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Abstract

Astrocyte elevated gene-1 (AEG-1) is an important oncogene that overexpresses in gliomas

and plays a vital role in their occurrence and progression. However, few reports have shown

which biomarkers could reflect the level of AEG-1 expression in vivo so far. In recent years,

intracellular metabolites monitored by proton magnetic resonance spectroscopy (1H MRS)

as non-invasive imaging biomarkers have been applied to the precise diagnosis and therapy

feedback of gliomas. Therefore, understanding the correlation between 1H MRS metabolites

and AEG-1 gene expression in U251 cells may help to identify relevant biomarkers. This

study constructed three monoclonal AEG-1-knockout U251 cell lines using the clustered

regularly interspaced short palindromic repeat (CRISPR) /Cas9 technique and evaluated

the biological behaviors and metabolite ratios of these cell lines. With the decline in AEG-1

expression, the apoptosis rate of the AEG-1-knockout cell lines increased. At the same

time, the metastatic capacities decreased, and the relative contents of total choline (tCho)

and lactate (Lac) were also reduced. In conclusion, deviations in AEG-1 expression influ-

ence the apoptosis rate and metastasis capacity of U251 cells, which the 1H MRS metabo-

lite ratio could monitor. The tCho/creatinine(Cr) and Lac/Cr ratios positively correlated with

the AEG-1 expression and malignant cell behavior. This study may provide potential bio-

markers for accurate preoperative diagnosis and future AEG-1-targeting treatment evalua-

tion of gliomas in vivo.

Introduction

Glioma is a common principal central nervous system (CNS) tumor with high morbidity and

mortality, accounting for 15% of all CNS tumors [1, 2]. Several genes drive the development of

gliomas, and understanding the changes in tumor genetic molecules can help diagnose, grade,

and treat gliomas. With advances in cancer genomics, gene therapy will likely become the

mainstay of glioma treatment [3, 4]. Astrocyte elevated gene-1 (AEG-1) is overexpressed in

various malignancies, including gliomas, and plays a role in various complex oncogenic
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signaling cascades intimately involved in tumor development [5]. Relevant studies have con-

firmed that AEG-1 plays an essential role in all the hallmarks of cancer, including progression,

transformation, sustained angiogenesis, evasion of apoptosis, invasion, and metastasis [4, 6, 7].

A related study revealed that AEG-1 knockdown reduced radiation-induced homologous

recombination repair activity by inhibiting RFC5 expression, suggesting that AEG-1 may be a

reliable radiosensitization target for glioma radiotherapy [8]. Another study showed that

silencing AEG-1 promotes temozolomide-induced DNA damage, improving the efficiency of

glioma chemotherapy, and reducing immunosuppression due to M2 polarization in glioma

cells [9]. Researchers have demonstrated that the downregulation of AEG-1 significantly

inhibits the development of vasculogenic mimicry (VM) by regulating VEGF and MMP-2 in

glioma cells [10]. Additional studies have demonstrated that AEG-1 is a target of miR542 to

promote the proliferation and invasion of glioblastoma [11]. Although the actual mechanism

underlying the effect of AEG-1 on glioma remains unclear, AEG-1, as an emerging target, may

still potentially contribute to gene-targeted therapy for human glioma. Therefore, it is crucial

to search for effective non-invasive examination methods to assess the expression of AEG-1 in

glioma cells, which will be conducive to an inchoate diagnosis and complementary therapy.

The rapid and unrestricted proliferation of tumors is an energy- and resource-consuming

process, and metabolism is significantly altered during tumor transformation and progression

[12]. Warburg et al. observed that various tumor cells exhibit a unique metabolic phenotype in

which glucose undergoes the enzymatic production of pyruvate, which remains fermented to

lactate even in an aerobic environment, rather than undergoing oxidative phosphorylation.

