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Abstract

Long short-term memory (LSTM) has been effectively used to represent sequential data in

recent years. However, LSTM still struggles with capturing the long-term temporal depen-

dencies. In this paper, we propose an hourglass-shaped LSTM that is able to capture long-

term temporal correlations by reducing the feature resolutions without data loss. We have

used skip connections in non-adjacent layers to avoid gradient decay. In addition, an atten-

tion process is incorporated into skip connections to emphasize the essential spectral fea-

tures and spectral regions. The proposed LSTM model is applied to speech enhancement

and recognition applications. The proposed LSTM model uses no future information, result-

ing in a causal system suitable for real-time processing. The combined spectral feature sets

are used to train the LSTM model for improved performance. Using the proposed model, the

ideal ratio mask (IRM) is estimated as a training objective. The experimental evaluations

using short-time objective intelligibility (STOI) and perceptual evaluation of speech quality

(PESQ) have demonstrated that the proposed model with robust feature representation

obtained higher speech intelligibility and perceptual quality. With the TIMIT, LibriSpeech,

and VoiceBank datasets, the proposed model improved STOI by 16.21%, 16.41%, and

18.33% over noisy speech, whereas PESQ is improved by 31.1%, 32.9%, and 32%. In seen

and unseen noisy situations, the proposed model outperformed existing deep neural net-

works (DNNs), including baseline LSTM, feedforward neural network (FDNN), convolutional

neural network (CNN), and generative adversarial network (GAN). With the Kaldi toolkit for

automated speech recognition (ASR), the proposed model significantly reduced the word

error rates (WERs) and reached an average WER of 15.13% in noisy backgrounds.

Introduction

Speech enhancement is a signal processing technique that aims to improve the quality and

intelligibility of speech signals that are degraded by various types of noise, such as background

noise, reverberation, and channel distortions. In practice, speech enhancement techniques typ-

ically operate in the time-frequency domain, where the speech signal is represented as a

sequence of short-time Fourier transforms (STFTs). By analyzing the speech signal in the
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frequency domain, it is possible to identify and isolate the components that are corrupted by

noise, while preserving the underlying speech components. Speech enhancement is a crucial

component in many applications, such as hearing aids, telecommunication systems, and

speech recognition systems. By improving the quality and intelligibility of speech signals,

speech enhancement techniques can significantly enhance the performance and usability of

these systems. There are many different signal processing techniques that can be used for

speech enhancement, such as spectral subtraction [1], Wiener filtering [2], and non-negative

matrix factorization (NMF) [3]. These techniques aim to reduce or remove the noise compo-

nent from the speech signal while preserving the speech content. One of the key challenges in

speech enhancement is to distinguish between the desired speech signal and the noise compo-

nent. This is particularly challenging in the presence of non-stationary noise, which can vary

in both time and frequency domains. To overcome this challenge, speech enhancement sys-

tems often use adaptive algorithms that can track the changes in the noise statistics and adjust

the filtering parameters accordingly. The performance of speech enhancement systems is typi-

cally evaluated using objective measures, such as signal-to-noise ratio (SNR) and perceptual

evaluation of speech quality (PESQ), as well as subjective listening tests. In general, speech

enhancement can significantly improve speech signals’ perceived quality and intelligibility,

particularly in noisy environments.

Deep learning techniques have shown a lot of promise in improving speech enhancement

performance in non-stationary noisy environments, where the characteristics of the noise may

change over time [4–6], and show its effectiveness in other applications [7–10]. Deep neural

networks (DNNs) are effective models for speech enhancement because they can learn the

nonlinear relationship between input and output features. In particular, deep learning-based

speech enhancement models, such as Convolutional Neural Networks (CNNs), Recurrent

Neural Networks (RNNs), and Deep Neural Networks (DNNs), can learn to extract features

that are robust to various types of noise and can adapt to changing noise conditions over time.

Deep learning-based speech enhancement models have shown significant improvements in

speech quality and intelligibility, particularly in challenging environments, such as noisy

speech in cars, on cell phones, or in crowded public places. There are two main types of DNN-

based speech enhancement algorithms: masking-based [11, 12] and mapping-based [13–15].

Masking-based algorithms have been found to be more effective because they can estimate

time-frequency (T-F) masks as training targets, which can better track the target speaker and

produce better de-noising results. Fully connected feedforward DNNs (FDNNs) have been

commonly used in speech enhancement, but they are limited by short context windows and

cannot capture long-term context information. Multi-layer networks are used in DNN-based

speech enhancement methods to overcome this limitation and provide better performance in

non-stationary noisy environments. Overall, DNN-based speech enhancement techniques can

provide superior de-noising results without requiring statistical features or distribution

assumptions. However, they require large amounts of training data and computational

resources, which can be a limitation in some applications.

