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Abstract

Accurate diagnosis of the brain tumor type at an earlier stage is crucial for the treatment pro-

cess and helps to save the lives of a large number of people worldwide. Because they are

non-invasive and spare patients from having an unpleasant biopsy, magnetic resonance

imaging (MRI) scans are frequently employed to identify tumors. The manual identification

of tumors is difficult and requires considerable time due to the large number of three-dimen-

sional images that an MRI scan of one patient’s brain produces from various angles. More-

over, the variations in location, size, and shape of the brain tumor also make it challenging

to detect and classify different types of tumors. Thus, computer-aided diagnostics (CAD)

systems have been proposed for the detection of brain tumors. In this paper, we proposed a

novel unified end-to-end deep learning model named TumorDetNet for brain tumor detec-

tion and classification. Our TumorDetNet framework employs 48 convolution layers with

leaky ReLU (LReLU) and ReLU activation functions to compute the most distinctive deep

feature maps. Moreover, average pooling and a dropout layer are also used to learn distinc-

tive patterns and reduce overfitting. Finally, one fully connected and a softmax layer are

employed to detect and classify the brain tumor into multiple types. We assessed the perfor-

mance of our method on six standard Kaggle brain tumor MRI datasets for brain tumor

detection and classification into (malignant and benign), and (glioma, pituitary, and meningi-

oma). Our model successfully identified brain tumors with remarkable accuracy of 99.83%,

classified benign and malignant brain tumors with an ideal accuracy of 100%, and meningio-

mas, pituitary, and gliomas tumors with an accuracy of 99.27%. These outcomes demon-

strate the potency of the suggested methodology for the reliable identification and

categorization of brain tumors.

1. Introduction

The human brain serves as the body’s organizational and command center and is a vital com-

ponent of the nervous system, which is in charge of carrying out daily functions. The brain

gathers stimuli or messages from the body’s sense organs, analyses them, and then
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communicates the result or decision to the muscles. Unrestrained mutation or cell division

that results in an anomalous group of brain cells that can disrupt normal brain function and

eliminate healthy cells are the causes of brain tumors [1,2]. Fatigue, memory issues, nausea,

changes in personality and speech, blurred vision, etc., are among the most typical indications

of brain tumors. To identify and classify tumors in brain images, radiologists use a variety of

medical imaging modalities [3]. Magnetic resonance imaging (MRI) and computerized

tomography (CT) scans are frequently utilized to capture information about several human

body parts. As the human brain is a highly sensitive organ, MRI is considered a better image

modality for the analysis of brain tumors due to its non-invasive nature. MRI provides detailed

information about the structure of the brain after generating various 3D slices from multiple

directions and hence, MR is one of the most useful image modalities for automatic medical

image analysis [4–7]. The radiologists perform two types of tasks on the brain magnetic reso-

nance imaging (MRI): (i) find whether the brain MR images are tumorous or healthy [8–10],

and (ii) classify the tumorous brain MRI scans into different types [11–13]. Usually, the man-

ual detection of brain tumors relies on the expertise of radiologists. Manual detection and clas-

sification of brain tumor MR images are challenging because of high variations in shapes and

sizes of the same tumor type, the similar appearance of different tumor types [14,15], and the

limited availability and expertise of radiologists. Furthermore, manual brain tumor identifica-

tion and classification is tedious, impractical, time-consuming, and non-reproducible for a

huge amount of MRI data. An erroneous analysis of a brain tumor type can cause terrible con-

sequences that can lead to the death of any patient. Moreover, the categorization of brain

tumors into their numerous pathological types (multiclass classification) is more problematic

than binary classification. A reliable computer-aided diagnostics (CAD) system for brain

tumor classification is urgently needed to help radiologists overcome the difficulties of manual

brain tumor detection and classification [16,17]. In this study, we concentrate on both the

identification (tumor and non-tumor) and classification of brain tumors into benign and

malignant, as well as glioma, pituitary, and meningioma tumors.

Generally, brain tumors are of two types: benign (also known as non-cancerous) and malig-

nant (known as cancerous) tumors. Benign tumors originating in the brain are non-progres-

sive and cannot grow in the body. Whereas, malignant is a cancerous tumor that spread

quickly to other body parts. Primary malignant tumors, which start in the brain, and second-

ary malignant tumors, which originate in other body parts and reach the brain, are the two

major types of malignant tumors [18]. Moreover, meningioma, pituitary, and glioma are other

kinds of brain tumors having a very high occurrence rate [14]. The meningioma tumor is

always malignant and usually develops in thin tissues that encircle the brain and spinal cord.

Whereas glioma and pituitary tumors can be benign or malignant. Pituitary tumors develop

because of the cells’ unbalanced proliferation in the pituitary glands near the brain and the gli-

oma develops in the brain’s glial cells. The categorization of tumors into meningioma, glioma,

or pituitary is also very challenging because of the variations in size, form, and intensity [19].

Existing works on brain tumor classification have explored either the traditional machine

learning (ML) methods using the handcrafted features or deep learning (DL) methods. Con-

ventional ML approaches utilized in this domain usually comprise of preprocessing, feature

selection, feature extraction, and classification. Feature extraction and selection are the most

critical phases in any reliable automated brain tumor system as it requires prior understanding

of the problem domain [20]. Researchers have used various traditional feature extraction

approaches including density histogram, gray level co-occurrence matrix (GLCM), local

binary patterns (LBP), bag of word (BoW) model, and Histogram of Oriented Gradients

(HOG) using the classifiers like support vector machine (SVM) [21] for brain tumor classifica-

tion. Traditional ML methods were considered the foundation for the detection and
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classification tasks. In [22], a computerized system is presented that can distinguish between

normal brain tissue and tumor, as well as classify brain tumors into low-grade glioma and

high-grade glioma tumors. This system [22] employs k-means as a clustering technique, while

the feature extraction and reduction mechanisms rely on Discrete Wavelet Transform (DWT)

and Principal Component Analysis (PCA), respectively. Finally, SVM was used for the classifi-

cation task. However, traditional ML approaches for brain tumor detection are time-consum-

ing as they require handcrafted feature extraction methods. On the other hand, the

significance of DL frameworks for achieving better performance over traditional ML models

for different image classification and object detection tasks has encouraged scientists to create

DL-based CAD methods for brain tumor identification or categorization. The DL models

compute the reliable discriminative feature maps due to their automatic feature extraction pro-

cedure at the dense level. In the last few years, the research community has employed various

DL approaches for brain tumor detection because of their improved performance. In [23], the

authors employed a Convolutional Neural Network (CNN) to recognize brain tumors. In [24],

the segmentation is accomplished using the UNet framework with ResNet50 as the base

model. Furthermore, the multi-class classification of brain tumors is accomplished on the Fig-

hsare dataset using transfer learning (TL) and the NASNet framework.