This feature, known as the Warburg effect, is attributed to tissue hypoxia, genetic mutations,

and mitochondrial abnormalities in proliferating cancer cells [12]. Altered cellular metabolism

is a hallmark of glioma, and the interaction between the tumor genotype and brain microenvi-

ronment affects glioma metabolism [12, 13]. Glioma cells exhibit a higher glucose uptake rate

than normal cells, which is accompanied by a metabolic switch from oxidative phosphoryla-

tion to aerobic glycolysis. Metabolic reprogramming of glioma cells supports excessive cell

proliferation and glycolysis, which are usually mediated by the activation of oncogenes or per-

turbation of tumor suppressor genes. Corresponding oncogenes include isocitrate dehydroge-

nase (IDH), TP53, epidermal growth factor receptor (EGFR), phosphatase and tensin

homolog (PTEN), retinoblastoma gene 1 (rb1), platelet-derived growth factor receptor

(PDGFRA), and Neurofibromatin-1(NF1) [14, 15]. Relatively few reports have addressed the

effects of AEG-1 on glioma metabolism.

Magnetic resonance spectroscopy (MRS) is a sensitive technique for imaging tissue metabo-

lism and can be used to enhance the specificity of tissue characterization in a non-invasive

manner [16, 17]. Hydrogen-proton magnetic resonance spectroscopy (1H MRS) is currently

widely employed in clinical practice to detect alterations in metabolites in lesions [18–20]. 1H

MRS provides irreplaceable information for the diagnosis and therapeutic monitoring of

tumors, particularly gliomas [21–23]. Studies have shown that the metabolite ratio has a spe-

cific value in differentiating treatment-related changes (radiation necrosis and tumor pseudo-

progression) from tumor recurrence in gliomas [24–26]. Total choline (tCho) is considered a

biomarker reflecting the state of cell membrane turnover and has been widely used to identify

tumor areas with excessive cell proliferation and for the therapeutic monitoring of gliomas[27,

28]. The product of the Warburg effect is lactate (Lac), whose level may reflect the metabolic

characteristics of gliomas as they develop [29, 30]. However, the acetate (Ace) and succinate

(Succ) detections have not been adequately reported in gliomas. 1H MRS shows the probability

of offering specific biomarkers by measuring metabolic alterations in cancer that precede

changes in magnetic resonance image (MRI) appearance [17]. Although 1H MRS has been in

clinical use for glioma recognition and treatment inspection for some time, the mechanisms of
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action at the molecular and cellular level of metabolite alterations are poorly understood. Few

studies have investigated the relationship between metabolite alterations and oncogenic

expression [31]. In in vitro MRS research, the scientific detection of metabolites could be ana-

lyzed by combining certain gene expression and cell biological behaviors [23, 25], which could

provide excellent feedback on cellular states in tumor progression. These in vitro research

achievements may be transformed into in Vivo MRS studies to sufficiently comprehend new

clinical MRS discoveries [32].

Recently, clustered, regularly interspaced short palindromic repeat (CRISPR)/Cas9 technol-

ogy has become a considerably new device for generating RNA-guided nucleases with custom-

izable specificities [33]. Previous studies notarized the feasibility of editing AEG-1 using the

CRISPR/Cas9 system in liver cells [34]. The single guide RNA (sgRNA) guides the Cas9 nucle-

ase to the target site through base pairing [35]. Several sgRNAs target specific genes for selec-

tion, and disparate sgRNAs build diverse gene-knockout models with different knockout

efficiencies.

Accordingly, the present study aimed to generate monoclonal AEG-1-knockout cell lines

using three specific sgRNA-CRISPR/Cas9 genome-editing vectors. Next, validate the effect of

AEG-1 on biological behavior in the U251 cell line by analyzing cell apoptosis and cycle distri-

bution using flow cytometry and invasion and migration abilities using Transwell and scratch

assays, respectively. Furthermore, certain molecular metabolites of the AEG-1 knockout cell

lines were measured using 1H MRS, the relationship between metabolite changes and AEG-1

expression was explored, and certain metabolite ratios were determined as a noninvasive

imaging biomarker for preoperative evaluation and an indicator of targeted therapy for

glioma.

Materials and methods

Materials

The experimental materials used in the present study are described below.

Methods

Construction of the three multiclonal AEG-1-knockout cell lines. Three single guide

RNA (sgRNA) sequences targeting AEG-1 were designed (Table 1) and scored as the top three

on the design website (https://zlab.bio/guide-design-resources). The synthetic sgRNA oligo

strand that generates double-stranded DNA was mixed with 1 μL of pX459 plasmid (linearized

CRISPR/Cas9 plasmid) and 1 μL of T4 DNA ligase (Fermentas) at 16˚C overnight to obtain

three pX459-AEG-1 genome-editing vectors (Fig 1A).

