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Abstract

Background

Mendelian randomisation (MR) is the use of genetic variants as instrumental variables.
Mode-based estimators (MBE) are one of the most popular types of estimators used in uni-
variable-MR studies and is often used as a sensitivity analysis for pleiotropy. However,
because there are no plurality valid regression estimators, modal estimators for multivari-
able-MR have been under-explored.

Methods

We use the residual framework for multivariable-MR to introduce two multivariable modal
estimators: multivariable-MBE, which uses IVW to create residuals fed into a traditional plu-
rality valid estimator, and an estimator which instead has the residuals fed into the contami-
nation mixture method (CM), multivariable-CM. We then use Monte-Carlo simulations to
explore the performance of these estimators when compared to existing ones and re-ana-
lyse the data used by Grant and Burgess (2021) looking at the causal effect of intelligence,
education, and household income on Alzheimer’s disease as an applied example.

Results

In our simulation, we found that multivariable-MBE was generally too variable to be much
use. Multivariable-CM produced more precise estimates on the other hand. Multivariable-
CM performed better than MR-Egger in almost all settings, and Weighted Median under bal-
anced pleiotropy. However, it underperformed Weighted Median when there was a moder-
ate amount of directional pleiotropy. Our re-analysis supported the conclusion of Grant and
Burgess (2021), that intelligence had a protective effect on Alzheimer’s disease, while edu-
cation, and household income do not have a causal effect.
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Conclusions

Here we introduced two, non-regression-based, plurality valid estimators for multivariable
MR. Of these, “multivariable-CM” which uses IVW to create residuals fed into a contamina-
tion-mixture model, performed the best. This estimator uses a plurality of variants valid
assumption, and appears to provide precise and unbiased estimates in the presence of bal-
anced pleiotropy and small amounts of directional pleiotropy.

Background

Mendelian randomisation (MR) is an increasingly popular method for causal inference in epi-
demiology which uses the random assignment of genetic variants at birth to justify the
assumptions of an Instrumental variables analysis [1, 2]. In a traditional MR study, genetic var-
iants (typically single-nucleotide polymorphisms, SNPs) which robustly associate (typically at
genome-wide significance) with an exposure of interest are selected as instruments [3].
Because of the easy accessibility of Genome-Wide Association Study (GWAS) summary statis-
tics for many epidemiological traits, MR is often implemented using summary data, in a so-
called ‘two-sample MR’ analysis [4]. In such a setting, the effect of the exposure on the out-
come is estimated using a Wald ratio as the variant-outcome association divided by the geno-
type-exposure association. When there are multiple variants, their effects are generally
combined using an inverse variance weighted (IVW) meta-analysis.

On top of requiring a robust genotype-exposure association, instrumental variables analysis
requires that there are no variant-outcome confounders, and that the variant can only cause
the outcome via the exposure. The first of these assumptions is justified by Mendel’s laws of
independent and random segregation. However, the second assumption is less plausible due to
pleiotropy (the association of most variants with multiple traits). Pleiotropy can occur for two
reasons: Firstly, if the exposure causes many other traits, then the genetic variants which asso-
ciate with it should also associate with these other traits. This type of pleiotropy (often called
vertical pleiotropy) is required for MR to work. However, the second type of pleiotropy (hori-
zontal pleiotropy) occurs when the genetic variants independently cause two phenotypes. A
second advantage of two-sample MR is that it allows for the implementation of ‘pleiotropy
robust’ estimators [5]. These methods generally allow for some variants to be pleiotropic by
modifying the assumptions of the instrumental variables framework. One of the first methods
proposed for doing this is MR-Egger. IVW can be conceptualised as a weighted intercept-free
regression of the variant-outcome associations on the variant-exposure associations. MR-Eg-
ger fits the same model as IVW but with an intercept. This model is robust to pleiotropy if the
instrument strength is independent of the strength of the direct, pleiotropic, effect (called the
InSIDE assumption) [6].