Existing automated methods for recognising and classifying brain tumours have several

drawbacks. Some techniques employ manually defined tumour zones for the identification

and categorization of brain tumours, which prohibits them from being fully automated. Due

to their ability to automatically extract features, DL techniques are gaining popularity; yet, they

need a lot of memory and processing capacity. Additionally, DL algorithms typically produce

worse results with tiny datasets, which is particularly typical when dealing with datasets of

medical image data. Moreover, the unbalanced figshare dataset was used to assess the current

approaches for categorizing brain tumors into pituitary, glioma, and meningioma (pertaining

to tumor types). Therefore, it is essential to assess performance employing other common

databases and metrics (such as recall, specificity, F-Score, and precision) in addition to accu-

racy. The variety in size, shape, and location of brain tumors further complicates the identifica-

tion and classification of various tumor types. To get over these limitations, in the present

study we proposed a unique end-2-end TumorDetNet DL-based technique for both brain

tumour identification and classification. Our proposed TumorDetNet model is based on an

improved Mobilenet model that computes the features map with a Leaky Rectified Linear Unit

(LReLU) in the initial two layers which are full convolution (FC) layers with 32 kernels of size

3×3 and in the first residual bottleneck layer followed by 14 residual bottleneck layers with

ReLU activation function (AF). Moreover, average pooling (AP) and dropout layers are

employed to shrink the size of the network and prevent overfitting. In contrast to several ear-

lier methods [25–27], which needed segmentation of tumors before the feature extraction, our

methodology does not require any segmentation of tumor region before features extraction

and classification. The major contributions of this work are:

• We introduce a fully automatic TumorDetNet DL framework for the effective detection and

classification of brain tumors into multiple types.

• The proposed approach is robust to variations in intensity, location, angle, size, and shape of

brain tumors in the MRI.

• Extensive experiments were carried out on six standard datasets including the cross-dataset

assessment to demonstrate our model’s superiority and generalizability over current meth-

ods for brain tumor detection and classification.
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The remaining sections of the article are as follows. The overview of the related work is

given in Section 2, and the presented methodology is explained in Section 3. Details regarding

the experiments carried out for performance evaluation are provided in Section 4. Finally, Sec-

tion 5 provides the conclusion of our work.

2. Related work

This section presents an investigation of the currently available literature on the identification

(detection) and classification of brain tumors. Existing works have suggested either the tradi-

tional ML-based approaches [28–30] or DL-based approaches [31–36] for the identification

and classification of brain tumors. Furthermore, the goal of TL of DL models is to enhance

performance on new tasks by utilizing prior knowledge about tasks that are comparable to the

current task. It has significantly improved medical image analysis by overcoming the data scar-

city issue, saving time and hardware resources [37–43].

Object detection and classification are considered two of the very significant research areas

in medical image analysis. The most extensively utilized ML techniques for brain tumor detec-

tion and classification include SVM, Decision Trees (DT), k-Nearest Neighbor (KNN), and

Multi-Layer Perceptron (MLP). In [44], the authors used a local histogram-based feature

extraction technique for brain tumor identification. The MRI image has been initially split

into four quadrants. Then, two sub-bins were created for each histogram bin of each quadrant.

Each intensity present in the greatest node is counted in one sub-bin, while the remainder of

that quadrant is counted in the other. The extracted new feature and the traditional HOG fea-

tures have been integrated. Among all of the integrated features, 1024 HoG and 128 Expanded

Local Histogram features have been selected using the PCA and employed the Random Forest

(RF) and SVM for classification. In [45], the authors used MRI Gaussian and nonlinear scale

features because of their robustness to rotation, translation, and noise problems. Each MRI is

divided into numerous tiny 8-by-8-pixel MR images for features computation to capture min-

ute details and selected the best features based on variance. Finally, the effectiveness of the sug-

gested hybrid feature vector is evaluated using conventional machine learning classifiers. In

[46], the MR scan was first improved using the dynamic fuzzy histogram equalization tech-

nique. Then, five distinct local binary variations of each major mode of the brain MRI scan are

extracted employing the empirical wavelet transform. The ant-lion feature selection approach

was used to choose essential and discriminatory traits while removing the unnecessary ones.

An SVM classifier was then employed to determine whether the input MR scan was tumorous

or normal.

Effective feature representation is vital to attain better classification performance. Existing

research works used a fusion of deep- and handcrafted-features to detect brain tumors [47–

49]. In [50], the authors used a fusion of DL and hand-crafted features to detect brain tumors.

To get discriminative features from all images, the VGG-19 DL model was used in the transfer

learning (TL) setup and these features were then combined with hand-crafted features (such as

histogram orientation gradient and LBP) through a serial-based method. Feature fusion was

used to combine the hand-crafted and deep features. Finally, logistic regression (LGR), DT,

KNN, linear discriminant analysis, and SVM were employed for the classification of healthy

and gliomas tumors. This method has a high computational cost because of the use of both

handcrafted and deep features with multiple classifiers. In [51], the authors evaluated the per-

formance of the existing DL algorithms such as VGG16, AlexNet, ResNet50, VGG19, and

ResNet101 for brain tumor identification using brain MR images. Initially, the pre-trained

frameworks (employed in TL setup) are evaluated to find the best suitable DL framework.

Then the deep features were extracted employing the best DL model, and finally, both the deep
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features and hand-crafted features were combined. Moreover, the classification performance

of different classifiers such as RF, decision tree, KNN, and SVM was also calculated for com-

parison. In [52], the authors removed the skull from MRI using a brain surface extraction

method. In the next step, the best features among the LBP (hand-crafted features) and capsule

network (deep features) were carefully chosen by employing a genetic algorithm. Finally, neu-

ral networks, naïve Bayes, and SVM classifiers were used for the tumor grads classification.

There are two main issues with the current brain tumor detection and classification systems

based on conventional ML methods. First, it only concentrates on features that are either low-

level or high-level. Second, domain-specific expertise and knowledge are needed while using

the ML algorithms. Because manual feature extraction is required, brain tumor detection and

classification systems may perform less effectively. It is not an easy task and is subject to

human error because handcrafted features require substantial domain knowledge (i.e., knowl-

edge about the position and location of the tumor in an MRI). In order to effectively detect

and classify brain tumors, it is required to create an automated approach based on both high-

level and low-level information without the use of custom features. The automated feature

extraction used in DL-based techniques, which is more reliable and effective for detection and

classification, addresses these issues. Fully automated end-to-end solutions for classifying

brain tumours are offered by DL-based methods. DL frameworks use pooling and convolution

(Conv) layers to extract the features from the MR images. In [53], the authors adopted kernel

extreme learning machines (KELM) for classification after using CNN to extract the hidden

features from MRI images. To evaluate the performance of the ensemble of KELM and CNN

framework, a dataset of MRI images (pituitary, meningioma, and glioma tumors) was utilized.

In [54], the authors introduced CNN, a computerized technique for the detection of brain

tumors using MRI data. The Resnet50 framework was employed in [55] to identify brain

tumors. The last five levels of the Resnet50 architecture were removed, and eight new layers

were created. Additionally, the effectiveness of the Alexnet, Resnet50, Densenet201, Googlenet,

and InceptionV3 frameworks were evaluated in order to identify the system that had the high-

est level of accuracy for identifying and detecting brain tumors. The authors of [56] trained

Faster R-CNN from scratch using MRI brain tumor pictures. Faster R-CNN combines the

trained AlexNet DL framework with the region-proposed network (RPN). The AlexNet net-

work served as the foundational model for classifying MRI brain tumours. The RPN received

the AlexNet feature map as input. A dataset of 50 brain MRI images was used to evaluate the

framework. As we already discussed that DL-based models enhance the performance of brain

tumor detection and classification as it automatically extracts both low-level and high-level fea-

tures for classification. However, the classification of brain tumors through MRI images is very

challenging because of the irregularities in the appearance of the tumors (i.e., sizes, intensities,

and location). Table 1 presents a high-level overview of the existing state-of-the-art approach.