Next, the three recombinant plasmid DNAs were cut using the restriction enzymes EcoRI

(Fermentas) and Bbs I (Fermentas) for preliminary identification and were then subjected to

gene sequencing for further identification. U251 cells were cultivated at 90% confluence 24 h

Table 1. Sequences of the AEG-1 sgRNA oligos.

primer sequence (50–30)

AEG-1-sgRNA-1 Upstream: CACCGACTTCAACAGTCCGCCCATT

Downstream: AAACAATGGGCGGACTGTTGAAGTC

AEG-1-sgRNA-2 Upstream: CACCGCAAAACAGTTCACGCCATGA

Downstream: AAACTCATGGCGTGAACTGTTTTGC

AEG-1-sgRNA-3 Upstream: CACCGACAGCAGCGTAAACGTGATA

Downstream: AAACATTACGTTTACGCTGCTGTC

https://doi.org/10.1371/journal.pone.0291092.t001
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before transfection using Lipofectamine 3000 (Invitrogen). A seven-day screening experiment

was performed by adding puromycin to the medium (3 μg/mL) to obtain three multiclonal

AEG-1-knockout cell lines; each well of each group of cell lines was digested, infinitely diluted,

and each cell was individually cultured into a stable monoclonal cell line.

Whole genomes of the monoclonal knockout cell lines were extracted to evaluate the activ-

ity of the three reconstructed plasmids at the molecular level. Next, the primers (Table 2) for

the corresponding complementary DNAs (cDNAs) were designed. cDNA was cloned into the

PMD-18T vector (Takara). Ultimately, the TA-cloning vector for gene sequencing was

extracted to estimate the knockout consequences of these sgRNAs. Normal U251 cells were

used as a reference, and U251 cells transfected with the empty Cas 9 plasmid served as the

direct control group.

Fig 1. The construction process and results of the three monoclonal AEG-1-knockout cell lines. (A) Schematic diagram of reconstructed pX459 plasmid.

(B) Enzyme digestion showed they cannot be cut by Bbs I because the original Bbs I site had a DNA fragment insert. (C) All the plasmids had the donor DNA

inserted with the correct open reading frames. (D) TA cloning analysis to identify Indel mutations, three forms of gene mutations were caused.

https://doi.org/10.1371/journal.pone.0291092.g001
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Western blot analysis of the five cell lines. For western blot analysis, 10 μg of protein

was separated using 10% SDS-PAGE and transferred to a polyvinyl difluoride membrane. The

membrane was steeped in a 5% milk solution for 1 h at 25˚C and cultivated at 4˚C overnight

with rabbit anti-AEG-1 (ab227981; 1:1500; Abcam) and mouse anti-GAPDH (glyceraldehyde-

3-phosphate dehydrogenase) (ab8542; 1:5000; Abcam). The primary antibody solution was

removed from the membrane. Horseradish peroxidase-labeled goat anti-rabbit antibody

(1:4,000; Abcam) and goat anti-mouse antibody (1:2,000; Abcam) were appended separately,

and the membrane was incubated at 25˚C for 1 h. After washing, the membrane was subjected

to development and visualization. Protein expression was quantified using the grayscale ratio

in Image J software (Bethesda). The GAPDH expression was used as an internal reference for

AEG-1.

Flow cytometry analysis of apoptosis and cell cycle distribution. For apoptosis determi-

nation, each cell line was cultured with 5 μL of Annexin V and 5 μL of propidium iodide (PI,

BD Biosciences) for 15 min at 25˚C in the dark and subjected to flow cytometry to measure

the apoptosis rate (%). The cell cycle distribution of the cell lines was assessed using flow

cytometry. The cell amount was regulated to 2×106 cells/ml and then washed several times,

and cells were fastened with 70% ethanol for 12 h at 4˚C and cultivated with PI for 30 min at

25˚C in the dark. The above steps were repeated thrice. The samples were analyzed by flow

cytometry, and the experimental data were analyzed using FlowJo software (Treestar).