A recent systematic review of two-sample MR studies found that the most frequently imple-
mented pleiotropy robust estimators were MR-Egger, weighted median, and weighted mode
[7]. Weighted Median will provide valid estimates if at least half the variants are valid instru-
ments, and so is called a ‘majority valid’ estimator. Weighted mode makes the ZEro Modal
Pleiotropy Assumption (ZEMPA), i.e. that there is zero pleiotropy in the modal estimand of
the causal effect [8]. ZEMPA is plausible because we should expect the causal effects for vari-
ants which are valid instruments to be similar, but each invalid variant to have its own unique
pleiotropic bias [9]. If the unique paths are independent of each other, then so too should the
biases they exert on invalid variants. Thus, valid variants should have clustered effect estimates,
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while invalid variants should create heterogeneity. Hence, in settings where there are some
valid instruments, we should expect the most common effect estimated to be the valid causal
parameter. Here in, we call this type of estimator, which will produce valid estimates when a
plurality of SNPs are valid, ‘plurality valid’ estimators.

Estimating modes directly from observed data can be difficult because no two estimates are
ever exactly equal. Therefore, the most common observation at a given level of precision may
be very different from the true mode. Traditional MBEs avoid this dilemma by smoothing the
observed distribution using a parametric kernel-density-smoothed function. This converts the
observed estimates into a probability density distribution, and then select the mode of this dis-
tribution. An alternative plurality valid estimator comes from the contamination mixture
method [10].

The contamination mixture method uses a maximum likelihood approach, assuming the
variant specific Wald ratios are normally distributed [10]. It produces a consistent estimator of
the causal effect under the plurality valid (ZEMPA) assumption. The advantages of the con-
tamination mixture method are that it does not require the parametric assumptions of the ker-
nel-density function, is more computationally efficient, and generally produces more precise
estimates with potentially asymmetric confidence intervals [10].

Multivariable MR (MVMR) is an extension of MR to allow for the simultaneous model-
ling of the effect of multiple exposures on an outcome [11]. The effects of each exposure in
an MVMR model are the direct effects of the exposure on the outcome conditional on the
other exposures. This has resulted in MVMR being applied as a method for mediation anal-
yses [12], but it is also used to adjust for known biases in an MR model [13-15]. MVMR
modifies the three instrumental Variables assumptions so that the variant is a valid instru-
ment if: 1) the variant is robustly associated with at least one exposure, 2) there are no vari-
ant-outcome confounders, 3) the variant can only cause the outcome via one or more of the
exposures.

MVMR was originally introduced using a residual-based framework, in which the effect of
a second exposure on the outcome was removed from the variant-outcome association, and
the effect of the second exposure on the exposure was removed from the variant-exposure
association [14]. These modified associations were then used as the input to a traditional MR
estimator. However, given the analogy between IVW and weighted regression, two-sample
MVMR is typically implemented as a type of multiple regression, in which the variant-out-
come associations for the variants which associate with either exposure of interest are
regressed on the variant-exposure associations in an intercept-free linear regression, inversely
weighted by the variance in the variant-outcome association. MR-Egger can also be imple-
mented by allowing for a non-zero regression intercept, and weighted median can be imple-
mented using weighted quantile regression [16].

However, we are not aware of an existing estimators for doing mode-based regression, and
hence MVMR which make a plurality valid-type assumption like ZEMPA have been underex-
plored. The multivariable constrained maximum likelihood (MVMR-cML) method provides
consistent estimates under a plurality-valid assumption by maximizing a constrained likeli-
hood function subject a maximum number of invalid instruments [17]. The MVMR-Horse
method provides estimates under the same model as MVMR-cML in a Bayesian framework,
using horseshoe priors for identification [18]. Finally, the Genome-wide mR Analysis under
Pervasive PLEiotropy (GRAPPLE) method is a multivariable method that can provide robust
estimates in the presence of invalid instruments using profile likelihood [19]. Here, we, intro-
duce and validate a further framework for implementing plurality valid estimators in two-sam-
ple MVMR.
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Methods
Theoretical background

Notation and assumptions. We assume a set of genetic variants that are independently
distributed are being proposed as instruments in an MR analysis. We shall denote with sub-
script i the ith element of any vector, which relates to the ith genetic variant. Let 8,,; be the
genetic variant-outcome association for the ith genetic variant and S, ; be the genetic variant-
exposure association for the ith variant. We represent the causal effect of the exposure on the
outcome using the scalar 0. We also assume that the exposure-outcome relationship is linear
and unaffected by effect modification. We let o; represent pleiotropic effects of the ith variant
on the outcome. Thus, when o = 0, the ith variant is a valid instrument.