Since most methods employ limited or unbalanced datasets, the existing research on brain

tumor detection and classification is unable to achieve superior detection and classification

performance. Brain tumors come in various sizes, forms, and locations, making it more diffi-

cult to identify and classify different types of tumors, and ultimately results in performance

degradation. Therefore, more reliable methods and diverse, balanced, and large-scale datasets

are urgently needed to solve brain tumor detection and classification constraints.

3. Methodology

This work presents a novel TumorDetNet model to automatically identify and classify brain

tumor MRI scans. Our work includes two stages: a) brain tumor identification, and b) tumor

classification. We perform both the two-class (benign and malignant) and three-class
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(meningioma, pituitary, and glioma) classification in this work. Inspired by the success and

feature extraction capabilities of Mobilenet in the area of object detection and classification,

we proposed an improved MobileNetv2 model for the discovery and extraction of more reli-

able and robust deep features. The AP, FC, and softmax layers are employed for the classifica-

tion of brain tumor MRI data. The overall process is shown in Fig 1.

3.1 Motivation of the proposed TumorDetNet model

Googlenet [57] and Mobilenet [58] are the most extensively employed CNN architectures for

image classification applications. Inspired by the classification ability of Googlenet and feature

extraction capabilities of Mobilenet architecture, we proposed a novel TumorDetNet model

for brain tumor detection and classification in this study. Developing an end-2-end DL frame-

work without prior tumor segmentation and capable of reliable detection and classification of

brain tumors was the core motivation behind this study. Our proposed TumorDetNet model

presents an improved MobileNetv2 with both the LReLU and ReLU AFs [59] for effective fea-

tures map generation. LReLU activation is used to solve the issue of the dying ReLU problem.

Next, AP and dropout layers are employed to further refine the features and reduce overfitting.

Finally, an FC and a softmax layer are used for the classification of MRI data. The details of

MobileNetv2 and GoogleNet base models are briefly described in this section.

MobileNetv2 [58,60–62] is a lightweight DL-based model as compared to other frame-

works, which makes this DL framework more appropriate for real-time tasks. The perfor-

mance of the Mobilenetv2 model increases because of depthwise separable convolutions (a

form of factorized Conv). Depthwise separable convolutions have a lesser computational cost

compared to traditional convolutions. Depthwise separable convolutions split the standard

Table 1. Comparison of existing techniques.

Method Method Accuracy Dataset Limitation

Ismael et al.

[29]

Transform domain statistical features, backpropagation

NN

91.9% CE-MRI Low accuracy

Badza et al. [31] CNN 96.56% CE-MRI Low accuracy

Ahamed et al.

[32]

CNN with and without TL 99.75% Br35h: Brain tumor detection Testing on an imbalance dataset

Irmak et al.

[33]

CNN 99.33%

92.66%

98.14%

RIDER, REMBRANDT,

TCGA-LGG

Low generalization ability of models

Afshar et al.

[34]

Capsule network 86.56% CE-MRI Low accuracy

Low performance on the entire image

Qureshi et al.

[35]

Deep features + GLCM-SVM 99.23% CE-MRI Overfitting on larger size (256 × 256)

images

Hassan et al.

[48]

Deep features + GLCM-SVM 99.0% BRATS 2013 MRI Features of deeper TL models degrade

the performance

Oksuz et al.

[49]

Deep features (pre-trained AlexNet, ResNet-18,

GoogLeNet, ShuffleNet)-SVM+KNN.

97.25% CE-MRI The method is tested on an imbalance

dataset

Saba et al. [50] VGG-19+LBP+HoG-logistic regression, DT, K-NN, LDA,

SVM

98.78% BRATS 2016 High computational cost

Sharif et al. [51] LBP + deep features-ANN 98.34% RIDER and BRATS 2018 Low classification accuracy in case of

deep features

Cinar et al. [55] Resnet50 97.01% Brain Tumor Detection Low classification accuracy

Ezhilarasi et al.

[56]

AlexNet+Faster R-CNN 99.0% Brain tumor MRI (Radiology

Assistant dataset)

The model trained on a small dataset

Kibriya et al.

[47]

CNN 97.2% CE-MRI Low classification accuracy

https://doi.org/10.1371/journal.pone.0291200.t001
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Conv into a depthwise and pointwise Conv with a 1 × 1 Conv. Depthwise Conv means that

each of the filters performs a single Conv on each color channel rather than combining all the

three-color channels, thus filters the input channels. By using bottleneck layers to reduce the

input size, the computation time is greatly decreased. In the MobileNet architecture, the layers

are connected by the ReLU AF [58], which enables the non-linear outputs from one layer to be

flattened and provided as input to the next layer. Two hyperparameters are presented in Mobi-

leNet for shrinking and factorizing, i.e., named width multiplier (α) and resolution multiplier

(ρ). Both the values of α and ρ are in the range (0, 1). The value of α is used to reduce the num-

ber of filters, while the value of ρ is used to reduce the image resolution. Thus, we can reduce

the computational cost by altering the values of α and ρ.

GoogLeNet [57] was developed in 2014. GoogleNet was trained on the ILSVRC dataset and

was the first winner of ILSVRC 2014. There are 22 layers in the architecture. The architecture

is made up of nine inception modules, two Conv layers (also one more Conv layer for dimen-

sion-reduction), four max-pooling layers, two normalization layers, an AP layer, an FC layer,

and lastly a linear layer with softmax activation at the output. Approximately 6.8 million

parameters make up the model. Each inception module also includes a max-pooling layer in

addition to six Conv layers, of which 4 are used for dimension reduction. The fully FC layers

employ dropout regularization to prevent overfitting and increase the framework’s

effectiveness.

Furthermore, our model’s number of layers is based on the well-known idea of depth scal-

ing, which is utilized to increase accuracy. The logical assumption is that deeper CNNs extract

richer, more complex features and generalize effectively to new data, leading to better model

performance. Though there is no guarantee of greater accuracy in all scenarios, the computa-

tional cost rises as the network’s depth raises as well. Deeper networks are more challenging to

train due to the vanishing gradient issue. Even though there are several solutions to the train-

ing problem, such as skip connections and batch normalization, the accuracy gain of deep net-

works reduces over time. For instance, ResNet-1000 has equal accuracy to ResNet-101 while

Fig 1. Process flow of the proposed system.

https://doi.org/10.1371/journal.pone.0291200.g001
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having many more layers. We used batch normalization in the TumorDetNet architecture to

solve the vanishing gradient issue.

