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Abstract

Background

This study was performed to explore the causal association between asthma and chronic

obstructive pulmonary disease(COPD).

Methods

We obtained summary statistics for asthma from 408,442 Europeans in an open genome-

wide association study (GWAS) from the UK Biobank to select strongly associated single

nucleotide polymorphisms that could serve as instrumental variables for asthma (P <
5×10−8). Additional summary statistics for COPD were obtained from 193,638 individuals of

European ancestry in the GWAS published by FinnGen. Univariable Mendelian randomiza-

tion(UVMR) analysis was performed using inverse variance weighted (IVW) as the primary

method of analysis. The reliability of the results was verified by multivariable MR(MVMR),

reverse and replication MR analysis, and sensitivity analysis.

Results

In the UVMR analysis, asthma increased the risk of COPD, with an odds ratio (OR) of 1.27

(95% confidence interval (CI) = 1.16–1.39, P = 5.44×10−7). Estimates were consistent in

MVMR analyses by the adjustments of smoking initiation, age of smoking initiation, ciga-

rettes per day, PM 2.5, and the combination of the above factors. In the reverse MR analy-

sis, there was no evidence of a causal effect of COPD on asthma risk(OR = 1.02, 95% CI =

0.97–1.07, P = 0.3643). In the replication MR analysis, asthma still increased the risk of

COPD. Sensitivity analyses validated the robustness of the above associations.

Conclusions

We found that genetically predicted asthma was positively associated with the risk of

COPD. Additionally, there was no evidence that COPD increases the risk of asthma. Further
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clarification of this link and underlying mechanisms is needed to identify feasible measures

to promote COPD prevention.

Introduction

Chronic obstructive pulmonary disease (COPD) is a preventable condition characterized by

persistent airflow restriction and airway symptoms [1]. In 2019, approximately 3.23 million

people died from complications of COPD or COPD itself. COPD is the 3rd leading cause of

death and the 7th leading cause of ill health in the world in terms of disability-adjusted life

years (DALYs) [2,3]. Due to an aging population and environmental factors, COPD will pose a

greater threat to human health and a heavier burden on public healthcare systems in the com-

ing years.

Smoking has traditionally been considered a major cause of COPD. However, previous

studies by Pena and colleagues have shown that a quarter of COPD cases occur in never-smok-

ers in the United States, with similar proportions reported in the United Kingdom (22.9%)

and Spain (23.4%). Estimates suggest that 25–45% of COPD patients have never smoked, indi-

cating that the burden of COPD on non-smokers is much higher than previously thought. A

growing number of published studies suggest that, in addition to smoking, other risk factors

such as air pollution, infectious diseases, occupational exposure, and chronic asthma are

strongly associated with COPD [4]. For instance, a prospective observational study found that

adults with active asthma have a 12.5 times higher risk of developing COPD compared to non-

asthma subjects, after adjusting for smoking history and other potential confounders [5].

Nearly a quarter of COPD patients present with a history of asthma, conversely, suffering from

asthma is prone to develop COPD in smokers [6,7]. A further study reveals that asthma is an

independent risk factor associated with COPD, without a link to smoking status [8]. A group-

ing number of studies have demonstrated the correlation between asthma and COPD, with

most studies suggesting that asthma increases the incidence of COPD [9]. However, these

observational studies are easily influenced by confounding and reverse causation, and it

remains unclear whether the presence of asthma causally raises the risk of COPD.

Mendelian randomization (MR) is a genetic epidemiology method that uses genetic vari-

ants to estimate the causal effect of a specific factor on a disease or outcome. It is based on the

assumption that genetic variants associated with a disease are randomly distributed in the pop-

ulation and are therefore independent of other confounding factors. This allows researchers to

examine the relationship between a factor and a disease without the influence of confounding

variables, which can lead to biased estimates [10–12]. Recent MR studies have confirmed the

causality between asthma and gastrointestinal disorders [13], rheumatoid arthritis [14], and

periodontitis [15]. Although previous observational studies have demonstrated an association

between asthma and COPD, inferring a causal relationship can be challenging. This study

aimed to assess the causal relationship between asthma and COPD through MR using publicly

available summary statistics, providing a basis for controlling asthma and thus reducing the

incidence of COPD.