Recurrent Neural Networks (RNNs) are a type of neural network that can process sequen-

tial data and capture long-range temporal dependencies. They are particularly well-suited for

natural language processing (NLP) tasks that involve variable-length sequences of data, such as

speech waveforms, text, and time series. RNNs have also been successfully used for other NLP

tasks, such as speech recognition and dialogue modeling. For example, in speech recognition,

RNNs can be used to model the relationship between an input speech waveform and its corre-

sponding text transcription. According to research [16, 17], it is preferable to structure speech

enhancement as a sequence-to-sequence process in order to regulate long-term context win-

dows. RNNs [18], CNNs [19], and GANs [20] have been presented where networks are trained
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and evaluated with various noise types and speakers of both genders. The authors propose a

four-hidden-layer LSTM model for speaker generalization [16]. Regarding speech intelligibil-

ity, the findings demonstrated that the LSTM model generalized better to untrained speakers

and significantly outperformed a DNN-based model. Numerous studies demonstrate that with

sequence-to-sequence processing, LSTM may successfully manage long-term context windows

and be effective in SE [21, 22]. The difficulty of capturing long-term dependencies is a crucial

obstacle RNN models face when attempting to model extended sequences of input data. In

addition, training RNNs via Back Propagation Through Time (BPTT) exposes gradients to

vanishing and explosion. LSTM [23, 24] and gated recurrent unit (GRU) [25, 26] are examples

of RNN variations that use unique transition functional units and optimization strategies to

address these difficulties. Layered RNNs [27] and skip RNNs are two of the existing focused

architectures [16]. A causal dynamic model using attention LSTM encoder-decoder is pro-

posed for SE with excellent noise reduction and speech recognition results- [28]. A time-

domain brain-assisted speech enhancement model incorporates electroencephalography sig-

nals to extract the target speaker from monaural speech mixtures. The proposed SE model is

based on the fully convolutional time-domain network [29]. Another study [30] proposes a

cooperative attention-based speech enhancement model and combines local and non-local

attention operations in a learnable and self-adaptive manner. The study [31] proposes a multi-

scale attention metric generative adversarial network to avoid the mismatch between the

objective function used to train the speech enhancement models and introduces the attention

mechanism in the metric discriminator. Another study uses a Convolutional attention trans-

former bottleneck in the encoder-decoder framework for speech enhancement and obtains

better SE and automatic speech recognition results [32].

In this paper, we describe LSTM models that are capable of capturing long-term temporal

correlations and avoiding gradient decay across layers. The significant contributions of this

study are emphasized as follows. (i) It is suggested that an hourglass-shaped LSTM model can

capture long-term temporal sequence-to-sequence data and decrease feature resolutions with-

out data loss in layers. (ii) In order to avoid gradient decay in nonadjacent layers, skip connec-

tions are introduced. (iii) In the skip connections, an attention gate is utilized to suppress

irrelevant input and emphasize the critical spectral regions of features. (iv) Combined feature

sets are extracted from the noisy speech to train LSTM models reliably. (v) IRM is estimated to

be the training target for suppressing the additive noise from the target speech in order to

obtain higher-quality and more intelligible speech.

The remainder of this paper is organized as follows. The proposed speech enhancement sys-

tem is explained in Section 2. Experiments and setups are presented in Section 3. Results and

discussions are presented in Section 4. Finally, conclusions are drawn in Section 5.

Proposed speech enhancement

Problem formulation

Consider that a clean speech signal s(t) is deteriorated by additive background noise d(t) and

that the resultant noisy speech y(t). Using the short-time Fourier Transform (STFT), the noisy

speech y(t) is transformed into the frequency domain, yielding the frequency-domain repre-

sentation of y(t) as |Y(f, t)|, where t represents the frame index and f represents the frequency

index. A combined set of acoustic features is extracted to train the LSTM model reliably. The

learned parameters estimate the time-frequency mask (IRM) as a training target during the

testing phase. The calculated magnitude mask |M(t, f)| is then multiplied by the magnitude of

the noisy speech |Y(t, f)| to reduce background noise signals in the underlying clean speech |S
(t, f)|. During waveform reconstruction, the predicted magnitude and the noisy phase are
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combined to generate improved speech. Fig 1 depicts the block diagram of the proposed

speech enhancement.

Proposed LSTM architecture

LSTMs are capable of capturing information from speech waveforms, which are essentially

long-term temporal sequences. Using the following novel approach, the network has success-

fully circumvented the RNN’s constraints. This suggested LSTM model is influenced by

research by Abdulbaqi [33]. LSTM layers are first organized using an hourglass-shaped design.

For the top pyramid (first two layers to the third layer), the number of time steps decreases as

the number of neurons increases. Similarly, in the bottom pyramid (third to final two levels),

the time steps are increasing while the number of neurons is decreasing. Instead of the typical

LSTM’s fixed neurons and time steps, we have employed an alternative technique to produce a

compact and effective model for speech enhancement. The outputs of the model have been

modified to favor fewer time steps. Reshaping the layer output to lower and increase the time

steps eliminates data loss and enables the model to have a suitable number of neurons. With

these architectural modifications, the model can manage high-resolution features without

exceeding memory capacity and with fewer network parameters. Second, skip connections are

used between pyramid layers of similar shape from the top pyramid to the bottom pyramid.

Thus, the decreasing gradient across layers is maximized. Thirdly, the attention gate is used in

skips to emphasize significant spectral areas. The speech spectrum contains formants with a

sparse distribution in high-frequency regions and a predominance in low-frequency regions.