Transwell invasion assays and scratch wound experiments. A certain amount of Matri-

gel (Corning) was added to the filter membrane for the Transwell invasion assays. The cells

were cultured in DMEM without serum for 24 h. Next, 1×106 cells were engrafted in the

respective chambers, and 800 μL of the absolute medium was injected into the inferior cham-

ber. After 24 h of incubation, ten visual fields were randomly picked to count the mean cell.

The experimental procedure was replicated thrice with three wells in each group.

Cell migration ability was detected by adopting the ’wound-healing’ assay. The cell lines

were inoculated in 6-well plates, and the wounds were fabricated in the contact-suppressed

monolayer cell with a germ-free P200 pipette tip, then cultured for 48 h for scratch healing.

Adhesive cells were cultured with a new nutrient solution. The condition of wound healing in

these groups was assessed, and pictures were taken per group at 0 h and 48 h.

Sample preparation for 1H NMR spectroscopy and 1H NMR spectroscopy. The washed

cells were centrifuged for each sample. Then, the cells (approximately 3 × 107 cells) were min-

gled with hypochlorous acid. Sodium hydroxide was added to adjust the pH to 7.2, and the

mixture was centrifuged. The sediment was deserted, and the epipelagic liquid was lyophilized

to powder. The lyophilized extracts were placed into a 5 mm MR tube and melted in miscible

liquids containing 540 μL pure D2O and 60 μL TMSP (2, 2, 3, 3-d (4)-3-(trimethylsilyl) propi-

onic acid sodium salt). TMSP was used as the chemical shift reference. The above steps were

repeated thrice in each group.

Table 2. PCR short-chain primers for TA cloning analysis.

Short-chain primer sequence (50–30) Size of the PCR product

AEG-1-1 Upstream: TCCTGCGTATAAATCTTTG 324

Downstream: ATCACCCTACCCACCATTT

AEG-1-2 Upstream: TAAAGCAGTGCAAAACAG 325

Downstream: ACAGAAACAGAGGACCTT

AEG-1-3 Upstream: GGTGCTGACTGATTCTGG 293

Downstream: AAATGGCTTATGGTCGTC

https://doi.org/10.1371/journal.pone.0291092.t002
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1H NMR spectroscopy was performed using a Bruker Avance 600 MHz 14T spectrometer.

A pulse–acquire sequence was employed to perform 128 scans. The TMSP peak appeared at

0.00 ppm and is regarded as the reference signal. The metabolite content was related to the

quantified metabolite curve calculus, and we acquired the relative amounts of metabolites

through the MestReNova software analysis. The creatinine (Cr)content was used as a refer-

ence. The above steps were repeated three times for each group.

Statistical analysis. The overall numerical value is presented as the average ± standard

deviation. SPSS 23.0 software (Chicago) was used for correlation analysis, and GraphPad

Prism 8.0 (La Jolla) was used for diagrams. Pearson’s coefficient of association was used to

evaluate pertinence. Two-sided p values < 0.05 were statistically significant for all data

analyses.

Results and discussion

Results

Identification of the pX459-AEG-1 vector and sgRNA activity. As the outcome is

shown in Fig 1C, the reconstructed vector could be cut by EcoRI but not by the Bbs I, and the

DNA sequencing outcome of all the pX459-AEG-1 vectors is shown in Fig 1C. The two results

displayed that synthetic sgRNA oligos were inserted into the pX459 plasmid successfully.

Accurately cloned pX459-AEG-1 vectors were successfully transfected into U251 cells to

obtain several monoclonal AEG-1-knockout cell lines. The sequencing results of TA cloning

of the AEG-1-knockout cell lines showed (Fig 1D) that they caused three forms of gene muta-

tions. In this study, we will measure the tentative data of five groups of monoclonal cell lines

(U251, Cas 9, pX459-AEG-1-1, pX459-AEG-1-2, pX459-AEG-1-3).

Expression of AEG-1 and estimation of the knockout efficiency. We assessed the

expression of proteins extracted from the five cell lines using western blot analysis. This proce-

dure was repeated three times. The protein level was quantified by the grayscale ratio using

ImageJ software, and statistical significance was determined using the GraphPad Prism 8 soft-

ware (La Jolla, Fig 2A). Among the three steady knockout cell lines, the knockdown efficiency

of pX459-AEG-1-3 was the highest (99%, vs. Cas9 group). AEG-1 protein expression in the

five cell lines were 100%, 80%, 30%, 20.5%, and 1%, respectively, vs. the U251 cell line.