Suppose the ith variant-exposure and variant-outcome associations are related according to
the model proposed by Bowden et al. [20]:

ﬁyti = Gﬁx.i + o 1)

Now suppose we have estimates for two exposures, denoted by x; and x,. 8, ; and f8, ; are

Xo,i
the ith variant’s associations with the first and second exposure, respectively. Likewise, 6; and
0, are the causal effects of the first and second exposure, respectively, on the outcome. We can
now extend (1) as follows:

ﬁy‘i =08, + HZﬁxz.i + 0 2)

Where o] represents pleiotropic effects of the ith variant on the outcome which do not pass via
X1 OF X;.

Statistical framework. In practice, we do not observe 3, 8, , or 8, . However, we may
obtain estimates, for example from GWAS. We denote the vectors of association estimates by
i ) [fxl ,and sz' Thus, in traditional multivariable-IVW we can estimate 6; and 0, using the fol-

lowing linear model:

ﬁy = Qlﬁxl + QQBxQ +é&; ande;; ~ N(0 7, ). 3)

» Uy

Given the data structure in Eqs (2), (3) will provide a consistent estimator when o = 0 for

alli (i.e., all variants are valid instruments), or when Z;‘ o = 0 and o is independent of fix ,
1.

and [A)’xﬂ for all i (i.e., pleiotropy is balanced and the InSIDE assumption is met). A plurality
valid estimator, on the other hand, should be consistent provided that a plurality of the o] are
zero, i.e. under the ZEMPA assumption.

Let f , be the residuals from regressing B , on [fXQ (without an intercept), and let §, be the
residuals from regressing /}xl on [3X2 (without an intercept). We can now estimate 0; using the

linear model:

By = Hlel +&,; and &,; ~ N(0, 0§)~ 4)

Let o be the residuals from regressing a vector of the pleiotropic effects on [3X2 (without
an intercept). Because we have now reformulated the equation for the variant-outcome
association so that it is in terms of a univariable regression model, , and B, can be used as

the inputs to a traditional univariable mode-based estimator. When more than one expo-
sure is of interest, then this process can be iterated for each exposure. It follows that a plural-
ity valid estimator for 8, using the residuals in this way will produce a valid estimate
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provided that a plurality of the &, values are zero. This seems likely to be the case if a plural-
ity of the o values are zero and the non-zero elements are distributed around zero (i.e., bal-
anced pleiotropy).

In settings with only two exposures, the residuals could be obtained through univariable
MR of the outcome on the second exposure, and of the first exposure on the second exposure.
Where there are more than two exposures, an existing multivariable MR method could be
used instead to create residuals. This general framework could be implemented using a variety
of estimators. Here we explore two types of plurality valid estimators. Firstly, we explore an
estimator which uses a regression model to create the residuals fed into a traditional mode-
based estimator (MBE) [8], which we dub ‘multivariable-MBE’. This regression model could
be created using any of the existing MVMR-estimators. Here we model the residuals using
IVW (i.e. intercept-free linear regression).

Although ultimately arbitrary, we focused on IVW, rather than another type of MR estima-
tor, because it provides the most intuitive way to understand validity conditions: using IVW to
create residuals means that pleiotropic effects in the residual creation step are passed forwards
to the MR analysis. Hence, the estimator should produce valid estimates if a plurality of SNP
effects are valid instruments. On the other hand, if weighted median was used in the first step
then this would require that at least 50% of these variants would be valid. It is not obvious how
the identification assumptions for the two steps would interact when defining which settings
the estimator would be valid in. In addition, MBE are known to be much less precise than
other estimators, and IVW is currently the most efficient multivariable estimator. Using other
estimators to create residuals could exacerbate this issue.

Since the contamination mixture method has several advantages, discussed above, we also
implemented this framework using both the contamination mixture method. This ‘multivari-
able-CM’ estimator uses IVW to create residuals fed into a contamination mixture model.

Our estimators are therefore algorithmic rather than model-based in the sense that we are
not starting by precisely defining a statistical model, and then deriving conclusion from the
assumptions of the model. But, instead, using an algorithm (taking the mode of the distribu-
tion) to convert genetic data in MR estimates. The likely trade-off for the conceptual simplicity
of this approach will not optimise statistical efficiency.

Deriving a standard error multivariable-MBE and multivariable-CM. Assuming we
have strong instruments (i.e. the first MR assumption is valid) we can use the first order
approximation for the standard error of the Wald ratio that is typically used in two-sample
MR studies. In a traditional univariable model this is defined as:

SEwald‘i = SEy‘i/‘ﬁx‘i| 5)

Where SE,; is the standard error of the ith variant-outcome association estimate.