3.2 Proposed TumorDetNet model

In this study, we proposed a novel end-2-end TumorDetNet DL framework for brain tumor

identification and classification. The proposed model uses 129 layers (i.e., Conv layers and

group convolutions, normalizations, and AFs) for feature extractions and 5 layers (including

global AP, dropout, FC, Softmax, and classification) for brain tumor classification. Our frame-

work is deeper than typical CNN with 49 learnable layers: 48 Conv layers and one FC layer as

revealed in Table 2. The initial layer of our model is the image input layer which receives

224×224 input images for processing so we down-sampled the input frames to 224 × 224 to

decrease the computational complexity of our model. The model has a total of 134 layers

including 48 batch normalization (BN), 4 LReLu, 28 ReLU, one global AP (to reduce model

Table 2. Architectural details of the proposed DL framework.

S No Operator Layers Filter No of filters Padding Stride n

1 Conv Conv (BN, LRelu) 3 × 3 32 same 2 × 2 2

2 Conv Conv (BN) 1 × 1 16 Same - 1

3 Bottleneck Conv (BN, LRelu) 1 × 1 96 same - 1

Conv (BN, LRelu) 3 × 3 96 2 × 2

Conv (BN) 1 × 1 24 -

4 Bottleneck Conv (BN, Relu) 1 × 1 144 same - 2

Conv (BN, Relu) 3 × 3 144 2 × 2

Conv (BN) 1 × 1 24 -

5 Bottleneck Conv (BN, Relu) 1 × 1 192 same - 2

Conv (BN, Relu) 3 × 3 192 -

Conv (BN) 1 × 1 32 -

6 Bottleneck Conv (BN, Relu) 1 × 1 192 same - 1

Conv (BN, Relu) 3 × 3 192 2 × 2

Conv (BN) 1 × 1 64 -

7 Bottleneck Conv (BN, Relu) 1 × 1 383 same - 3

Conv (BN, Relu) 3 × 3 383 -

Conv (BN) 1 × 1 64 -

8 Bottleneck Conv (BN, Relu) 1 × 1 383 Same - 1

Conv (BN, Relu) 3 × 3 383 -

Conv (BN) 1 × 1 96 -

9 Bottleneck Conv (BN, Relu) 1 × 1 576 same - 2

Conv (BN, Relu) 3 × 3 576 -

Conv (BN) 1 × 1 96 -

10 Bottleneck Conv (BN, Relu) 1 × 1 576 same - 1

Conv (BN, Relu) 3 × 3 576 2 × 2

Conv (BN) 1 × 1 160 -

11 Bottleneck Conv (BN, Relu) 1 × 1 690 same - 2

Conv (BN, Relu) 3 × 3 690 -

Conv (BN) 1 × 1 160 -

12 AP 7 × 7

13 Dropout (0.4)

14 FC + Softmax + classification

https://doi.org/10.1371/journal.pone.0291200.t002
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parameters), dropout, FC, Softmax, and a classification layer each. A total of four LReLU and

twenty-eight ReLU layers are used. To reduce overfitting, a dropout of 0.4% is applied to the

FC layer. We used the stride of 2 × 2 in five convolutional layers to reduce spatial resolution

leading to computational benefits. The proposed architecture contains the first fully Conv

layer with 32 kernels followed by 15 residual bottleneck layers. The initial fully convolutional

and the first residual bottleneck layer are followed by the LReLU layers whereas the rest 14

residual bottleneck layers are followed by the ReLU AF. The residual bottleneck layers consist

of depthwise convolution (with a kernel of size 3 × 3) and a pointwise Conv (with a filter of

size 1 × 1). The small convolutional filters are utilized to extract the most important features

from the MRI data. In the residual bottleneck layers of our proposed model, the first Conv

(with a 1 × 1 filter) is followed by the BN layer (with an epsilon of 0.001) and AF (LReLU in

the case of first residual bottleneck layer and ReLU in case of the rest 14 residual bottleneck

layers). Similarly, the BN and AF come after the second Conv layer (which has a 3 × 3 kernel).

The BN layer immediately follows the third Conv layer (with a 1 × 1 kernel), though. After

feeding an FC layer with the features recovered using the residual bottleneck layers, Soft-max

activation is used to calculate the classification probability. Due to the usage of filters with a

size of 1, our model successfully recovers the most discriminative and fine-level characteristics.

Additionally, our model’s depth-wise separable convolutions increase efficiency by reducing

the number of parameters and calculations required for Conv operations. The dropout layer

also stops the model from overfitting. The proposed model’s structure is shown in Fig 2.

Activation functions have a central role in deciding the firing of a neuron in network learn-

ing. Rectified linear unit (ReLU) [59] is a non-linear AF, which is computationally efficient

(because it doesn’t need to perform complex exponential operations; it simply needs to select

the maximum (0, x) value) and is very effective, especially in deep neural networks. The ReLU

AF outputs zero for negative inputs (x<0), whereas, outputs the non-negative input directly.

Fig 2. Architecture of the proposed TumorDetNet model.

https://doi.org/10.1371/journal.pone.0291200.g002
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Additionally, a 0 value on the negative axis means that the model will operate more quickly.

However, the ReLU AF does not activate the neuron in response to negative inputs. In this

case, the optimization algorithm cannot help the network learn (dying ReLU problem).

Because a major component of the model becomes gradually inactive, the dying ReLU prob-

lem is undesirable. In order to address the dying ReLU issue, we used the LReLU [63] AF in

the initial full Conv layer. LReLU assigns a small positive value, for example, 0.1 instead of 0,

to maintain all the neurons active for the majority of the training samples. The LReLU AF

helps in increasing the ReLU function’s coverage area. LReLU ensures that all neurons of the

model must contribute to the active performance of the network. Since the performance of DL

frameworks is greatly influenced by the activation functions, therefore, we used both the

LReLU and ReLU within the feature map of our proposed model to resolve the dying ReLU

issue and to make our model computationally efficient, respectively.

3.3 Hyper-parameters

The selection of hyper-parameters is a key factor in the better optimization of any DL frame-

work [64]. Hyper-parameters include epoch size, AF, size of the learning rate, kernel, mini-

batch size, etc. The choice of these hyper-parameters is important, as it influences the model’s

functionality [64]. Before beginning the training process, hyper-parameters must be chosen

because they are different from the model components. Given the wide range of options for

hyper-parameters, we assessed the performance of the suggested framework using several

hyper-parameter values to find the optimal values. After performing experiments on various

hyperparameters, we selected those parameter settings where we attained the best results.

Details of the chosen hyper-parameters are listed in Table 3 lists the details.

4. Experiments and results

This section presents an in-depth explanation on the results of several experiments designed to

assess the classification performance of the proposed method. Moreover, information about all

the six datasets (Table 4) used for brain tumor identification and classification is also provided

in this section.

4.1 Datasets

We utilized six datasets in this work to assess our model’s performance. Two datasets are uti-

lized for brain tumor detection, two for brain tumor classification into benign and malignant,

Table 3. Parameters of the proposed architecture.

Parameter Value

Optimization algorithm SGDM

learning rate 0.01

Maximum Epochs 22

Shuffle Every epoch

Validation frequency 30

Iterations per epoch 42

Verbose False

AF Leaky ReLU + ReLU

Dropout 0.4

Train Size 0.8

Test Size 0.2

https://doi.org/10.1371/journal.pone.0291200.t003
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and two for the classification into glioma, pituitary, and meningioma tumors. All the datasets

utilized in this work contain grayscale images of different resolutions.