Consequently, it is essential to differentiate the various spectral areas with varying weights

using an attention gate. Fig 2 depicts the network’s five LSTM layers and two attention skip

connections. Table 1 expresses the time steps and units. The network finds the nonlinear rela-

tionship and converts the noisy speech signal y(t) into a clean speech signal. Using the follow-

ing equations where the forget gate is important.

it ¼ sðWiÞ � ½Ct� 1; ht� 1; xt� þ bi ð1Þ

ft ¼ sðWf Þ � ½Ct� 1; ht� 1; xt� þ bf ð2Þ

Ot ¼ sWo � ½Ct� 1; ht� 1; xt� þ boÞ ð3Þ

Fig 1. The proposed speech enhancement.

https://doi.org/10.1371/journal.pone.0291240.g001
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Fig 2. The proposed LSTM Architecture.

https://doi.org/10.1371/journal.pone.0291240.g002

Table 1. Proposed LSTM details.

Layer Units in Layer Time-Steps in Layer

1 256 512

2 512 256

3 1014 128

4 512 256

5 256 512

https://doi.org/10.1371/journal.pone.0291240.t001
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kt ¼ tanhðWc � ½Ct� 1; ht� 1; xt� þ bcÞ ð4Þ

Ct ¼ ft � Ct� 1 þ it �þkt ð5Þ

where Wi, Wf, Wo, are weight matrices of input, forget, and output gate associated with hidden

states, xt is input to the current timestamp, ht−1 is hidden state of the previous timestamp, Ct−1

and Ct shows the previous and current timestamp respectively whereas bi, bf, and bo are the

biased terms of input, forget, and output gate, respectively. In the architecture, LSTMs are

favored over RNNs because of their gated structure, superior training, and superior SE perfor-

mance. This compact LSTM design enhances network capacity by sharing the hidden states

across the similar and bottom layers. The lowering time-steps and increasing units (from

upper layers to the middle layer) and increasing time-steps and decreasing units (from the

middle layer to the bottom layer) allow for a more accurate portrayal.

The LSTM layers share their hidden states, hence the hidden states of an LSTM unit in

layer l at time t are obtained by concatenating its hidden states, which are dependent on the

lower layer l–1 at time t and this layer at time t–1. Before the skips, the hidden states of the top

and lower layers are merged to form a final output with the same size as the input vectors.

hl
t ¼ LSTMðhl� 1

t ; hl
t� 1
Þ ð6Þ

The output will be created by combining the hidden states of all layers as:

X ¼ LSTMðh5
l ; h

5
TÞ ð7Þ

where X indicates the output from the last layer while h5
T indicates hidden states of last layer in

the architecture. To avoid gradient decaying over the layers, two skips are added. The skips

provide deep training and effective generalization after the combination of low-level features

with high-level features. Speech spectra include different frequency components; the formants

are usually dominant in the low-frequency regions and demonstrate a sparse distribution in

the high-frequency regions. Hence, it is important to distinguish different spectral regions

with different weights by using an attention process. Moreover, important regions and features

are focused on improving the quality of output.

Features combination

At the frame level, the feature sets are obtained from the speech signals. The frame shift and

lengths were set at 10 and 20 milliseconds, respectively. These feature sets are comprised of

31-dimension Mel-Frequency Cepstral Coefficients (MFCC), 64-dimension Gammatone Fil-

ter-bank Energies (GFE), 15-dimension Amplitude Modulation Spectrogram (AMS), and

13-dimensions relative Spectral Transformed Perceptual Linear Prediction Coefficients (RAS-

TA-PLP), given as:

fS ¼ f MFCC
s þ f RASTA� PLPs þ f AMS

s þ f GFEs ð8Þ

fY ¼ f MFCC
y þ f RASTA� PLPy þ f AMS

y þ f GFEy ð9Þ

Here d denotes the dimensions of features, fS and fY are the combined feature vectors of

clean and noisy speech. The gamma tone filterbank energies features are derived from the

Cochleagrams, which is a T-F representation often employed in computational auditory scene

analysis (CASA). It explains the operation of the human auditory system. A filter bank of 64

channels is used to generate the Cochleagrams. The delta features are also calculated and
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attached to the features. Table 2 briefly compares the models in terms of features, training

objective, DNN type, and loss function.

Experiments

Datasets

Various tests are undertaken using speech sentences selected from the TIMIT [34], LibriS-

peech [35], and VoiceBank [36] to evaluate the performance of SE. LibriSpeech comprises

1000 hours of speech data at a 16 kHz sampling rate. The TIMIT also contains phonetically

balanced speech data at a sampling rate of 16 kHz. The Voice Bank is composed of male and

female speakers of the English language. In our research, only clean speech samples from data-

bases were utilized. The Aurora-4 database [37], NOISEX-92 database [38], and DEMAND

database [39] are selected to obtain background noises for evaluating the proposed speech

enhancement methods. Four input SNRs (-8 dB, -4 dB, 0 dB, and 4 dB) are utilized to create

noisy sentences. To train the proposed LSTM network, sentences from VoiceBank, TIMIT,

and LibriSpeech are used in order to estimate the T-F mask. For a more accurate generaliza-

tion of the speaker, the training sentences include male and female speakers combined with all

noise sources. Consequently, a large quantity of speech sentences is selected for model train-

ing. In addition, a separate set of speech sentences is prepared at random from three databases

(TIMIT, LibriSpeech, and VoiceBank) for model testing. Only two noise sources are excluded

from training and these noises are termed unseen noises(factory2 and café).