In effect, this standard error is assuming that the variant-exposure association is measured
with sufficient precision that we can assume that it contributes no error to the estimate of the
causal effect. Under this assumption, the process of creating residuals will not increase the ran-
dom error in the standard error of the Wald ratio. Hence, we model the standard error of the
ith Wald ratio estimate as:

SEresid,i = SEy,i/|Bx1,i‘ 6)

Simulation study

We report our simulation study using the ADEMP (aims, data-generating mechanisms, esti-
mands, methods, and performance measures) approach [21].
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Aims. We ran a simple simulation study to assess the performance of our plurality valid
estimators when compared to other MVMR estimators.

Data-generating mechanisms. We broadly simulate a setting in which there are two puta-
tive causal exposures for a single outcome. In the primary simulation we explore a setting in
which the second exposure is pleiotropic (Fig 1), and where either both or neither of the expo-
sures have a causal association with the outcome. We then explore how well the methods do
under varying amounts of balanced and directional pleiotropy.

More formally, we simulated 200 single nucleotide polymorphisms (SNPs, which are com-
mon genetic variants) as independent and identically distributed binomial variables with the
following parameters:

SNP ~ B(1, 0.4) + B(1, 0.4)

We additionally simulated the SNP effects on the exposures as independent and identically
distributed normal variables

bSNP ~ N(0.05, 0.02%)

The beta values and allele frequencies here were chosen to be loosely based on the effect sizes
for the genome wide significant SNPs in the Wootton et al. UK Biobank GWAS smoking [22].

For settings in which we simulated pleiotropy (Fig 1.2A and 1.2B), the pleiotropic SNP
effects were simulated as:

pSNP ~ N(BETA, SE’)

Each simulation was repeated with BETA being set to either 0 or -0.03 to represent balanced
and directional pleiotropy respectively. SE was always set to 0.1.

Bias

1) No bias

2) Pleiotropy

A) Both exposures
cause the outcome

GRS

B) Neither exposure
causes the outcome

Fig 1. Directed acyclic graphs of the simulation data generative models. E and E2 are the first and second exposures respectively, GRS is the

genetic liability to the exposures, and O is the outcome, and C is a confounder.

https://doi.org/10.1371/journal.pone.0291183.9001
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We then simulated a confounder as a normally distributed variable with the following
parameters: C ~ N(0, 1%)
We then defined the first exposure as:

E,=0.3"C+ Y [bSNPSNP| + ¢,

where € is an error term such that €, ~ N(0, 1%).
The second exposure was defined as:

Ey=04"C+ Y [bSNP+SNP] + ¢,

where € is an error term such that €5 ~ N(0, 1%).
When both exposures had null effects on the outcome (Fig 1.1B and 1.2B), the outcome was
defined as:

Owp =C+ Y [PSNP+SNP) + &,

where € is an error term such that £, ~ N(0, 1?). p could take the value of 0, 20, 40, or 80 to rep-
resent pleiotropic effects for 0, 10%, 20% or 40% of SNPs.

When both exposures had non-null effects on the outcome (Fig 1.1A and 1.2A), the out-
comes were defined as:

Oprpnp =C+0.3+E, +0.4" Ey+ > [pSNPxxSNP| + £,

Where p takes the same definition as it had for Oy;p.

The phenotypic beta values chosen were chosen arbitrarily. However, biases are often more
visible with larger effect estimates. By choosing realistically large betas we hoped to clearly
illustrate the possible strengths and limitations of the different methods. While the specific
results of our simulation may not be applicable to any specific applied setting, more general
trends should be.

GWAS summary statistics for each exposure variable were estimated from linear regression
models. Each genetic association with each exposure, and the outcome, were estimated from a
unique sample of 200,000 participants with no sample overlap with the other GWASs.

Estimands. The causal effects of each exposure on the outcome.

