made more predictions on the metagenomic dataset than Crispr-

CustomDB probably reflects the benefit of using a more extensive spacer database (see Materi-

als and Methods), as previously discussed regarding the performance of CrisprOpenDB.

However, the lack of consistency of CrisprOpenDB and RaFAH with the other methods sug-

gests that relying on a database of>11 million spacers [15] or a random forest classifier based

on the protein content of viruses with a known host [18] may only be advantageous when the

hosts or assembled viruses are already known or closely related to hosts or viruses represented

in the respective databases. Therefore, we predict that incorporating spacers from MAGs into

an extensive pre-compiled spacer database (which can be done with CrisprCustomDB) is likely

to benefit from both approaches, increasing the precision and sensitivity of these predictions.

It should be noted, however, that different selection criteria for MAGs (levels of contamination

and completeness) and different spacer prediction tools may produce different results. For

example, keeping only high quality MAGs may reduce false positives in spacer prediction but

lose a lot of sensitivity, while using less stringent criteria for MAGs filtering may have the

opposite effect, i.e. high sensitivity but a higher probability of false positives. Either way, this

can result in spacer databases of different sizes, which we have seen can significantly affect

host prediction.

The fact that PHP made the most predictions in agreement with other methods and the

environment is consistent with the observation that the performance of alignment-free meth-

ods suffers less than that of alignment-based and virus-dependent methods when predicting

the host of novel viruses [38]. Nevertheless, the CRISPR spacer-based methods collectively

made three reliable predictions that PHP did not. RaFAH, on the other hand, made seven reli-

able predictions that PHP did not. This shows that although these methods are fundamentally

different, they can complement and support each other. Incorporating these tools in an inte-

grative software such as iPHoP [38], allows tackling the host prediction problem from different

angles, increasing the chance of making the correct predictions. Also, judging the predictions

based on the consistency between the predicted host biology (i.e., taxonomy, habitat, lifestyle,

or metabolism) and the source environment of the query virus (Table 2) may provide addi-

tional validation, mainly when predicting hosts of novel viruses. However, some caution still
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needs to be exercised with this validation approach. For example, for predictions with less con-

sistency between methods and at higher taxonomic ranks, there is an increased risk that the

consistency between the source environment of mVCs and the biology of the predicted hosts

will be rather ambiguous or even false.

Host prediction is one of the most critical features for characterizing mVCs, probably along

with phylogenetic relationships. We wanted to know who the host is to learn more about the

biology of the newly assembled virus, such as where it gets the resources to complete its repli-

cation cycle, what organisms it interacts with, and with whom it might co-evolve. However,

although the host predictions presented here take us a step forward in characterizing AD

viruses, we still need to know the phylogenetic context, the evolutionary processes, and the

functional adaptations that will allow us to better understand the origin of diversity at this par-

ticular site.

Conclusions

The results presented here indicated that RaFAH, a virus-dependent alignment-based method,

and PHP, a host-dependent alignment-free method, are the best-performing tools for virus-

host prediction. Other methods showed different performances depending on the host selec-

tion criteria, scoring thresholds, and the reference database. It seems that CRISPR-based meth-

ods seem to benefit from using a more extensive spacers database when predicting hosts of

already-known viruses. However, using a more extensive candidate host database did not

enhance the performance of host-dependent alignment-free methods such as PHP.

The synergy observed between PHP and CRISPR-based tools when applied to metagenomic

viral contigs (mVCs) and metagenome-assembled genomes derived from the same dataset

implies that the use of this combined approach, together with highly accurate methods that

rely on extensive pre-compiled reference databases such as RaFAH, has the potential to pro-

duce more robust host assignments for exceptionally diverse metagenomic datasets. This

assumes that predictions remain consistent across methods and that the taxonomy, habitat,

lifestyle, or metabolism of the inferred host matches the characteristics of the source

environment.

Finally, host predictions on mVCs from Archaean Domes showed that viruses inhabiting

such environment infect halophilic archaea as well as a variety of bacteria which may be halo-

philic, halotolerant, alkaliphilic, thermophilic, oligotrophic, sulfate-reducing or marine-

related. These predictions are consistent with the particular environment and the known geo-

logical and biological evolution of the Cuatro Ciénegas Basin and its microorganisms.

Supporting information

S1 File. Lists of NCBI complete bacterial virus genomes and RefSeq complete bacterial

genomes used for benchmarking virus-host prediction tools. The file contains six sheets—

the first one lists bacteriophage genomes. The second is the Virus-Host DB table. The third

one is the RefSeq release catalog with complete bacterial genomes—the fourth lists the virus-

host pairs, including their accessions, used for benchmarking. The fifth sheet is the reference

accession-genus list against which each prediction was compared. The sixth and final sheet

contains the prediction results of each tool, using the parameters on which they perform the

best.

(XLSX)

S2 File. NCBI complete bacterial virus genomes and RefSeq complete bacterial genomes

sequence files used for benchmarking virus-host prediction tools. It includes viral and
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bacterial genomes in fasta format. It also contains files with predicted CRISPR arrays and spac-

ers.

(XLSX)

S3 File. Files used for testing virus-host prediction tools on metagenomic data from

Archaean Domes, Cuatro Ciénegas Basin, Mexico. It includes metagenomic viral contigs

and metagenome-assembled genomes in fasta format, as well as spacers needed to run predic-

tions with BLAST and CrisprCustomDB and the host k-mer file needed to run predictions

with PHP.

(XLSX)

S4 File. Host prediction results on mVCs from Archaean Domes, Cuatro Ciénegas Basin,

Mexico. It includes a table with contig information and host predictions. Contigs highlighted

with beige backgrounds will likely represent the same virus according to their protein domain

content and host prediction. A red line delimits unreliable predictions from predictions sup-

ported by only one method but with consistency between the predicted host biology and the

virus source environment. Above the yellow line, predictions are supported by two methods.

Above the green line, predictions are supported by three methods.

(XLSX)

S5 File. Host prediction results for complete NCBI archaea virus genomes. It contains two

tables. The first table shows the genus-level host predictions made by each tool for each

archaea virus. False positive predictions are highlighted in red, while true positive predictions

are highlighted in green. The second table shows the prediction statistics including precision,

sensitivity and F1_score.

(XLSX)
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rostro-Muñoz J, et al. Diversity of an uncommon elastic hypersaline microbial mat along a small scale

transect. PeerJ. 2022; 10:e13579. https://doi.org/10.7717/peerj.13579 PMID: 35757167

10. Cisneros-Martı́nez AM, Eguiarte LE, Souza V. Metagenomic comparisons reveal a highly diverse and

unique viral community in a seasonally fluctuating hypersaline microbial mat. Microbial Genomics.

2023; 9(7). https://doi.org/10.1099/mgen.0.001063 PMID: 37459167
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16. Galiez C, Siebert M, Enault F, Vincent J, Söding J. WIsH: who is the host? Predicting prokaryotic hosts

from metagenomic phage contigs. Bioinformatics. 2017; 33(19):3113–3114. https://doi.org/10.1093/

bioinformatics/btx383 PMID: 28957499

PLOS ONE Bioinformatic tools for virus-host prediction and the Cuatro Ciénegas Basin
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