Network setting

In this article, a five-layered LSTM network is used where the input layer has a size of 1230

dimensions using the context windows of 11 frames. Every layer of the LSTM is comprised of

N units and M time steps, while the output layer consists of 257 units. The BPTT (Backpropa-

gation through time) is employed during training. Optimization is performed using adaptive

gradient descent with momentum. There are 512 samples in each batch. During processing,

the AGD scaling factor is fixed at 0.0010 whereas the learning rate is reduced linearly from

0.06 to 0.002. There are 80 epochs in all. is set at 0.4 for the first epochs, then momentum is

raised to 0.8 for subsequent epochs. With a dropout rate of 0.2, dropout regularisation is

implemented. During mask estimation, the MSE loss function is applied. The LSTM models

do not employ future information, which is equivalent to causal systems. 11 frames of features

Table 2. Brief comparison in terms of features, training objective, DNN type, and loss function.

Model Features Training Objective DNN Type Loss Function

MO-LSTM [18] Spectral Features T-F Masking LSTM+Phase MSE Loss

1D-CNN [19] Waveform Waveform 1D-CNN Phase+MSE

μ-law SGAN [20] Compressed Spectrum T-F Mask GAN MSE Loss

DeepResGRU [25] Spectral Features T-F Masking Residual GRUs MSE Loss

CS-DWL [28] Spectral T-F Masking Attention LSTMs Dynamical MSE

CASE-Net [30] Complex Spectrum T-F Masking 2D+1D CNN SI-SDR

MAMGAN [31] Waveform Features Waveform GAN MSE+SI-SNR

NSE-CATNet [32] Spectral Features T-F Mask Conv-2D+Transformer MSE Loss

CleanUNet [50] Waveform Features Waveform Conv-1D+Self Attention L1+M-STFT

UFLSTM [51] Spectral Features T-F Masking Type-2 Fuzzy LSTM MSE Loss

Proposed [–] Spectral Features T-F Masking U-shaped-LSTM MSE Loss

https://doi.org/10.1371/journal.pone.0291240.t002
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are concatenated as the network input at each time step. The input to the model is causal.

However, as demonstrated in Table 1, the network’s computing process varies. There are dif-

ferent time steps in different layers, the calculation of the first time step of the second layer

requires the output of the second time step of the first layer, and the calculation of the first

time step of the third layer requires the output of the second, third, and fourth time steps of

the first layer; therefore, when calculating the first time step of the output layer, the future time

step of the first layer must be used. The deep model hyperparameters are listed in Table 3.

Here Units indicate the neurons.

Evaluation metrics

Experiments use two objective metrics to objectively assess the proposed speech enhancement

method. STOI (short-time objective intelligibility) and PESQ (perceptual evaluation of speech

quality) determine the intelligibility and quality, respectively. ITU-T P.862 guideline PESQ

[40] assesses the perceptual quality of noisy speech (between -0.5 to 4.5). STOI [41] assesses

the intelligibility of noisy speech with values from 0.00 to 1.00. A monotonic nonlinear map-

ping was used to calculate the percentage of correct words based on the STOI findings. Apply-

ing a mapping function to the STOI data yields the projected intelligibility scores in this study.

The two metrics are:

STOI ¼
10

1þ expðcSTOI þ dÞ
ð10Þ

PESQ ¼ a0 þ a1D1 þ a2D2 ð11Þ

Where c = -17.49, d = 9.692, α0 = 4.5, α1 = -0.1, α3 = -0.039, D1 denotes the symmetric distur-

bances while D2 denotes the asymmetric disturbances, respectively.

Representation of algorithm

Various SE systems are designed with an interpretation indicating the neural network type,

with and without skip connections and mask type. (i): LSTM-NoSkips-IRM: This model esti-

mates the IRM training objective by using the proposed LSTM without skip connections. (ii):

LSTM-WithSkips-IRM: The model estimates the IRM by using the proposed LSTM with skip

connections. (iii): LSTM-AttenSkips-IRM: This model estimates the IRM by using the

Table 3. The details of the network with hyperparameters of the LSTM and competing deep learning models.

Hyperparameters Baseline LSTM DNN Proposed LSTM

No of hidden layers 5 5 5

Layer 1 Units 1024 1024 256

Layer 2 Units 1024 1024 512

Layer 3 Units 1024 1024 1014

Layer 4 Units 1024 1024 512

Layer 5 Units 1024 1024 256

Learning Rate 0.001 0.001 0.001

No of Epochs 80 80 80

Momentum Rate 0.8 0.8 0.8

Dropout Rate 0.2 0.2 0.2

Loss Function MSE MSE MSE

Activation – ReLU –

https://doi.org/10.1371/journal.pone.0291240.t003
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proposed LSTM with attention skip connections. The baseline LSTM [16] is represented as

LSTM-IRM with IRM as a training target. TIMIT, LibriSpeech, and VoiceBank datasets are

used to train all networks.