Methods. We compare five methods for estimating the causal effect of the exposure on the
outcome: multivariable IVW (intercept free multiple regression of the variant-outcome associ-
ations on the variant-exposure associations weighted by the inverse variance in the variant-
outcome association), multivariable MR-Egger (multiple regression of the variant-outcome
associations on the variant-exposure associations weighted by the inverse variance in the vari-
ant-outcome association), multivariable Weighted Median (quantile regression of the variant-
outcome associations on the variant-exposure associations weighted by the inverse variance in
the variant-outcome association), multivariable-MBE (using IVW to create the residuals and
an MBE to estimate the causal effect), and multivariable-CM (using IVW to create the residu-
als and the contamination mixture method estimate the causal effect). IVW, MR-Egger, and
weighted median were chosen because they appear to be some of the most widely used estima-
tors which use different assumptions.

Performance measure. The primary performance measures were mean bias, 95% CI
width, and the percentage of times that the confidence intervals include zero. When there is no
causal effect, the latter will represent the type-2 error rate. When there is a causal effect, it mea-
sures one minus the type-1 error rate. In additional analyses we also explore the standard devi-
ation of the effect estimate (overall 1000 simulations), and coverage for the causal effect of the
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exposure on the outcome over the 1000 iterations. Bias was defined as the estimate minus the
true causal effect. Thus, in the null settings, bias was the effect estimate. In the non-null set-
tings, bias was the effect estimate of E; minus 0.3 and the estimate of Ep; minus 0.4. Coverage
was defied as the percentage of times that the 95% confidence interval included the causal
effect (or zero). 95% CI width was operationalised as difference between the upper 95% CI
limit and the lower 95% CI limit.

Applied example

We re-analysed the applied example (on the effect of intelligence, education, and household
income on Alzheimer’s disease) from Grant and Burgess’ (2021) paper on pleiotropy robust
estimators for MMVR [23]. This had previously been studied by Davies et al. and Anderson
etal. [24, 25]. Anderson et al., in particular, had shown that a multivariable model was impor-
tant for accounting for the collinearity between intelligence and education. Grant and Burgess
then added household income to explore how the models worked with an additional risk
factor.

Here we re-analysed the data used by Grant and Burgess (2021). They used 213 genetic variants
from Davies et al. as instruments. These instruments had been clumped to ensure independence
from each other and all had F statistics greater than 10, although the mean conditional F statistics
ranged between 1.5 and 2.5. They used the Hill et al. GWAS of intelligence (n = 199,242 male and
female European ancestry individuals) [26], Okbay et al. GWAS of years of education
(n =293,723 male and female European ancestry individuals) [27], and the Neale Lab UK Biobank
GWAS of household income (n = 337,199 male and female European ancestry individuals) as
sources of exposure data [28]. Since household income is an ordinal categorical variable, the
genetic variant associations represent the increase in log odds of being in a higher income cate-
gory per extra effect allele. Grant and Burgess (2021) additionally used Lambert et al. as a source
of Alzheimer’s data (n = 74,046 male and female European ancestry individuals) [29]. More infor-
mation on the data sources can be found in the original publications.

We implemented our two novel estimators, as well as IVW, MR-Egger, and MR-Median.
Since the genetic associations with education and intelligence were in the same direction, the
MR-Egger estimates can be interpreted as being oriented in the direction of either of these
exposures.

Results
Simulation

Table 1 presents the results for the primary performance measures (bias and 95% CI width) of
the simulations from the settings in which both exposures cause the outcome, while in Table 2
neither exposure exerts a causal effect on the outcome. The mean conditional F statistic for
Exposure 1 was around 197, and 186 for Exposure 2.

Bias. Inboth Tables 1 and 2, all estimators performed well in the no-bias setting. The
small amount of bias observed (0.1% - 0.5%) is explicable by weak instrument bias and the var-
iability in the estimates (S1 and S2 Tables). When there was balanced pleiotropy, the multivari-
able-MBE seemed to underperform the non-plurality valid estimators while the multivariable
-CM estimator appeared to do slightly better. Multivariable-CM was comparatively unbiased
by even large amounts of balanced pleiotropy. However, moderate amounts of directional plei-
otropy were sufficient to bias estimates more than the Median estimator. For example, in the
setting where both exposures are causal and there was 40% directional pleiotropy, the first and
second exposure estimates were biased by -0.055 and -0.008 respectively for the Median esti-
mator, but 0.073 and 0.054 for multivariable-CM. Multivariable-MBE was more biased than
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Table 1. Primary results for setting where both exposures cause the outcome, and exposure 2 is pleiotropic.