Materials and methods

Study design

Using summary statistics from genome-wide association studies (GWAS), we conducted two-

sample MR analyses to estimate the causal effects of asthma on COPD risk. Instrumental
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variables (IVs) were selected based on three assumptions: IVs must be strongly associated with

the exposure of interest; IVs must be independent of unmeasured confounders; and IVs must

affect the outcome only through the exposure of interest and not via confounders [16]. In this

MR study, asthma and COPD were treated as exposure and outcome, respectively. We first

performed univariable MR (UVMR) to explore the causal relationship between asthma and

COPD, and then used multivariable MR (MVMR) to further assess the direct effect of asthma

on COPD, adjusting for potential confounders (e.g. smoking initiation, age of smoking initia-

tion, cigarettes per day, and PM 2.5) [1]. Additionally, we conducted reverse and replication

MR analyses to validate the relationship. A flowchart of the whole procedure is shown in Fig 1.

This study did not require separate ethical approval.

Data sources

The summary statistics of asthma were from the latest large-scale GWAS meta-analysis of

408,442 Europeans (56,167 cases and 352,255 controls) from the UK Biobank, including

results from association test of 35,551,291 single nucleotide polymorphisms (SNPs) with

asthma in a cohort of White British ancestry [17]. Additionally, summary statistics for COPD

phenotypes were derived from the GWAS publicly available in the FinnGen database, includ-

ing a total of 16,380,382 SNPs from 6,915 individual cases and 186,723 controls of European

ancestry.

Selection of IVs

In this MR study, SNPs were identified as meaningful at the genome-wide significance level

(P<5.0×10−8), and those without linkage disequilibrium (LD) with other SNPs (r2 < 0.001

within a 10Mb clustering window) were used as IVs. We calculated the F-statistic to quantify

the strength of genetic variation and eliminated SNPs with an F-statistic less than 10, which

indicated insufficient strength [18]. For the missing SNPs in the resulting GWAS dataset,

proxies were identified at the cut-off of R2> 0.8 (https://snipa.helmholtz-muenchen.de/snipa3

/index.php). If no appropriate proxy was available, SNPs were dropped. SNPs with minor

allele frequency (MAF)�0.01 were removed. Harmonizing processes were conducted to

exclude ambiguous and palindromic SNPs. The SNPs that were clearly correlated with results

(P<5.0×10−8) were excluded. Finally, MR-pleiotropy residual sum and outlier (MR-PRESSO)

tests were conducted prior to each MR analysis. These tests are particularly suitable for identi-

fying horizontal polymorphisms in less than 50% of instruments, thereby eliminating potential

outliers [19].

UVMR

We carried out an MR analysis to estimate the causal effect of asthma on COPD risk. An

inverse variance weighted (IVW) estimation method was used in the main analyses, combin-

ing each SNP with the resulting Wald ratio to obtain a pooled causality estimate. This method

allows for overdispersion [20]. Moreover, other MR analyses, like MR-Egger regression, and

weighted median, were implemented to supplement IVW and provide more reliable estimates

in a wider range of situations.MR-Egger regression can test for multinomial and considerable

heterogeneity of imbalances, but for the same degree of under-exposure variation, it requires a

larger sample size[21]. In cases where at least half of the weighted variance provided by the

horizontal pleiotropy is valid, the weighted median method delivers consistent effect estimates

[22]. The two-sided P<0.05 was considered statistically significant.
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Other factors and MVMR

To further eliminate the potential for multiple effects, we manually searched through all IVs in

Phenoscanner (http://www.phenoscanner.medschl.cam.ac.uk) to determine if they were asso-

ciated with previously reported confounders(P< 5 × 10−8), such as smoking, air pollution,

infections, occupational exposures, and immune dysfunction, among others. We found IVs

related to smoking traits, which are closely associated with COPD [1]. We excluded these IVs

of confounders in an additional model and re-analyzed the MR estimates to gain a more direct

cause-effect association. Furthermore, MVMR was also conducted to minimize the correlated

Fig 1. Analysis process of our research.

https://doi.org/10.1371/journal.pone.0291102.g001
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pleiotropy introduced by these confounders [23]. In MVMR, genetic signatures for smoking

traits were obtained from a large GWAS, comprising up to 1.2 million European-descent par-

ticipants, which included three smoking phenotypes: smoking initiation (n = 607,291), ciga-

rettes per day(n = 337,334), and age of smoking initiation(n = 341,427) [24]. The summary

genetic data on PM2.5 were obtained from the UK Biobank GWAS, which included 423,796

European participants. The study was based on the ESCAPE project (European Study of

Cohorts for Air Pollution Effects), which used the LUR model to estimate PM2.5 pollution

concentrations at the home addresses of study participants [25].