Results and discussions

Table 4 presents an evaluation of the proposed SE using STOI in three seen noises. The pro-

posed LSTM model using the combined features and attention skips outscored the networks

that are using no skips or using skips with no attention. We observed better STOI (intelligibil-

ity) and PESQ (quality) than the counterparts and unprocessed noisy speech with the proposed

model. For example, the LSTM-AttenSkips-IRM improved the STOI by 7.7% over unpro-

cessed speech (UNP stands for noisy speech) at -8dB babble noise. Similarly, LSTM-AttenS-

kips-IRM increased STOI by 23.9% over unprocessed speech at -4dB of car noise. Also, at 0dB

factory noise, LSTM-AttenSkips-IRM increased STOI by 20.2% over unprocessed noisy

speech. In comparison to the LSTM-WithSkips-IRM, the proposed models with attention

skips improved the STOI by 2.1% at -8dB babble noise. Also, the proposed model with atten-

tion skips improved the STOI by 9.1% with LSTM-NoSkips-IRM at -8dB babble noise. As a

whole, the LSTM-AttenSkips-IRM outperformed and increased average STOI over unpro-

cessed noisy speech as well as SNRs by 1.23%.

Table 5 evaluates the proposed SE models in terms of PESQ for three seen noise types with

IRM as an estimated training target. For the PESQ, the suggested LSTM model with combined

feature sets and attention skips outscored other models that have no skips or skips with no

attention mechanism. We achieved a better perceptual speech quality as compared to the

counterparts and noisy speech with the proposed models. For example, in Table 4, the

LSTM-AttenSkips-IRM improved the PESQ by 0.34 (20.98%) over unprocessed speech at

-8dB factory noise. Similarly, LSTM-AttenSkips-IRM improved the PESQ by 0.54 (26.21%)

over unprocessed speech at -4dB babble noise. Moreover, at 0dB car noise, the LSTM-AttenS-

kips-IRM improved the PESQ by 1.04 (39.1%) over the noisy speech. In contrast to the

LSTM-WithSkips-IRM, the proposed models with attention skips improved the PESQ by 0.09

(3.04%) at 4dB car noise. It indicates that at good SNRs (SNR�4dB) the proposed LSTM

model performs almost similarly. In addition, the proposed model with attention skips

improved the PESQ by 0.14 (5.28%) with LSTM-NoSkips-IRM at 4dB babble noise. Again, the

LSTM-AttenSkips-IRM outscored and increased the average PESQ score over the unprocessed

noisy speech as well as SNRs by 3.07%.

Table 4. STOI scores in seen noise sources for IRM training-target.

Noise Algorithm -8dB -4dB 0dB 4dB Average

Babble Noise Noisy (UNP) 48.2 58.1 67.1 76.2 62.4

LSTM-NoSkips 52.7 66.7 77 84.8 70.3

LSTM-WithSkips 53.8 68.8 79.1 87 72.2

LSTM-AttenSkips 55.9 70.1 80.3 88.6 73.7

Car Noise Noisy (UNP) 51.8 58.9 68.6 77.1 64.1

LSTM-NoSkips 72.4 79.2 84.9 89.4 81.5

LSTM-WithSkips 74.5 86.9 86.9 91.6 85

LSTM-AttenSkips 75.7 88.3 88.3 93.2 86.4

Factory Noise Noisy (UNP) 55.2 61.7 69.8 78 66.2

LSTM-NoSkips 66.3 76.7 84.5 90.5 79.5

LSTM-WithSkips 68.3 78.8 86.5 92.6 81.6

LSTM-AttenSkips 69.5 79.9 87.9 93.7 82.8

https://doi.org/10.1371/journal.pone.0291240.t004
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The results indicate that LSTM-AttenSkips achieved better PESQ and STOI values. The

average PESQ and STOI improvements (PESQi and STOIi) in background noises are depicted

in Figs 3 and 4, respectively.

In other sets of experiments, we used the LibriSpeech dataset and Ideal Binary Mask (IBM)

to evaluate the proposed SE models. The LibriSpeech is obtained from audiobooks and is com-

posed of 1000 hours of speech sampled at 16 kHz. In experiments, we selected only clean utter-

ances and again mixed them with noise types: airport, babble, street, cafeteria, and car noise at

the same SNRs. The average PESQ and STOI values using 5 noises are given in Table 6. The

LSTM-WithSkips-IRM and LSTM-WithSkips-IBM have increased the average STOI by

16.44% and 14.9% over unprocessed noisy speech. Further, the LSTM-AttenSkips-IRM and

LSTM-AttenSkips-IBM have increased the average PESQ scores with 0.78 (33.19%) and 0.71

(31.14%) over unprocessed noisy speech. We used the VoiceBank dataset to further evaluate

the proposed SE models. In experiments, we selected only clean utterances and again mixed

them with noise types: airport, babble, street, cafeteria, car, sports field, and well-visited city

park noise at the same SNRs. The average STOI and PESQ scores for different noises are given

in Table 7. The LSTM-AttenSkips-IRM and LSTM-AttenSkips-IBM have increased the aver-

age STOI by 17.21% and 15.4% over unprocessed noisy speech. In addition, LSTM-AttenS-

kips-IRM and LSTM-AttenSkips-IBM have increased the average PESQ with 0.81 (35.22%)

and 0.75 (34.31%) over unprocessed noisy speech.