Flow cytometric analysis of apoptosis and the cell cycle. The effect of AEG-1 on the apo-

ptosis of U251 cells was determined using flow cytometry (Fig 2B). The ratio of apoptosis

among the five groups is shown in Fig 2D. PX459-AEG-1-3 had the highest early apoptosis

and late apoptosis rates, especially the early apoptosis rate, which was 3.6-fold higher than that

in the Cas 9 group. The cell cycle distribution results are shown in Fig 2C, and the percentage

of cells in G2 increased in the three AEG-1 knockout groups (Fig 2E). Similarly, pX459-AEG-

1-3 showed the highest ratio, and the percentage of cells blocked in the G2/M phase increased

by approximately 62%.

Transwell invasion assays and scratch wound experiments. Cell migration was deter-

mined via scratch experiments. The cell migration rate was calculated as follows: relative

mobility (%) = (1−48 h healing distance/0 h scratch distance) ×100%. The data are presented

as mean ± SD. The results indicated that the invasion and migration abilities of the three

experimental groups were reduced (Table 3, Fig 2F), particularly in the pX459-AEG-1-3

group.
1H NMR spectroscopy. 1H MRS demonstrated content changes in total choline (tCho),

creatine (Cr), acetate (Ace), succinate (Succ), and lactate (Lac) in these five cell lines. Distinct

differences in relative metabolite concentrations were observed in the five cell lines (Fig 3).

The spectra were phased, and the creatine peak at 3.04 ppm was used to reference the signals.
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We discovered that the tCho/ Cr ratio and Lac/ Cr ratio demonstrated a noticeable decline in

the pX459-AEG-1-2 and pX459-AEG-1-3 groups and had the same downward trend as the

AEG-1 protein expression, rate of apoptosis, and metastatic capacity of U251 cells. The ten-

dency of the Ace/Cr ratio and the Succ/Cr ratio was not clear.

Correlation analysis. In the five cell lines, several correlation lines based on the Pearson

coefficient of correlation validated correlations among AEG-1 protein relative expression, bio-

logical behavior, and metabolite alterations (Fig 4).

Fig 2. (A) Evaluation of AEG-1 gene expression in the stable AEG-1 gene knockout cell lines. (B)Flow cytometry showed a representative series figure of cell

apoptosis. (C)A representative series of cell cycle FACS histograms is shown. (D)The apoptotic rate among the five cell lines. * P<0.05, ** P<0.01, vs control

(Cas9) group. (E) The percentage of cells at the G1 and G2 stages of the cell cycle is shown for the five cell lines. * P<0.05, ** P<0.01, vs control (Cas9) group.

(F)The invasion and migration abilities among the five cell lines. * P<0.05, ** P<0.01, *** P<0.001, vs control (Cas9) group.

https://doi.org/10.1371/journal.pone.0291092.g002

Table 3. Related data of the Transwell invasion chamber experiments and scratch test.

Group Number of invaded cells Migration distance (l/μm) Relative mobility (%)

U251 45.67±2.94 73.57±2.01 53.38±1.09

Cas9 42.3±2.16 44.10±2.37 36.99±1.83

pX459-AEG-1-1 12.00±1.41 21.4±2.63 18.38±2.05

pX459-AEG-1-2 4.67±0.82 10.36±1.54 9.29±1.28

pX459-AEG-1-3 0 5.60±1.83 5.11±1.35

https://doi.org/10.1371/journal.pone.0291092.t003
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Discussion

Although glioma stem cells have the potential to proliferate and differentiate indefinitely and

play a key role in the treatment, prognosis, and recurrence of glioma [36], the process of cul-

turing and purifying glioma stem cells is complex, whereas U251 cells can embody most of the

properties of glioma. Previous researchers have reported that the CRISPR/Cas system is

Fig 3. 1H MRS spectra of the five cell lines. Metabolites labelled are as follows: Lac: lactate(1.33–1.34ppm), Succ: succinate(1.92ppm), Ace: acetate