Reverse MR analysis

We also performed a reverse MR analysis to explore reverse causality. Significant reverse MR

analysis indicated reverse causality from exposure (COPD) to outcome (asthma). The proce-

dure for reverse MR analysis is the same as the MR analysis above.

Replication MR analysis

To validate the robustness, we replicated the IVW analysis using another independent COPD

GWAS data from the MRC Integrative Epidemiology Unit (MRC-IEU). Genetic variants asso-

ciated with COPD from the MRC-IEU consortium, which contained 1,658 COPD patients,

112,583 controls, as well as 9,851,867 SNPs.

Sensitivity analysis

Sensitivity analysis in MR studies has been crucial to detect potential genetic polymorphisms

and the heterogeneity of MR estimates. Therefore, we further performed Cochran’s Q statistic,

MR-Egger intercept tests, funnel pot, and leave-one-out (LOO) analyses to detect the presence

of pleiotropy and assess the robustness of the results. Cochran’s Q test (P<0.05 indicates het-

erogeneity) and I2 statistic (I2 value> 50% indicates heterogeneity) were adopted to assess the

heterogeneity among SNPs in IVW estimates. A value of P< 0.05 indicated significant hetero-

geneity in which case a random-effect model was applied to subsequent analyses [22,26–28].

All of the analyses were run by using the R package TwoSampleMR (version 0.5.6) in R (ver-

sion 4.1.1).

This study was reported in line with the Strengthening the Reporting of Observational

Studies in Epidemiology using MR (STROBE-MR) guidance, with the checklist available in the

Supporting information (S1 Table) [29].

Results

UVMR and sensitivity analysis

In the UVMR analysis, a total of 75 IVs were associated with the risk of COPD after a series of

quality control steps. All F-values for inclusion of SNPs >10. As shown in Table 1, the primary

results of IVW showed that asthma was positively associated with the risk of COPD (odds

ratio (OR) = 1.27, 95% confidence interval (CI) = 1.16–1.39, P = 5.44×10−7). Meanwhile, simi-

lar risk estimates were obtained using the MR-Egger regression (OR = 1.31, 95% CI = 1.03-

1.66, P = 0.0315) and weighted median approaches (OR = 1.29, 95% CI = 1.15-1.45,

P = 2.43×10−5) (Fig 2). The heterogeneity test detected some possible heterogeneity between

individual SNP effect estimates(P = 0.0019) and therefore we choose the results of the IVW

random effects. The funnel plot was symmetrical (Fig 3). LOO analysis also showed that the

effect estimates were unaltered by any one variant (Fig 4). In addition, the MR-Egger regres-

sion intercept did not have significant evidence of horizontal pleiotropy.
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Table 1. Causal relationships between asthma and COPD risk performed by MR.

Methods Exposure Outcome Method SNPs Beta P OR 95%CI Heterogeneity Pleiotropy

Q Q_df Q_p egger_intercept_p

UVMR Asthma COPD IVW 75 0.2393 5.44×10−7 1.27 (1.16,1.39) 114.22 74 0.0019 0.8030

Asthma COPD MR Egger 75 0.2673 0.0315 1.31 (1.03,1.66)

Asthma COPD WM 75 0.2537 2.43×10−5 1.29 (1.15,1.45)

Reverse MR COPD Asthma IVW 3 0.0220 0.3643 1.02 (0.97,1.07) 1.51 2 0.4700 0.8023

COPD Asthma MR Egger 3 0.0577 0.7035 1.06 (0.85,1.33)

COPD Asthma WM 3 0.0246 0.3711 1.02 (0.97,1.08)