4.1.1 Brain tumor datasets. We utilised the Tumor_Detection_MRI (TD-MRI) database,

which is publicly available on Kaggle [65], to identify brain tumours. There are two collections

in the database. The second collection has 1500 MRI scans of tumours, whereas the first collec-

tion contains 1500 MRI scans of tumors. Fig 3 displays a small number of samples from this

collection. The second dataset used for brain tumor identification is Brain MRI scans for Brain

Tumour identification (BMI-BTD), which is another publicly downloadable standard Kaggle

database [66]. The dataset consists of two collections, the first of which contains 98 MRI pic-

tures free of tumours and the second of which has 155 such images. Fig 4 displays a small num-

ber of samples from this collection.

4.1.2 2-class classification datasets. The dataset for the classification of brain tumors into

benign and malignant used in this work is taken from the Tumor Classification Data (TCD)

freely available on Kaggle [67]. This database has MRI scans of the malignant and benign

tumors along with healthy brain images. The database comprises two groups, i.e., train and

test, each having three sub-collections of benign, malignant, and normal. We used only benign

and malignant collections, each having 350 images. We used all the 700 images (350 benign

and 350 malignant) for the experimentation. Few samples of the database are shown in Fig 5.

The second database (BTTypes) is utilized for brain tumor classification and is freely available

at Kaggle [68]. The dataset comprises two collections, i.e., benign and malignant, each having

1200 images. We used all the 2400 images (1200 benign and 1200 malignant) for the experi-

mentation. Samples of the database are shown in Fig 6.

4.1.3 3-class classification datasets. We used the Brain tumor classification dataset

(BTC), accessible at Kaggle [69], to categorize brain tumors into meningioma, pituitary, and

glioma. The dataset consists of training and testing collections of brain tumor MRI images.

There are four different categories of brain tumor MRI scans in each folder, including no

tumors, gliomas, pituitary, and meningiomas. However, we only made use of the MRI scans of

the pituitary, glioma, and meningioma tumors. The training collection of the dataset’s most

recent version includes 822 MRI scans of meningiomas, 827 MRI scans of pituitary, and 826

MRI scans of glioma tumors. In contrast, the testing collection includes 100 images of glioma,

74 images of the pituitary, and 115 images of meningiomas tumors. We merged images of

both collections and then used the images for training and testing. Some images of this dataset

are shown in Fig 7.

The second dataset used for the classification of brain tumors into meningioma, pituitary,

and glioma is the publicly available CE-MRI Figshare dataset [70] which comprises a total of

3064 2D MRI scans with T1-weighted contrast-enhanced modality attained from 233 affected

Table 4. Datasets details.

Purpose Dataset Tumor type

Detection TD-MRI Tumor No tumor

1500 1500

BMI-BTD 155 98

2-Class classification TCD Benign Malignant

350 350

BTTypes 1200 1200

Meningioma Pituitary Glioma

3-Class classification BTC 937 898 926

CE-MRI 708 930 1426

https://doi.org/10.1371/journal.pone.0291200.t004
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individuals. Three classes i.e., pituitary, glioma, and meningioma represent the categories of

brain tumors, and the T1 modality emphasizes specific characteristics of each. The most recent

version of this dataset includes 930 images of pituitary, 1426 images of glioma, and 708 images

of meningioma. The collection includes MR images of 512-by-512-pixel size. We split the data-

set randomly into 80% for training and the rest 20% for the testing set. Few samples of the

dataset are shown in Fig 8.

Fig 3. Samples of BTD-MRI dataset, upper row: Non-tumor, lower row: Tumorous.

https://doi.org/10.1371/journal.pone.0291200.g003

Fig 4. Samples of BMI-BTD dataset, upper row: Non-tumor, lower row: Tumorous.

https://doi.org/10.1371/journal.pone.0291200.g004
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4.2 Experimental setup and evaluation

To assess the performance of our method, we used accuracy, precision, sensitivity, specificity,

and F1-score metrics. Detailed information about the experimental setup and training proto-

col is given in Table 5.

Fig 5. Samples of TCD dataset, upper row: Benign, lower row: Malignant.

https://doi.org/10.1371/journal.pone.0291200.g005

Fig 6. Samples of BTTypes dataset, upper row: Benign, lower row: Malignant images.

https://doi.org/10.1371/journal.pone.0291200.g006
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4.2.1 Performance evaluation on brain tumor detection. The goal of this experiment is

to assess how well our framework works in spotting brain tumors. For this experiment, we

used 3000 MRI scans from the openly available Kaggle BTD-MRI dataset [65], of which 2400

MRI scans (1200 healthy, 1200 tumorous) were used for training and the remaining 600 scans

(300 healthy, 300 tumorous) for testing. It took 1533 minutes and 47 seconds to train our pro-

posed model to find brain tumors. Our technique attained a detection accuracy of 99.83%, pre-

cision of 100%, F-measure of 99.83%, specificity of 100%, and recall of 99.66%, which proves

the effectiveness of our proposed approach for brain tumor detection.

To further verify the robustness and assess the performance of our framework for brain

tumor detection on a small-sized dataset, we validated our framework on another widely avail-

able Kaggle dataset, i.e., the BMI-BTD dataset [66]. For this experiment, we used all 253 MRI

scans where 202 (124 tumorous and 78 normal) were used for training, while the remaining 51

(31 tumorous and 20 normal) were utilized for testing. Our framework was trained in 78 min-

utes and 4 seconds for the tumor detection task. The results of this experiment are shown in

Table 6. Despite the availability of limited data in this dataset, our method achieved an accu-

racy of 96.08%, precision of 95%, F-measure of 99.83%, specificity of 96.77%, and recall of

95%, which proves the robustness of our approach for brain tumor detection even on a small

sized dataset.

Because of the lightweight nature of our model due to employing depthwise separable

Conv, it can be easily deployed on mobile or other low-power portable devices for identifica-

tion and categorization of the tumor in real-time. Our model employs 3×3 depthwise separable

convolutions, which need 8 to 9 times less processing time than the traditional convolutions at

the cost of a slight decrease in accuracy. Also, the use of BN after convolutional layers speeds

Fig 7. Samples of BTC dataset, upper row: Glioma tumor, middle row: Meningioma tumor, lower row: Pituitary tumor.

https://doi.org/10.1371/journal.pone.0291200.g007
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up the learning. Furthermore, the images of both datasets are different in terms of formats and

resolution. Also, the MRI scans of both datasets are varied in terms of the presence of tumors

having variations in angles, intensities, sizes, shapes, and locations. So, we assert that our

framework can be effectively utilized for brain tumor detection under these diverse conditions

efficiently.

The reason we achieved good performance is that our proposed framework uses both LRelu

and ReLu activation functions. ReLU is more computationally efficient because it doesn’t need

Fig 8. Images from the CE-MRI dataset, upper row: Glioma, middle row: Meningioma, lower row: Pituitary.

https://doi.org/10.1371/journal.pone.0291200.g008

Table 5. Details of experimental setup and training protocols.