No 10% balanced |20% balanced |40% balanced |10% directional |20% directional |40% directional
bias | pleiotropy pleiotropy pleiotropy pleiotropy pleiotropy pleiotropy
Bias IVW Exposure 1 | 0.001 | -0.003 0.003 0.001 -0.026 -0.048 -0.109
Exposure 2 | -0.006 | -0.002 -0.008 -0.004 -0.034 -0.067 -0.121
MR Egger Exposure 1 | 0.06 0.056 0.061 0.059 0.053 0.059 0.045
Exposure 2 | -0.051 | -0.047 -0.046 -0.048 -0.05 -0.056 -0.055
Median Exposure 1 | 0.006 | 0.007 0.006 0.009 0.003 0.001 -0.008
Exposure 2 | -0.012 | -0.012 -0.012 -0.014 -0.015 -0.02 -0.031
multivariable- | Exposure 1 | 0.003 | 0.002 0.003 0.004 0.006 0.015 0.073
M Exposure 2 | 0.005 | -0.006 -0.007 -0.007 -0.005 0.001 0.054
multivariable- | Exposure 1 | -0.001 | 0.001 -0.079 0.149 -0.055 0.154 0.253
W08 Exposure 2 | 0.074 | -0.049 0.179 0.598 -0.117 0.054 -0.113

% of times the
95% CI includes
0

vw Exposure 1 | 0% 0% 0% 0% 0% 0% 0.5%
Exposure 2 | 0% 0% 0% 0% 0% 0% 0.1%
MR Egger Exposure 1 | 0% 0% 0% 2.2% 0% 0% 2.6%
Exposure 2 | 0% 0% 0% 0.9% 0% 0% 0.7%
Median Exposure 1 | 0% 0% 0% 0% 0% 0% 0%
Exposure 2 | 0% 0% 0% 0% 0% 0% 0%
multivariable- | Exposure 1 | 0% 0% 0% 0% 0% 0% 0%
CM Exposure2 | 0% | 0% 0% 0% 0% 0% 0%
multivariable- | Exposure1 | 6.4% | 13.3% 22% 31.9% 15% 24.6% 35.5%
MBE Exposure2 | 7.5% | 14.5% 21.6% 33.8% 13.8% 20.5% 35%

https://doi.org/10.1371/journal.pone.0291183.t001

multivariable-CM in all settings. For example, using the same simulation as above, multivari-
able-MBE was biased by 0.253 and -0.113 in the estimates for exposure 1 and 2 respectively.

95% CI width. The multivariable-MBE had the widest 95% ClIs of all the estimators. For
example, in the no bias simulation, the 95% CI widths were five to ten time larger than for the
other estimators. The non-plurality valid estimators generally had similarly wide 95% CI. Mul-
tivariable-CM generally had tighter 95% CI than the other estimators.

Coverage and power. Since it had wide 95% CI, multivariable-MBE unsurprisingly had a
low type-1 error rate (the 95% CI included the null in all settings > 98% when there was no
association), but a high type-2 (the 95% CI included the null up to 35% of the time in settings
where there was a true association). Multivariable-CM conversely had a very low type-2 error
rate (the 95% CI never included the null when there was a true association). Multivariable-CM
had a type-1 error rate at the nominal level (5%) for the 0% and 10% balance pleiotropy scenar-
ios. In contrast, the Median estimator had type-1 error rates well below the nominal level in
these scenarios. The type-1 error rates for Multivariable-CM were above the nominal level
from 20% balanced pleiotropy, and for all levels of directional pleiotropy.
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Table 2. Primary results for setting where neither exposure causes the outcome, and exposure 2 is pleiotropic.

No 10% balanced |20% balanced |40% balanced |10% directional |20% directional |40% directional
bias | pleiotropy pleiotropy pleiotropy pleiotropy pleiotropy pleiotropy
Bias IVw Exposure 1 | 0 0.004 -0.002 0.003 -0.029 -0.056 -0.111
Exposure 2 0 -0.004 0.002 -0.001 -0.03 -0.059 -0.116
MR Egger Exposure 1 | 0 0.002 0.001 0.006 -0.006 -0.015 -0.022
Exposure 2 | 0 -0.005 0.003 0.002 0 -0.003 -0.007
Median Exposure 1 | 0 0 0 0.001 -0.001 -0.002 -0.007
Exposure 2 | 0 0 0 0 -0.001 -0.003 -0.007
multivariable- | Exposure 1 | 0 0 0 -0.001 0.009 0.047 0.166
M Exposure 2 | 0 0 0 -0.001 0.009 0.046 0.167
multivariable- | Exposure 1 | 0.004 | -0.062 -0.168 -0.276 0.097 -0.17 0.208
LHEIE Exposure 2| 0.008 | 0.02 0.12 -0.062 -0.117 0.189 0.903