Replication analysis Asthma COPD IVW 48 0.0061 3.33×10−6 1.01 (1.00,1.01) 52.95 47 0.2555 0.1747

Asthma COPD MR Egger 48 0.0104 0.0034 1.01 (1.00,1.02)

Asthma COPD WM 48 0.0059 0.0011 1.01 (1.00,1.01)

IVW, inverse variance weighted; WM, weighted median; UVMR, Univariable MR; MR, Mendelian randomization; SNPs, single nucleotide polymorphisms.

https://doi.org/10.1371/journal.pone.0291102.t001

Fig 2. Scatter plot for the causal effect of asthma on the risk of COPD.

https://doi.org/10.1371/journal.pone.0291102.g002
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Other factors and MVMR

Several factors may affect the association between asthma and the risk of COPD. To check the

potential influence of confounding factors, we searched the Phenoscanner V2 website for the

identified IVs with each type of association. Only one SNP (rs12165508) of asthma was associ-

ated with current smoking-related phenotypes. After removing the one SNP, the causality

remained significant (IVW OR = 1.28, 95% CI = 1.16–1.40, P = 2.30×10−7). In the MVMR

analysis, IVW estimates were consistent by the adjustments of smoking initiation (OR = 1.23,

95% CI = 1.11–1.36, P = 6.03×10−5), cigarettes per day (OR = 1.24, 95% CI = 1.10–1.39,

P = 3.43×10−4), age of smoking initiation (OR = 1.26, 95% CI = 1.14–1.39, P = 9.09×10−6), PM

2.5 (OR = 1.26, 95% CI = 1.15–1.39, P = 1.34×10−6) and the combination of the above factors

(OR = 1.22, 95% CI = 1.10–1.35, P = 1.19×10−4) (Table 2).

Reverse and replication MR analysis

In the reverse MR analysis, there was no evidence of a causal effect of COPD on asthma risk

(OR = 1.02, 95% CI = 0.97–1.07, P = 0.3643) (Table 1). To further verify our results, replication

MR analysis was conducted using COPD GWAS data from the MRC-IEU consortium. As

expected, similar trends were observed using FinnGen COPD GWAS data ((IVW OR = 1.01,

Fig 3. Funnel plot for the causal effect of asthma on the risk of COPD.

https://doi.org/10.1371/journal.pone.0291102.g003

PLOS ONE MR study of asthma on risk of COPD

PLOS ONE | https://doi.org/10.1371/journal.pone.0291102 September 1, 2023 7 / 12

https://doi.org/10.1371/journal.pone.0291102.g003
https://doi.org/10.1371/journal.pone.0291102


95% CI = 1.00–1.01, P = 3.33×10−6) (Table 1). Sensitivity analysis suggested that the results

were stable.

Discussion

We performed a two-sample Mendelian randomization analysis to comprehensively assess

whether asthma has a causal effect on the incidence of COPD, and the results suggested a

causal relationship between genetically predicted asthma and increased risk of COPD.

Fig 4. Leave-one-out analysis for the causal effect of asthma on the risk of COPD.

https://doi.org/10.1371/journal.pone.0291102.g004

Table 2. Multivariable inverse variance weighted estimates for adjusted associations with COPD.

Exposure Adjustment SNPs P OR 95%CI

Asthma smoking initiation 64 6.03×10−5 1.23 (1.11,1.36)

Asthma Cigarettes per Day 65 3.43×10−4 1.24 (1.10,1.39)

Asthma Age Of Smoking Initiation 67 9.09×10−6 1.26 (1.14,1.39)

Asthma PM 2.5 70 1.34×10−6 1.26 (1.15,1.39)

Asthma Age Of Smoking Initiation/Cigarettes per Day/smoking initiation/PM 2.5 62 1.19×10−4 1.22 (1.10,1.35)

COPD, chronic obstructive pulmonary disease; SNPs, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0291102.t002
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MVMR, reverse and replication MR analyses, and sensitivity analyses further confirmed

the statistical robustness of these findings. To our knowledge, this is the first MR study to sys-

tematically assess the causal role of asthma in COPD issues.

Asthma and COPD are caused by different mechanisms triggered by different pathogens,

but some patients present with features of both asthma and COPD, which is known as asthma-

COPD overlap syndrome (ACOS). ACOS may have several different underlying mechanisms.