Sr. No Name Value

1 CPU of Computer system Intel (R) Core (TM) i5-5200U

2 RAM 8GB

3 HDD 500GB

4 Implementation tool MATLAB R2020a

5 Window Window 10, 64 bit

6 Training set 80% data

7 Testing set 20% data

https://doi.org/10.1371/journal.pone.0291200.t005
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to perform complicated exponential computations; it merely needs to choose the maximum

(0, x). Additionally, we avoided the dying ReLU issue by employing the LReLU AF. The DL

model will stop growing when the ReLU problem reaches its end. To solve this problem, we

implemented our TumorDetNet technique using a leaky ReLU. The LReLU activation

approach allows for a modest (non-zero) gradient while the neuron is not in use. As a conse-

quence, it continues to learn rather than coming to a halt or nearing a dead end. Hence using

both AF improve the feature extraction ability of our model, thus makes our model perform

more accurately for tumor detection.

4.2.2 Performance evaluation of binary classification of tumor. The purpose of this

experiment is to verify the proposed approach’s classification performance for distinguishing

benign from malignant tumors. For this experiment, we used 700 MRI scans from the TCD

dataset [67], of which 560 were used for training (280 MRI images for each class) and 140 for

testing (70 MRI images for each class). It took 316.33 minutes to train our model to distinguish

between malignant and benign tumors. Despite the dataset’s sparse data, our system achieved

the maximum precision, accuracy, recall, specificity, and F1-score of 100%, demonstrating

how well it can distinguish between benign and malignant tumors. To further verify the

robustness of our framework for separating benign and malignant brain tumors, we tested our

framework on another standard Kaggle dataset BTTypes [68]. The dataset comprises two col-

lections, i.e., benign and malignant, each having 1200 images. For this experiment, we used all

the 2400 images (1200 benign and 1200 malignant) in this dataset. Among these MRI images,

1920 images (960 MRI of each class) were used for the training, whereas, the rest of 480 MRI

scans (240 MRI of each class) were used for testing. The training process took 1290 minutes

and 54 seconds. The results of this experiment are shown in Table 7. Our proposed framework

achieved the maximum precision, accuracy, F1-score, and recall of 100% which validates the

effectiveness of our approach for brain tumor classification into malignant and benign. Our

model achieved the best performance on both datasets due to the ability to extract more

important, discriminative, and descriptive deep features for the classification. All convolu-

tional layers of our proposed model use 3×3 and 1×1 kernels with a small stride with the pur-

pose to capture even the smallest texture details (alteration in size, shape, and intensity of

brain tumors) of tumors in brain MRI scans.

4.2.3 Performance evaluation of multi-class classification of tumor. To test the multi-

class classification ability, we conducted an experiment to evaluate the performance of our

TumorDetNet architecture for tumor classification into glioma, pituitary, and meningioma.

For this experiment, we used 2764 images (937 meningioma MRI scans, 901 Pituitary MRI

scans, and 926 glioma MRI scans) of the standard Kaggle BTC (MRI) dataset [69], where 2212

images (750 meningiomas, 721 Pituitary, and 741 gliomas) were utilized for training and

remaining 552 MRI scans (180 Pituitary, 185 gliomas, and 187 meningiomas) for testing. Our

Table 6. Performance evaluation on brain tumor detection.

Dataset Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)

BTD-MRI 99.83 100 99.66 100 99.83

BMI-BTD 96.08 95 95 96.77 95

https://doi.org/10.1371/journal.pone.0291200.t006

Table 7. Performance evaluation on brain tumor classification into benign and malignant.

Dataset Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)

TCD 100 100 100 100 100

BTTypes 100 100 100 100 100

https://doi.org/10.1371/journal.pone.0291200.t007
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model’s training took 1323 minutes and 12 seconds. Our method achieved a precision of 99%,

an accuracy of 99.27%, recall of 98.66%, specificity of 100%, and F-measure of 98.82% which

proves the usefulness of our approach for brain tumor classification in glioma, pituitary, and

meningioma.

To further validate the reliability of our TumorDetNet framework for multi-class classifica-

tion, we validated our model on another standard CE-MRI figshare dataset [70]. For this

experiment, we used all 3064 2D MRI scans of the datasets (i.e., 1426 scans of glioma, 930

scans of the pituitary, and 708 scans of meningioma tumors). Among them, 2451 scans (1141

glioma, 744 pituitary, and 566 meningiomas) were used for the training, and the rest of 613

scans (186 pituitary, 142 meningiomas, and 285 gliomas) were used for testing. The training

process took 1517 minutes and 20 seconds. The results are shown in Table 8. The proposed

approach achieved a specificity of 96.73%, precision of 98%, recall of 97%, accuracy of 98.47%,

and F-measure of 97.49%.

The reason for such remarkable performance is that our proposed framework uses the BN

technique in the feature map which provides regularization, normalizes the inputs to a layer

for each mini-batch, and lowers the generalization error. Moreover, the dropout layer

employed in the classification unit of the TumorDetNet framework offers regularization (a

generalization of results for new data) by destroying a portion of the outputs from the preced-

ing layer in order to reduce overfitting and enhance generalization.

4.2.4 Brain tumor detection comparison with state-of-the-art DL models. This experi-

ment aims to compare several state-of-the-art (SOTA) DL-based frameworks with the pro-

posed framework for brain tumor identification to assess its effectiveness. In order to do this,

we contrasted the detection efficacy of our proposed model to benchmarks developed by

ResNet18 [71], DenseNet201 [72], MobileNetv2 [58], and DarkNet53 [73]. Each of these mod-

ern DL models was trained using millions of photos from the ImageNet dataset in a TL setup.

The last layer of the pre-trained versions of all models was fine-tuned to categorize the images

into two classes, i.e., tumorous and healthy. Network input image sizes vary depending on the

model, for example, darknet53’s input image size is 227 by 227 whereas resnet18’s is 224-by-

224. To comply with each comparative DL model’s requirement, we adjusted the input image

size. For this experiment, we used the freely available Kaggle BTD-MRI database [65], which

included 600 MR scans (300 MR scans of each healthy and tumor class) and 2400 MR scans

(1200 MR scans of each healthy and tumor class). The results are given in Table 9. From these

results, it is clear that our TumorDetNet framework attained the highest results for almost all

performance metrics as compared to all four contemporary models by achieving a precision of

100%, accuracy of 99.83%, specificity of 100%, recall of 99.66%, and F-score of 99.83% for

brain tumor detection. The accuracy of the Mobilenetv2 model was 99%, which was the sec-

ond-best result, whereas, DenseNet201 attained the lowest accuracy of 95% among all frame-

works. It is to be noted that the detection accuracy of all comparative frameworks was above

95%. It is significant to note that the precision and specificity of our approach are 100%. These

results demonstrate the efficacy of our model for detecting brain tumors when compared to

other models.

4.2.5 Brain tumor binary classification comparison with SOTA DL models. The key

purpose of this experiment is to evaluate the worth of our TumorDetNet framework for brain

Table 8. Performance evaluation on brain tumor classification into glioma, pituitary, and meningioma.