% of times the | IVW Exposure 1 | 95.7% | 95.6% 94.7% 95.7% 93.5% 93.1% 90.2%
95% Cl includes Exposure 2 | 94.6% | 96.2% 95.1% 94.5% 92.2% 92% 88.3%
0 MR Egger Exposure 1 | 94.8% | 95.3% 94.5% 95.4% 94% 96.3% 95%
Exposure 2 | 95.1% | 94.9% 94.4% 94.7% 94.4% 95.8% 94.8%

Median Exposure 1 | 97.1% | 98% 95.7% 91.9% 96.8% 96.5% 89.1%

Exposure 2 | 97.2% | 96.3% 95.4% 91.1% 97.2% 95.9% 90.7%

multivariable- | Exposure 1 | 95.4% | 95.3% 92.1% 86.1% 89.7% 63.3% 23.5%

CM Exposure 2 | 94.7% | 95.1% 91.7% 85.4% 88.1% 65% 24.7%

multivariable- | Exposure 1 | 99.4% | 99.2% 99.2% 99% 99.2% 98.7% 98.9%

MBE Exposure 2 | 99.7% | 99.5% 99% 98.9% 99.1% 99% 98%

https://doi.org/10.1371/journal.pone.0291183.1002

Additional outcomes.

Standard deviation of the effect estimates across the 1000 simula-

tions: The SD of effect estimates between the multivariable-CM estimator and the non-plural-
ity valid estimators were similar in the no-bias setting and when there was balanced pleiotropy
(S1 and S2 Tables). However, multivariable-MBE had much wider SD, possibly because MBE
produces less precise estimates than the contamination mixture method. In addition, all the
plurality valid estimators had larger standard deviations when there was directional
pleiotropy.
Coverage. Although all the estimators achieved 95% coverage when neither exposure was
causal and there was no bias (S2 Table), surprisingly, except for Weighted Median and Multi-
variable-MBE, most estimators did not achieve at least 95% coverage when both exposures
were causal (S1 Table). This might be because Weighted Median and Multivariable-MBE had
the widest CI width (Tables 1 and 2) and all estimators were being effected by weak-instrument

bias.
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Table 3. Results of the applied example exploring the effect to education and intelligence on Alzheimer’s disease.

Method Education (95% CI)
IVW -0.244 (-0.919 to 0.430)
Egger -0.035 (-0.761 to 0.691)
Robust -0.017 (-0.624 to 0.590)
Median -0.134 (-0.873 to 0.606)

Intelligence (95% CI)
-0.469 (-0.864 to -0.074)
-0.073 (-0.724 to 0.578)
-0.544 (-0.927 to -0.161)
-0.573 (-1.029 to -0.116)

Household Income (95% CI)

0.416 (-0.250 to 1.082)
0.400 (-0.264 to 1.064)
0.263 (-0.404 to 0.931

0.368 (-0.378 to 1.114)

multivariable-CM

multivariable-MBE
https://doi.org/10.1371/journal.pone.0291183.t003

(
0.046 (-0.601 to 0.689) -0.575 (-0.920 to -0.198)
0.648 (-1.048 to 2.344) (

0.303 (-0.288 to 0.893)

-0.733 (-1.684 to 0.219) 0.229 (-3.701 to 4.158)

Applied example

As with Grant and Burgess (2021), the pleiotropy robust estimators provided consistent esti-
mates of the effects of education, intelligence, and household income on Alzheimer’s disease
(Table 3). All estimators concluded a null effect of education on Alzheimer’s, conditional on
the other exposures. However, they all implied a negative effect on intelligence, although the
95% CI for MR-Egger and multivariable-MBE included the null hypotheses. All estimators
estimated a log odds ratio of household income around 0.3, but again with 95% CI which
included zero. As the original study concluded “[t]he consistency of the findings give strength
to the assertion that intelligence has a causally protective effect on Alzheimer’s disease, condi-
tional on years of education and household income. However, there is no evidence of a direct
effect of years of education or household income on Alzheimer’s disease.”