Generalization performance

To examine the proposed SE models in terms of generalization, Table 8 provides the PESQ

and STOI scores in two unseen noise types (factory2 and cafeteria). The proposed SE models

outscored the baseline and the competing networks with significant margins in unseen noises.

During analysis, it is observed that the proposed LSTM-WithSkips-IRM and LSTM-WithS-

kips-IBM obtained the highest 7intelligibility (STOI) and perceptual quality (PESQ) scores

since the network architecture is modified to obtain better results. As the suggested models

have been treated using robust acoustic feature sets and modifications, their performances are

not drastically altered both in unseen or seen noisy conditions. The average STOI values have

increased from 63.1% to 78.0% and 76.8% with LSTM-WithSkips-IRM and LSTM-WithSkips-

IBM, improving the STOI by 14.9% and 13.7% over unprocessed speech. At low SNRs such as

-4dB and -8dB, LSTM-WithSkips-IRM and LSTM-WithSkips-IBM have increased STOI by

Table 5. PESQ scores in seen noise sources for IRM training-target.

Noise Algorithm -8dB -4dB 0dB 4dB Average

Babble Noise Noisy (UNP) 48.2 58.1 67.1 76.2 62.4

LSTM-NoSkips 1.65 1.88 2.17 2.51 2.05

LSTM-WithSkips 1.68 1.9 2.2 2.54 2.08

LSTM-AttenSkips 1.79 2.06 2.25 2.65 2.19

Car Noise Noisy (UNP) 51.8 58.9 68.6 77.1 64.1

LSTM-NoSkips 1.97 2.26 2.57 2.84 2.41

LSTM-WithSkips 2.01 2.29 2.6 2.87 2.44

LSTM-AttenSkips 2.1 2.34 2.66 2.96 2.52

Factory Noise Noisy (UNP) 55.2 61.7 69.8 78 66.2

LSTM-NoSkips 1.52 1.86 2.16 2.53 2.01

LSTM-WithSkips 1.55 1.87 2.17 2.55 2.04

LSTM-AttenSkips 1.62 2.01 2.26 2.67 2.14

https://doi.org/10.1371/journal.pone.0291240.t005
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Fig 3. The STOI improvements (STOIi) in background noises.

https://doi.org/10.1371/journal.pone.0291240.g003

Fig 4. The PESQ improvements (PESQi) in background noises.

https://doi.org/10.1371/journal.pone.0291240.g004

PLOS ONE Deep causal speech enhancement and recognition using efficient long-short term memory RNN

PLOS ONE | https://doi.org/10.1371/journal.pone.0291240 January 3, 2024 11 / 19

https://doi.org/10.1371/journal.pone.0291240.g003
https://doi.org/10.1371/journal.pone.0291240.g004
https://doi.org/10.1371/journal.pone.0291240


1.90% and 1.80% over the baseline LSTMs (LSTM with IRM and LSTM with IBM). Further,

the average PESQ values are increased from 1.50 to 2.22 (32.43%) and 2.17 (31.90%) with

LSTM-WithSkips-IRM and LSTM-WithSkips-IBM, improving the PESQ significantly over

the UNP in unseen noisy conditions. The proposed LSTM models have increased STOI by

1.80% and 2.90% over the baseline LSTMs. The proposed models have increased PESQ by 0.10

(4.54%) and 0.16 (7.27%) over the baseline LSTMs. The proposed models for SE achieved the

best performance in unseen noises.

The computational load of the proposed model is measured with trainable parameters and

FLOPs (floating-point operations), useful metrics for calculating computational complexity

and optimizing the performance on specific hardware platforms. The parameters count and

FLOPs for the proposed LSTM model are 26.47M and 127.72 [G] whereas the parameters

count and FLOPs for the baseline LSTM are 53.93M and 245.67 [G], respectively indicating

the better performance in terms of model complexity and trainable parameters.

Comparisons with other DL methods

This section examines the performance in terms of average values (STOI and PESQ) obtained

by the proposed models and the competing DL models. The experimental results indicate that

the proposed LSTM models improved the speech quality, intelligibility, noise suppression, and

speech distortion, and also outperformed the baseline LSTM [16], DNN [42], CNN [43], GAN

(3-layer ReLU MLP) [44], CNN-GRU [45], and FCNN [46]. Table 8 indicates the generaliza-

tion capabilities of the suggested LSTM and other DL models. All DL models have been

trained using a similar dataset comprising male and female speakers. The experimental values

are averaged over all SNRs (-8dB, -4dB, 0dB, and 4dB) and noises. The results in Table 9 indi-

cate that the suggested LSTM models have increased intelligibility and perceptual speech qual-

ity. The LSTM-AttenSkips-IRM and LSTM-AttenSkips-IBM have increased STOI by 4.4% and

Table 6. PESQ and STOI result for LibriSPeech dataset.