Dataset Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)

BTC (MRI) 99.27 99 98.66 100 98.82

CE-MRI figshare 98.47 98 97 96.73 97.49

https://doi.org/10.1371/journal.pone.0291200.t008
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tumor classification into malignant and benign over the different SOTA DL-based frame-

works. To do this, we contrasted the performance of our model with the ResNet18 [71], Mobi-

leNetv2 [58], Darknet19 [74], and DarkNet53 [74] on the TCD dataset. In a TL configuration,

each of these contemporary DL models was trained on the ImageNet dataset. The last layer of

the pre-trained versions of all networks was fine-tuned to categorize the images into two cate-

gories, i.e., benign and malignant. Again, because of differences in the input image sizes of dif-

ferent frameworks, we adjusted the input MRI scan size to satisfy the requirements of each DL

framework. For this experiment, we used 700 MRI scans from the freely available TCD dataset

[67], of which 560 were used for training (280 for each class) and the remaining 140 were used

for testing (70 for each class). Table 10 presents the findings. From these data, it is evident that

our model, when compared to all other modern models, produced the greatest outcomes by

correctly classifying brain tumors as malignant or benign with 100% precision, accuracy, speci-

ficity, F-score, and recall. In contrast to resnet18 and mobilenetv2, which both achieved the

lowest accuracy of 96.43% across all networks, the Darknet53 framework achieved the second-

best accuracy of 99.29%. This comparative analysis demonstrates that our approach outper-

forms other methods for classifying malignant and benign tumors.

4.2.6 Brain tumor multi-class classification comparison with SOTA DL models. The

aim of this experiment is to evaluate the usefulness of our framework for multiclass classifica-

tion (i.e., meningioma, pituitary, and glioma, etc.) of brain tumors over these contemporary

DL-based models i.e., ResNet18 [71], Resnet50 [71], Denenet201 [65], Darknet19 [74] and

MobileNetv2 [58] on the BTC dataset. All of these contemporary DL models were used in a TL

setup as discussed in previous experiments. The last layer of the pre-trained versions of all net-

works was fine-tuned to categorize the MRI scans into three classes, i.e., glioma, pituitary, and

meningioma. As with prior experiments, we altered the input image size to fit the require-

ments of each DL framework. For this experiment, we used 2764 images (937 meningiomas,

901 Pituitary, and 926 gliomas) of the BTC (MRI) dataset [69], where 2212 images (750 menin-

giomas, 721 Pituitary, and 741 gliomas) were utilized for training and outstanding 552 MRI

scans (180 Pituitary, 185 gliomas, and 187 meningiomas) for testing. The findings are given in

Table 11. From these results, it is confirmed that our approach achieved the best results for all

performance metrics as compared to all contemporary models by achieving a precision of

99%, accuracy of 99.27%, recall of 98.66%, specificity of 100%, and F-measure of 98.82%,

Table 10. Comparative analysis of brain tumor classification into benign and malignant with SOTA models.

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)

Resnet18 96.43 100 93.33 100 96.55

Mobilenetv2 96.43 1.00 93.33 100 96.55

Darknet53 99.29 98.57 100 98.59 99.29

Darknet19 97.14 100 94.59 100 97.22

Proposed TumorDetNet 100 100 100 100 100

https://doi.org/10.1371/journal.pone.0291200.t010

Table 9. Brain tumor detection comparison with SOTA models.

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)

Resnet18 98.17 97.00 99.32 95.65 98.15

Denenet201 95.00 98.00 92.45 97.87 95.15

Mobilenetv2 99.00 99.33 98.68 99.33 99.00

Darknet53 96.17 97.33 95.11 97.27 96.21

Proposed TumorDetNet 99.83 100 99.66 100 99.83

https://doi.org/10.1371/journal.pone.0291200.t009
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which proves the efficacy of our proposed approach for brain tumor categorization into pitui-

tary, glioma, and meningioma. The TL of resnet50 attained the second-best accuracy of

98.73%, whereas, darknet19 attained the lowermost accuracy of 70.47% among all frameworks.

It is important to mention that our framework obtained the optimal 100% specificity. These

results demonstrate that our framework outperforms other comparative models for the multi-

class classification of tumors.

4.2.7 Brain tumor detection and classification comparison with existing

approaches

We designed a multi-stage experiment to give a thorough comparison of our technique with

existing SOTA brain tumour identification and classification approaches in order to demon-

strate the superiority of our framework over existing methods. To do this, we compared our

technique to the most current strategies [74–79] and presented the findings in Table 12. First,

we made a comparison between our model and the most recent techniques for finding brain

tumours [74–76]. The findings are presented in Table 12 (rows 1–3). In the second stage, we

compared our model with the contemporary brain tumor classification (meningioma, pitui-

tary, and glioma) methods [77–79] and the results are shown in Table 12 (row 5 to row 7).

Table 12 shows a comparative analysis based on the classification performance. The compari-

son demonstrates that the proposed performance outperforms all the SOTA approaches. We

included only accuracy as a performance metric in this experiment as used by the comparative

methods. Furthermore, to prove the efficacy, reliability, and superiority of our method, we

compared our approach with SOTA approaches for those datasets on which we obtained lower

performance. The proposed framework performed the best and reached an accuracy of 96.08%

in the first example, [75] earned the second-highest accuracy of 96.05%, and [74] achieved the

lowest accuracy of 89.8% for brain tumour identification. In the second instance, our frame-

work produced the best outcomes with an accuracy of 98.47%, [79] produced the second-best

results with an accuracy of 98.21%, and [78] produced the worst results with an accuracy of

96.6% for the categorization of brain tumours into meningioma, glioma, and pituitary. The

results of this experiment evidently prove that our model provides superior brain tumor detec-

tion and classification performance over the contemporary methods. It is important to note

that, unlike the comparative methods that either performs the detection or classification of

brain tumors, we proposed a unified method capable of both the detection, and binary and

multi-class classification of brain tumors. Compared to previous works, the proposed DL

framework attained the highest detection and classification performance on six diverse and

standard datasets, including a small-sized dataset and unbalanced data samples in two datasets,

available at Kaggle.

4.2.8 Cross dataset validation. The key aim of this experiment is to analyze the generali-

zation power of our approach for brain tumor classification into malignant and benign. For

Table 11. Comparative analysis of brain tumor classification into meningioma, pituitary, and glioma with SOTA models.

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)

Resnet18 93.24 89.66 92.33 90.34 89.33

Resnet50 98.73 98.66 98.66 98.91 98.66

Mobilenetv2 97.34 96 96 96.21 96

Densenet201 89.12 83.66 84 90.38 83.66

Darknet19 70.47 71 69.333 75.53 70

Proposed TumorDetNet 99.27 99 98.66 100 98.82

https://doi.org/10.1371/journal.pone.0291200.t011
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this purpose, we designed a cross-dataset evaluation for the following scenarios: (a) trained

our model on the 2400 images (1200 benign and 1200 malignant) of BTTypes dataset and

tested it over the 700 images (350 benign and 350 malignant) of the TCD dataset, (b) trained

our model on the 700 images (350 benign and 350 malignant) of the standard TCD dataset

and tested it over the 2400 images (1200 benign and 1200 malignant) of BTTypes dataset. Both

datasets consist of two classes i.e., malignant and benign. The images of both datasets are

diverse as they contain tumors of different shapes, angles, sizes, intensities, and placements in

the brain. Images of both datasets have different formats, bit depth, and resolution. The images

of BTTypes dataset are in PNG format, with a bit depth of 32, and a resolution of 224×224

whereas the MRI scans of the TCD is in JPG format, with a bit depth of 32, and a resolution of

203×170. In spite of training on one dataset and testing on unseen samples of a completely dif-

ferent dataset, our approach achieved excellent precision, accuracy, recall, F1-score, and speci-

ficity of 99% for both scenarios showing the excellent generalizability of our model for the

brain tumor classification into malignant and benign tumors.