Discussion

Here we introduce two plurality valid estimators for multivariable Mendelian randomisation.
Unlike most existing estimators, these use residual framework rather than multivariable
regression models to produce the final effect estimates. We then used simulations with varying
amounts of directional and balanced pleiotropy, as well as a re-analysis of the effect of intelli-
gence, years of education, and household income on Alzheimer’s disease to compare the rela-
tive performance of our estimators with each other and existing estimators for MVMR.

As with previous analyses, our estimators implied that intelligence has a protective effect on
Alzheimer’s disease, while years of education and household income do not. This has two
important implications, firstly that as the years of mandatory education increase, there should
not be a corresponding increase in Alzheimer’s. Secondly, our results imply that public health
interventions to boost intelligence, beyond additional years of education, may be useful in
reducing the burden of Alzheimer’s, although further research would be needed to confirm
this hypothesis.

Of the two plurality valid estimators considered here, multivariable-CM, which uses IVW
to create the residuals fed into a contamination mixture model, overall performed the best. It
generally performed at least as well, if not better, than MR-Egger and IVW in terms of bias
and precision in all settings. Indeed, when there was balanced pleiotropy, it was both more
precise and less biased than IVW. However, in settings with moderate-to-high amounts of
directional pleiotropy it was a lot more biased than Weighted median. Indeed, the high preci-
sion of the CM estimates is probably detrimental in this setting as it resulted in lower coverage
than the other estimators. The divergence in performance between balanced and directional
settings is probably, as discussed in the methods section, due to the multivariable-CM method
assuming balanced pleiotropy. Hence, we would expect the estimator to perform better under
situations where the distribution of Wald ratios with directional pleiotropy is similar to the
assumed model with balanced pleiotropy, such as when the absolute amount of directional
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bias is small. The MR-Egger intercept and funnel plots have both been suggested as methods
for exploring the presence of directional pleiotropy, and therefore may be useful additional
analyses when employing the multivariable-CM estimator [30]. Thus, while we think it can
help triangulate results between a univariate and multivariable setting by allowing the use of a
plurality valid estimator in both analyses, or between multiple multivariable estimators, we
cannot recommend using it alone unless there is a priori evidence that there should be no
directional pleiotropy.

Multivariable-MBE was sufficiently imprecise that it is likely to be uninformative in prac-
tice, and we would therefore suggest that, when needed, researchers use another robust multi-
variable method instead. The poorer performance of the MV-MBE estimator is probably due
to the greater uncertainty in the estimates produced by the mode-based estimator [5]: in
Tables 1 and 2, the bias remains meaningfully smaller than half of the 95% CI width, despite
often being more than ten times greater than the bias for the other estimators.

Our simulations are not without limitations. Firstly, although pleiotropy can vary continu-
ously between studies, we explore only discrete amounts of this biases. This could potentially
mask non-linearities in the performance of pleiotropy robust estimators for MVMR in the
presence of these biases. In addition, all our simulations assume linearity and homogeneity
(i.e. no effect modification or interaction) of the effects of the risk factors on the outcomes. A
further limitation of this work is that we have only considered the scenario with two exposures
in our simulation study. However, the framework we introduce in this paper does naturally
extend to consider more than two exposures by using multivariable IVW in the first stage.
Finally, although multivariable-CM and multivariable-MBE could be implemented using esti-
mates other than IVW to create residuals, here we have implemented it explicitly using IVW
because the interpretation of the validity assumption using the other estimators is unclear.

In summary, here we introduce a framework for implementing plurality valid estimators
for multivariable Mendelian randomisation in the absence of modal regression. Of these, the
multivariable-CM estimator, which uses IVW to create residuals then fed into a contamination
mixture method, appeared to perform the best. Although it performed very well with large
amounts of balanced pleiotropy, it underperformed estimators like Weighted median when
there was directional pleiotropy. We hope these estimators (available from https://github.com/
bar-woolf/MVMRmode/wiki) will further enable the future triangulation of univariable MR
studies which have used plurality valid estimators with multivariable MR designs.

Supporting information

S1 Table. Results for additional outcomes when both exposures cause the outcome, and
exposure 2 is pleiotropic.
(DOCX)

S2 Table. Results for additional outcomes when neither exposure cause the outcome, and
exposure 2 is pleiotropic.
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