Orie et al. proposed airway hyperreactivity as a genetic condition and a common risk factor

for the development of asthma and COPD [30]. Genetic analysis associated with the develop-

ment of asthma and COPD has established several disease susceptibility genes such as

ADAM33, and orosomucoid-like 3, which are frequent for both asthma and COPD [31,32].

Viral infections in early childhood are a risk factor for the development of asthma and COPD

[33]. Various factors associated with early life events associated with asthma and COPD from

the fetal stage to early childhood have been associated with impaired airway and lung growth

and the subsequent onset of asthma and COPD [34]. The pathogenesis of COPD due to

asthma is currently unknown but may involve airway remodeling, chronic airway inflamma-

tion, and bronchoconstriction independent of inflammation. The histological characteristics

of airway remodeling in patients with asthma-induced COPD include thickening of the bron-

chial epithelial basement membrane, increase in airway smooth muscle mass, increase in

mucus-producing cells, subepithelial fibrosis, and vascularization [35]. In addition, a random-

ized controlled trial showed that allergen-induced bronchoconstriction and methotrexate-

induced bronchoconstriction contribute to persistent airflow obstruction in asthma patients

by up-regulating transforming growth factor beta and epithelial-mesenchymal transition [36].

Our finding on the association between asthma and COPD risk is consistent with previous

observational studies. A 50-year cohort study in Aberdeen demonstrated childhood asthma

significantly increases the risk of COPD (OR = 6.37, 95%CI = 3.73–10.94) [37]. Similar find-

ings have been observed in other cohort studies [5,7,38]. In addition, several cross-sectional

studies also provide some supporting evidence [8,39–43]. The Wellington Respiratory Survey,

which involved 749 individuals aged between 25 and 75 years to investigate the risk factors of

COPD, revealed that a prior diagnosis of asthma was the most frequently associated risk factor

[39]. The CanCOLD study, a multicenter cross-sectional investigation, revealed self-reported

asthma was an independent predictor of COPD in both never-smokers and ever-smokers [8].

Further, a systematic review and modeling analysis including 162 articles documenting popu-

lation-based studies conducted in 260 study centers across 65 countries showed that asthma

significantly increases the risk of developing COPD, with an OR of 2.6 (95%CI = 1.6–4.1) in

the global countries, and a higher risk observed in low and middle-income countries

(OR = 3.6, 95%CI = 0.5–24.1) [44]. However, these types of study designs may fail to distin-

guish between causality and non-directional associations caused by confounding factors and

are prone to errors of reverse causality.

One strength of this study is that the results obtained in MR studies can strengthen the evi-

dence for causal inference. As an IV, SNP overcomes environmental influence and disease

development, and can effectively avoid reverse causality and confounding bias. The large-scale

GWAS data used in the study for MR analysis can improve the accuracy of the results. How-

ever, we cannot ignore several limitations of this MR study. First, due to the lack of data in the

original study, such as gender, asthma phenotype, and asthma severity, further subgroup anal-

yses have been difficult to perform. Further research is needed to explore the relationship

between asthma and COPD in different subpopulations, especially those with specific asthma

phenotypes or severity. Second, we used MVMR to check for the possibility of horizontal plei-

otropy introduced by the observed confounders. However, multivariate analysis cannot over-

come bias due to pleiotropic effects from pathways outside of smoking or PM 2.5. Third,
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although the Mendelian randomization method provides us with a way of estimating causal

relationships between genes and phenotypes, we cannot be completely certain of the causal

relationship between asthma and COPD due to the limitations of the effect size and the num-

ber of SNPs. Finally, our MR analysis included only the European population, so we need

more evidence from other populations to draw a confirmed conclusion.

In conclusion, asthma could increase the risk of COPD, while there is no evidence that

COPD increases the risk of asthma. More research is needed in the future to investigate the

underlying mechanisms, such as functional studies, genomics studies, and multi-omics stud-

ies. Meantime, clinicians should pay attention to the risk of COPD in asthmatic patients and

formulate early diagnosis and treatment strategies for these patients.

Supporting information

S1 Table. STROBE-MR checklist of recommended items to address in reports of Mende-

lian randomization studies.
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