Metric Algorithm Ideal Ratio Mask Ideal Binary Mask

-8dB -4dB 0dB 4dB -8dB -4dB 0dB 4dB

STOI LSTM-NoSkips 63.9 75 81.7 88.3 62.9 71.1 80.4 86.3

LSTM-WithSkips 66.1 78.6 84.3 90.2 64.4 74.7 81.4 88.2

LSTM-AttenSkips 67.4 79.7 86 92 66.4 77 84.9 90.6

PESQ LSTM-NoSkips 1.72 2.04 2.3 2.66 1.66 1.98 2.28 2.61

LSTM-WithSkips 1.75 2.11 2.41 2.74 1.71 2.03 2.31 2.68

LSTM-AttenSkips 1.83 2.21 2.49 2.86 1.8 2.11 2.43 2.77

https://doi.org/10.1371/journal.pone.0291240.t006

Table 7. PESQ and STOI result for the VoiceBank dataset.

Metric Algorithm Ideal Ratio Mask Ideal Binary Mask

-8dB -4dB 0dB 4dB -8dB -4dB 0dB 4dB

STOI LSTM-NoSkips 64.1 75.2 81.9 88.6 63.3 71.6 80.9 86.8

LSTM-WithSkips 66.3 78.8 84.6 90.5 64.9 75.0 82.0 88.7

LSTM-AttenSkips 67.7 80.0 86.3 92.8 67.0 78.1 85.3 91.0

PESQ LSTM-NoSkips 1.76 2.10 2.36 2.72 1.69 2.01 2.31 2.63

LSTM-WithSkips 1.80 2.15 2.47 2.79 1.75 2.06 2.36 2.71

LSTM-AttenSkips 1.87 2.28 2.53 2.91 1.84 2.10 2.46 2.80

https://doi.org/10.1371/journal.pone.0291240.t007
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6.7% over the DNNs with IRM and IBM as training targets. Further, the LSTM-AttenSkips-

IRM has increased STOI by 5.10% (over CNN) and 9.7% (over GAN). Moreover, the

LSTM-AttenSkips-IBM has increased STOI by 4.90% (over CNN) and 9.50% (over GAN).

Using PESQ, the LSTM-AttenSkips-IRM, and LSTM-AttenSkips-IBM have increased values

by 0.20 (9.09%) over CNN and 0.31 (14.09%) over GAN. The overall average improvement of

competing models over noisy speech is shown in Fig 5.

Table 8. The quality (PESQ) and intelligibility (STOI) results in unseen noises.

Algorithm STOI PESQ

-8dB -4dB 0dB 4dB Avg -8dB -4dB 0dB 4dB Avg

Noisy Speech (UNP) 50.3 58.3 67.5 76.3 63.1 1.15 1.39 1.58 1.88 1.50

LSTM-AttenSkips-IRM 64.3 74.8 82.7 90.0 78.0 1.79 2.05 2.34 2.69 2.22

LSTM-AttenSkips-IBM 63.4 72.7 82.0 88.9 77.8 1.76 1.98 2.28 2.65 2.17

LSTM-IRM (Chan [16]) 62.0 72.9 81.3 88.2 76.1 1.62 1.91 2.24 2.64 2.10

LSTM-IBM (Chan [16]) 61.3 70.8 80.6 87.0 75.0 1.58 1.77 2.20 2.60 2.04

https://doi.org/10.1371/journal.pone.0291240.t008

Table 9. Comparison of the PESQ and STOI values against competing DL methods.

Algorithm STOI PESQ

-8dB -4dB 0dB 4dB Avg -8dB -4dB 0dB 4dB Avg

Noisy Speech (UNP) 51.7 59.6 68.5 77.1 64.2 1.24 1.48 1.67 1.91 1.58

LSTM-AttenSkips-IRM 65.5 76.0 83.9 90.3 79.0 1.81 2.09 2.39 2.72 2.25

LSTM-AttenSkips-IBM 64.6 74.9 83.2 89.1 78.0 1.77 2.03 2.35 2.67 2.21

LSTM-IRM (Chan [16]) 63.5 74.2 82.4 88.9 77.3 1.71 2.00 2.33 2.67 2.18

LSTM-IBM (Chan [16]) 62.7 72.1 81.7 87.8 76.1 1.67 1.86 2.29 2.63 2.11

DNN-IRM (Zheng Zhang [42]) 58.5 70.0 78.7 85.6 73.2 1.57 1.75 2.19 2.53 2.01

DNN-IBM (Zheng Zhang [42]) 56.1 67.3 76.5 83.1 70.8 1.49 1.70 2.11 2.45 1.94

CNN (Kounovsky and Malek [43]) 59.3 70.0 79.8 86.8 74.0 1.62 1.83 2.25 2.59 2.07

GAN (Shah et al [44]) 54.3 65.0 75.7 82.6 70.0 1.53 1.72 2.15 2.44 1.96

CNN-GRU (Hasannezhad et al [45]) 63.8 74.6 83.1 90.1 77.9 1.74 2.01 2.34 2.65 2.19

FCNN (Ouyang et al [46]) 60.3 71.6 79.3 86.3 74.3 1.61 1.78 2.21 2.59 2.05

https://doi.org/10.1371/journal.pone.0291240.t009

Fig 5. The average STOI and PESQ improvements (STOIi and PESQi) of deep learning models over noisy speech.