(2.40ppm),Cr: creatine(3.04ppm), tCho: total choline(3.21–3.23ppm).

https://doi.org/10.1371/journal.pone.0291092.g003
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effective in the gene editing of U251 cells. Therefore, we used U251 cells as the research object

instead of glioma stem cells in the present investigation. The CRISPR/Cas9 system comprises a

single guide RNA (sgRNA) and the DNA endonuclease Cas9, with the former directing the lat-

ter to specific DNA sequences to cut double-stranded DNA site-specifically. Different sgRNAs

guide the knockdown of target genes at various sites, resulting in multiple mutations and rele-

vant knockdown efficiencies [37]. This study used the CRISPR/Cas9 system to knock down

the AEG-1 gene in U251 cells. We designed three sgRNA sequences (Table 1) targeting AEG-1

and found that the gene mutation forms(Fig 1E) and knockout efficiency of the three sgRNA

sequences varied (Fig 2A). Therefore, we constructed three monoclonal AEG-1-knockout

U251 cell lines and then evaluated their biological behavior and metabolite ratio. The five cell

lines include the U251 cell line, the Cas 9 cell line (transferred into the empty Cas 9 carrier

without sgRNA), and three AEG-1-knockout cell lines (pX459-AEG-1-1, pX459-AEG-2-2,

pX459-AEG-3-3). Among the three steady knockout cell lines, the knockdown efficiency of

pX459-AEG-1-3 was the highest, this is because the AEG-1-sgRNA-3 primer and the AEG-1

Fig 4. The correlation analysis among the biological behavior, AEG-1 protein relative expression level, and metabolite alterations in the

U251 cell line.

https://doi.org/10.1371/journal.pone.0291092.g004
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gene have a better fit and can assist in maximizing the knockdown of the AEG-1 gene during

the guided knockdown process.

Our study exhibited that AEG-1 knockout leads to cell cycle arrest in the G2 phase (Fig 2C

and 2E), resulting in increased levels of apoptosis (Fig 2B and 2D). The G2 phase proportion

negatively correlated with the AEG-1 expression, and the ratio of apoptosis had a negative cor-

relation with the AEG-1 protein relative expression (Fig 4). The expression of AEG-1 is regu-

lated by the Ha-ras gene and PI3K/Akt-GSK3β-c-Myc signaling pathway in various

malignancies [38–41]. Upregulation of AEG-1 expression further activates the PI3K/Akt sig-

naling pathway, and AKT acts downstream of AEG-1, where activation of AKT leads to

GSK3B phosphorylation and repression of FOXO1/3 phosphorylation [42, 43]. The AEG-1

and Ha-ras genes cooperate to regulate the expression of transcription factors, such as

FOXO1, Miz-1, P53, AP-1, and other downstream genes of the PI3K/Akt signaling pathway,

thereby mediating the abnormal proliferation and anti-apoptotic ability of tumor cells [43–

48]. Previous studies have indicated the influence of AEG-1 upregulated expression on down-

stream signal factors of Akt signal routing connected with cell proliferation and growth. AEG-

1 is also a downstream target molecule of the c-myc gene [47, 49, 50], a major cell cycle check-

point regulatory factor. Consequently, the downregulation of AEG-1 should reduce prolifer-

ative capacity, induce cell cycle arrest, and promote apoptosis in U251 cells.

Based on the experimental results of the cell biological behavior of the five cell lines (Fig

2F), our study demonstrated that knockout of AEG-1 could significantly inhibit the prolifera-

tion, migration, and invasion of the U251 cell line, and cell metastasis capacity had positive

correlations with AEG-1 relative expression (Fig 4). AEG-1 is considered a significant stimula-

tory regulator of NF-κB, and activation of NF-κB via AEG-1 represents a key signaling path-

way through which AEG-1 promotes independent anchored growth and tumor progression in

malignant glioma cells [39, 44, 51]. AEG-1 may act as a linker between p65, NF-κB, and cAMP

response element binding protein (CBP), promoting transcriptional upregulation of genes

downstream of NF-κB, which is essential for tumor metastasis and invasion [52–54]. There-

fore, the invasive metastatic ability of U251 cells was reduced after the down-regulation of the

AEG-1 gene, as shown in the experimental results.