5. Conclusion

This work has presented a unified TumorDetNet DL model for the automated detection and

classification of brain tumors. The presented DL-based model reliably detects brain tumor and

classify the brain tumors into two i.e., malignant and benign, and three types i.e., meningioma,

pituitary, and meningioma. The robustness of our methodology has also been verified using

six publically accessible datasets. The proposed framework’s superiority over the existing

methods has been confirmed by its accuracy of 99.83% for brain tumor detection, optimal

accuracy of 100% for classifying brain tumors into malignant and benign, and accuracy of

99.27% for classifying brain tumors into pituitary, glioma, and meningioma. Experimental

findings demonstrate that our framework outperforms contemporary brain tumor detection

and classification techniques. In comparison to existing methods, our suggested method had

the greatest accuracy for brain tumor identification and classification while requiring less pre-

processing. Additionally, cross-corpora examination of our technique demonstrates its appli-

cability to the classification of brain tumors in particular. Despite the promising findings of

the proposed technique, our work has potential for improvement in a few aspects. When using

other imaging modalities, such as computer tomography (CT) scans, the proposed TumorDet-

Net technique does not reveal how effectively the system can identify brain tumors. The pro-

posed model is complex and requires more time to detect and classify brain tumors.

Moreover, the performance of our method has not been verified in genuine clinical investiga-

tions, despite the proposed technique doing very well on several publicly accessible datasets.

Table 12. Comparative analysis of the proposed and SOTA methods.

SN Methods Method Dataset Year Accuracy (%)

Brain tumor detection

1 Kiraz et al. [74] weighted KNN BMI-BTD 2021 89.8

2 Togacar [75] BrainMRNet BMI-BTD 2019 96.05

3 Saxena et al. [76] ResNet-50 BMI-BTD 2019 95.0

4 Proposed study TumorDetNet BMI-BTD 96.08

Brain tumor classification into meningioma, pituitary & glioma

5 Kibriya et al. [77] 13-layer CNN CE-MRI 2022 97.2

6 Demir et al. [78] Residual-CNN CE-MRI 2022 96.6

7 Kesav et al. [79] RCNN with Two Channel CNN CE-MRI 2021 98.21

8 Proposed study TumorDetNet CE-MRI 98.47

https://doi.org/10.1371/journal.pone.0291200.t012
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We want to further minimize our model’s computing time, memory space, and system com-

plexity in the future. This work can be further extended to identify and categorize more dis-

eases as well as other complex types of tumors.
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55. Çinar A, Yildirim M. Detection of tumors on brain MRI images using the hybrid convolutional neural net-

work architecture. Medical hypotheses. 2020. 139, p.109684. https://doi.org/10.1016/j.mehy.2020.

109684 PMID: 32240877

56. Ezhilarasi R, Varalakshmi P. Tumor detection in the brain using faster R-CNN. In 2018 2nd International

Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud). 2018. pp. 388–392.

57. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. pp. 1–9.

PLOS ONE TumorDetNet

PLOS ONE | https://doi.org/10.1371/journal.pone.0291200 September 27, 2023 23 / 24

https://doi.org/10.1089/cmb.2021.0280
http://www.ncbi.nlm.nih.gov/pubmed/35235381
https://doi.org/10.1155/2022/6486570
http://www.ncbi.nlm.nih.gov/pubmed/35755757
https://doi.org/10.3390/s22197575
https://doi.org/10.3390/s22197575
http://www.ncbi.nlm.nih.gov/pubmed/36236674
https://doi.org/10.1155/2023/3679829
https://doi.org/10.1155/2023/3679829
http://www.ncbi.nlm.nih.gov/pubmed/36818384
https://doi.org/10.1155/2022/6561622
http://www.ncbi.nlm.nih.gov/pubmed/36156967
https://doi.org/10.3390/diagnostics13010162
http://www.ncbi.nlm.nih.gov/pubmed/36611454
https://doi.org/10.3390/life12071084
http://www.ncbi.nlm.nih.gov/pubmed/35888172
https://doi.org/10.1155/2022/7897669
http://www.ncbi.nlm.nih.gov/pubmed/35378808
https://doi.org/10.1016/j.mehy.2020.109684
https://doi.org/10.1016/j.mehy.2020.109684
http://www.ncbi.nlm.nih.gov/pubmed/32240877
https://doi.org/10.1371/journal.pone.0291200


58. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear

Bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018. pp.

4510–4520.

59. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In Proceedings of the

27th international conference on machine learning (ICML-10), pp. 807–814. 2010.

60. Michele A, Colin V, Santika DD. Mobilenet convolutional neural networks and support vector machines

for palmprint recognition. Procedia Computer Science. 2019. 157, pp.110–117.

61. Ohata EF, Bezerra GM, das Chagas JVS, Neto AVL, Albuquerque AB, de Albuquerque V, et al. Auto-

matic detection of COVID-19 infection using chest X-ray images through transfer learning. IEEE/CAA

Journal of Automatica Sinica. 2020. 8(1), pp.239–248.

62. Ramalingam B, Lakshmanan AK, Ilyas M, Le AV, Elara MR. Cascaded machine-learning technique for

debris classification in floor-cleaning robot application. Applied Sciences. 2018. 8(12), p.2649.

63. Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. In Proc.

Icml. 2013. Vol. 30, No. 1, p. 3.

64. Tso W, Burnak B, Pistikopoulos EN. HY-POP: Hyperparameter optimization of machine learning mod-

els through parametric programming. Computers & Chemical Engineering. 2020. 139, p.106902.

65. [dataset] Abhranta Panigrahi, https://www.kaggle.com/abhranta/brain-tumor-detection-mri.

66. [dataset] Navoneel Chakrabarty, https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-

detection.

67. [dataset] Alif Rahman, https://www.kaggle.com/alifrahman/modiified.

68. [dataset] Prajakta Sabale, https://www.kaggle.com/datasets/prajaktasabale/brain-mri-images-for-

brain-tumor-detection.

69. [dataset] Sartaj, https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri.

70. [dataset] Cheng, J.: brain tumor dataset (4 2017), https://figshare.com/articles/dataset/brain_tumor_

dataset/1512427.

71. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 2016. pp. 770–778.

72. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition. 2017. pp. 4700–4708.

73. Redmon, Joseph. “Darknet: Open-Source Neural Networks in C.” https://pjreddie.com/darknet.

74. Kiraz H. Design and Implementation of Image Processing Method on Brain Tumor Detection with

Machine Learning Approach. 2018.
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