https://doi.org/10.1371/journal.pone.0291240.g005
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To visualize spectral regions of the speech processed by deep learning models and the pro-

posed LSTM models, we show spectro-temporal analysis. Fig 6 demonstrates the spectrograms

of the utterances. The underlying clean utterance (depicted in Fig 6a) is contaminated at 0dB

babble noise in order to create a noisy utterance (depicted in Fig 6b). The babble noise (origi-

nated when many people talk simultaneously) is a difficult noisy situation because the noise

signal follows the attributes similar to the underlying clean speech. The enhanced speech pro-

duced by the LSTM-IBM is illustrated in Fig 6(c), where the background babble noise is con-

siderably eliminated. The enhanced speech produced by the LSTM-IRM (depicted in Fig 6d)

shows minimum residual noise and speech distortion in comparison to the LSTM-IBM. Fig 6e

illustrates the speech enhanced by the LSTM-AttenSkips-IBM. Minimum speech distortion

and residual noise are noticeable. Fig 6f depicts the speech enhanced by the LSTM-AttenSkips-

IBM. We can observe that the proposed model reduced the background noise leaving minimal

residual noise and speech is not distorted, as confirmed by the spectrogram of noisy speech

enhanced by the proposed LSTM-AttenSkips.

Fig 6. Visualization of spectral regions. The underlying clean speech (a), the babble noise-contaminated noisy speech (b), speech processed by

LSTM-IBM (c), speech processed by LSTMIRM (d), speech processed by the LSTM-AttenSkips-IBM (e), and speech processed by the LSTMAttenSkips-

IRM (f).

https://doi.org/10.1371/journal.pone.0291240.g006
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Automatic Speech Recognition (ASR)

The SE evaluations show that the proposed LSTM models greatly suppressed the background

noise and recovered high-quality and intelligible speech. As a result, we expect better speech

recognition performance in challenging noisy backgrounds. The proposed SE models are

implemented at the front end to achieve better ASR results. We implemented the Kaldi toolkit

[47] which uses the GMM-HMM system and trained deep neural networks with Mel-fre-

quency filter-bank features. The training system is motivated by Tachioka [48]. We evaluated

ASR performance in terms of word error rates (WERs). We randomly selected 2000 speech

utterances from the TIMIT and LibriSpeech datasets to train the proposed LSTM-based speech

enhancement models. With the trained LSTM models, we performed the speech enhancement

and then synthesized time-domain utterances to create new training and testing datasets. We

trained ASR models using the new training dataset and tested the ASR models using the new

testing dataset. As given in Table 10, the ASR systems when trained with the utterances pro-

cessed by LSTM-AttenSkips performed better. The WERs gradually decreased with the favor-

able SNR levels. On average, 19.13% WERs are achieved with the utterances processed by the

proposed LSTM-AttenSkips, demonstrating that the proposed SE can be employed as a front-

end to boost the ASR performance.

Conclusion

In this paper, we propose a speech enhancement algorithm that is based on recurrent neural

networks trained with robust acoustic feature sets. An hourglass LSTM model is proposed

which successfully captures the long-term temporal dependencies by reducing feature resolu-

tions. We used skip connections between the nonadjacent symmetrical layers to prevent the

gradient decay over layers. Moreover, an attention mechanism is adopted in skips to highlight

the important features and spectral regions. A combined robust feature set is extracted from

the magnitude of the noisy speech to robustly train the proposed models for better perfor-

mance. Two masks, IRM and IBM, are estimated independently. The results have concluded

the following aspects of the proposed SE algorithm.

By using the combined features learning, the model includes additional information which

enabled the model to better learn the non-linear relation between noisy and clean speech

which is confirmed by the results in Tables 4–8. The proposed LSTM models successfully cap-

tured long-term temporal dependencies and reduced the feature resolution by using an hour-

glass architecture to estimate the model parameters for testing which are confirmed by a

comparison in Table 8 in the results. The memory overflow is avoided by using the proposed

architecture. The skips and attention gate in the skips considerably improved the gradient

decay over the layers and also highlighted the important features and spectral regions. The

addition of attention gates in the skips obtains better results as indicated by Tables 6 and 7 on

two different databases. With the hourglass strategy, the proposed models performed better

than the baseline in terms of trainable parameters (18.89M with the proposed and 46.18M

with the baseline). The proposed models performed better and outscored the recent deep

learning models in different noises as indicated by Table 9. The proposed models also outper-

formed the related deep-learning methods in unseen noises as confirmed by Table 8. The

Table 10. ASR performance, where all results are averaged over all SNR levels.

LSTM-AttenSkipps-IRM LSTM-IRM LSTM-IBM DNN-IRM DNN-IBM

15.01 20.11 21.14 28.22 28.58

https://doi.org/10.1371/journal.pone.0291240.t010
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Kaldi ASR results demonstrated that the proposed LSTM-AttenSkips SE can be employed as a

front-end to boost the ASR performance in noisy backgrounds, confirmed by Table 10 where

the proposed model achieves lower WERs.

Phase plays a vital role in improving the perceptual speech quality where a complex Phase

spectrum can add significant quality and intelligibility improvements in speech enhancement

system [49–51]. The focus of this study is to estimate speech magnitude enhancement where

the noisy phase is used during speech waveform reconstruction. Our future study will focus on

the simultaneous estimation of the magnitude and phase of the speech and intend to integrate

the estimates with the proposed model topology. Further, robust loss functions and feature

sets will be developed for improved speech quality and intelligibility.
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