Our study also explored the relationship between metabolite alterations (Fig 3), oncogene

AEG-1 expression, and biological behaviors in U251 cells. The tCho/Cr ratio and Lac/Cr ratio

positively correlated with the AEG-1 expression and invasion and migration abilities, but had

passive correlations with the ratios of apoptosis and G2 phase proportion (Fig 4). Metabolic

abnormalities are a major hallmark of cancer [55]. Aberrant tumor metabolisms, such as aero-

bic glycolysis and increased anabolic pathways, are important in tumorigenesis, metastasis,

drug resistance, and tumor stem cells [56, 57]. AEG-1 is an active element in tumorigenesis

and progression, and AEG-1 promotes the production of cell membranes [4]. Choline-con-

taining compounds are pivotal parts of cell membranes, playing crucial roles in membrane

turnover, are correlated with cell density, and are therefore used to mirror abnormal cellular

proliferation [58]. In several in vivo MRS clinical studies, choline assessment was a potential

indicator of malignant glioma [59, 60]. Theoretically, the total choline content should be rele-

vant to AEG-1 expression, consistent with our experimental results. The Warburg effect

reveals that malignant tumors are metabolic diseases, with many of them generating ATP

through glycolysis during cell growth [12]. The 5-adenosine monophosphate (AMP)-activated

protein kinase (AMPK) promotes anabolic processes and the Warburg effect in cancer by

inducing multiple glycolytic enzymes [61]. In glioblastoma cells, AEG-1 acts as a glycolytic reg-

ulator, sensing the energy status of the cell, lowering the ATP/AMP ratio, and activating

AMPK and its downstream targets, thereby maintaining sufficient amounts of ATP required

for tumor proliferation and enhancing the glycolytic flux of the cell [62]. Numerous scholars
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have experimented with exerting glycolysis metabolite concentration to supplement the super-

vision of glioma therapy [29, 63, 64]. Glycolysis offers energy for tumor cells and generates lac-

tate, and variation in lactate content may reflect the AEG-1 gene expression in glioma cells,

which is consistent with our experimental results. Therefore, the tCho/Cr and Lac/Cr ratios

could be recommended as non-invasive imaging biomarkers reflecting the AEG-1 expression

in glioma cells.

Gliomas are among the most prevalent and aggressive tumors of the central nervous system,

with a poor prognosis and low survival rates. Overexpression of AEG-1 has been found in gli-

oma tissues, and its expression correlate with the clinicopathological classification of gliomas.

Thus, AEG-1 may be a potential target for glioma therapy. Understanding the 1H MRS alter-

ations that occur at different AEG-1 oncogene expression in U251 cells in vitro should facili-

tate the screening of glioma-associated biomarkers. Under certain circumstances, the results of

these in vitro experiments can be processed and translated into relevant in vivo studies to aid

accurate clinical diagnosis and treatment, providing the basis for future targeted molecular

therapies. Therefore, our study, using metabolite changes to monitor the AG-1 expression and

its biological behavior in U251 cells, is significant.

The new paragraph is used to report the limitations of the study as follows:

The report has the following limitations. Glioma stem-like cells are often the subject of

research exploring new therapeutic approaches, and the use of the stable U251 glioma cell line

for this study was inappropriate. An additional deficiency of this study was the expression of

the associated molecular pathways (PI3K/Akt-GSK3β-c-Myc, PP53, NF-κB, AMPK, etc.) was

not detected simultaneously. Also, the effect of iron death on apoptosis in glioma cells as well

as the effect of oxidative phosphorylation on the Warburg effect were not considered in this

research. Then, due to the restriction of experimental conditions, we did not obtain enough

NMR spectral information to fully demonstrate the correlation between metabolism and

AEG-1 knockdown. All of these limitations will continue to be improved in future studies.

Conclusions

In summary, this study demonstrated the feasibility of direct gene modification of the onco-

gene AEG-1 in glioma cells using the CRISPR/Cas9 system. Simultaneously, our MRS-detected

choline and lactate metabolites may have the potential as non-invasive biomarkers for moni-

toring AEG-1 expression levels to assist clinical work.
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