
RESEARCH ARTICLE

Phospholipase A2 activity is required for

immune defense of European (Apis mellifera)

and Asian (Apis cerana) honeybees against

American foulbrood pathogen, Paenibacillus

larvae

Gahyeon Jin, Md Tafim Hossain Hrithik, Eeshita Mandal, Eui-Joon Kil, Chuleui Jung,

Yonggyun KimID*

Department of Plant Medicals, Andong National University, Andong, Korea

* hosanna@anu.ac.kr

Abstract

Honeybees require an efficient immune system to defend against microbial pathogens. The

American foulbrood pathogen, Paenibacillus larvae, is lethal to honeybees and one of the

main causes of colony collapse. This study investigated the immune responses of Apis mel-

lifera and Apis cerana honeybees against the bacterial pathogen P. larvae. Both species of

honeybee larvae exhibited significant mortality even at 102 103 cfu/mL of P. larvae by diet-

feeding, although A. mellifera appeared to be more tolerant to the bacterial pathogen than

A. cerana. Upon bacterial infection, the two honeybee species expressed both cellular and

humoral immune responses. Hemocytes of both species exhibited characteristic spreading

behaviors, accompanied by cytoskeletal extension along with F-actin growth, and formed

nodules. Larvae of both species also expressed an antimicrobial peptide called apolipo-

phorin III (ApoLpIII) in response to bacterial infection. However, these immune responses

were significantly suppressed by a specific inhibitor to phospholipase A2 (PLA2). Each hon-

eybee genome encodes four PLA2 genes (PLA2A ~ PLA2D), representing four orthologous

combinations between the two species. In response to P. larvae infection, both species sig-

nificantly up-regulated PLA2 enzyme activities and the expression of all four PLA2 genes. To

determine the roles of the four PLA2s in the immune responses, RNA interference (RNAi)

was performed by injecting gene-specific double stranded RNAs (dsRNAs). All four RNAi

treatments significantly suppressed the immune responses, and specific inhibition of the

two secretory PLA2s (PLA2A and PLA2B) potently suppressed nodule formation and ApoL-

pIII expression. These results demonstrate the cellular and humoral immune responses of

A. mellifera and A. cerana against P. larvae. This study suggests that eicosanoids play a

crucial role in mediating common immune responses in two closely related honeybees.
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1. Introduction

Insect pollinators sustain plant species and increase crop yields [1–3]. Indeed, a third of all

crops are pollinator-dependent, and in particular are dependent on bees such as the honeybees

[4]. For example, the economic value of pollination by honeybees was estimated to be over

18-fold greater than that of their honey production in Korea [5]. Honeybees are social insects

that build nests in which different generations live together with divided labors among the

workers, drones, and the queen, and in which immatures are five instar larvae and pupae [6].

The adult lifespan varies from a few weeks to several months or years depending on the caste

differentiation and even season. The Asian honeybee, Apis cerana, is also an important pollina-

tor that provides essential pollination services to agricultural plant communities in Asian

countries [7]. However, in recent decades, the A. cerana populations have declined in many

countries and subsequent reductions in pollination services greatly affect plant communities

[8,9]. Among factors leading to declines in bee populations, the use of pesticides is considered

to be the main cause [10]. However, in addition to the direct toxic actions of insecticides, sub-

lethal doses have significant adverse effects on honeybee immunity [11].

American foulbrood is the most destructive bacterial disease of the honeybee larvae, in

which only ten spores of the bacteria are sufficient to trigger a lethal infection [12,13]. Infection

typically occurs through feeding to the larvae by worker bees and roughly 12 h after ingestion,

the spores germinate in the larval gut epithelium to proliferate and kill the infected larva [14].

The dead larvae are then decomposed to form scales containing millions of the bacterial

spores, which are spread around the hive by worker bees, leading to massive colony collapse

[15].

Similar to other social insects, the honeybees defend against pathogenic microbes or

eukaryotic parasites with communal defenses and individual immunity [16]. Communal

defense represents hygienic behaviors like grooming and hive fever exhibited by young work-

ers [17–19]. Individual immunity includes cellular and humoral responses in combination

with a frontier barrier like a cuticle [16,20]. Suppression of these immune responses can lead

to colony collapse [21]. For example, an exposure of queens to neonicotinoid pesticides

reduced their total hemocyte number and impaired wound healing and antimicrobial peptide

(AMP) production, leading to an immunosuppressed state [22,23]. The immunosuppression

induced by insecticides then increases the susceptibility to the pathogens as was demonstrated

in the larvae of A. mellifera exhibiting high mortality to P. larvae, after exposure to insecticides

[24].

Insect immunity is innate and its recognition against pathogens is programmed in the

genome by specific pattern recognition receptors [25]. Recent discovery of the infection-

induced damage signal via dorsal switch protein 1 (DSP1) is additional to the innate insect rec-

ognition system [26,27]. The recognition signal is propagated to nearby effector tissues such as

hemocytes and fat bodies [28]. A number of immune mediators have been identified and these

include nitric oxide, cytokines, biogenic monoamines, and eicosanoids. Each plays a crucial

role in activating immune effectors for various immune responses in insects [29]. Cross-talk

between immune mediators occurs upon various pathogen infections, and eicosanoids play a

central role in mediating immune signals with their chemical diversity [30]. These eicosanoids

are likely to mediate the immune responses of the honeybees because nodule formation in

response to bacterial infection was shown to be dependent on phospholipase A2 (PLA2) activ-

ity in A. mellifera [31].

PLA2 catalyzes the committed step for eicosanoid biosynthesis and releases arachidonic

acid (AA) from phospholipids [32]. Since the first PLA2 was isolated from snake venom, a

number of venomous or non-venomous PLA2s have been identified and classified into at least

PLOS ONE Honeybee immunity against the American founbrood disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0290929 February 6, 2024 2 / 19

Funding: National Research Foundation (NRF)

(2022R1A2B5B03001792) to Yonggyun Kim

National Research Foundation (NRF)

(2018R1A6A1A03024862) to Chuleui Jung.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0290929


16 Groups (I-XVI) [33]. They are also classified into five major types: secretory PLA2s

(sPLA2s: Groups I-III, V, IX, X, XI, XII, XIII, XIV, and XV), calcium-dependent intracellular

PLA2 (cPLA2: Group IV), calcium-independent intracellular PLA2 (iPLA2: Group VI), lipo-

protein-associated PLA2 (LpPLA2: Groups VII and VIII), and adipose phospholipase A2

(AdPLA2: Group XVI) [34]. However, PLA2s encoded in honeybee genomes have not been

analyzed in terms of either their identities or functions.

This study identified the PLA2s encoded in two honeybee species, A. mellifera and A. cer-
ana. The physiological functions of the PLA2s were assessed in mediating cellular and humoral

immune responses in the two species. Using the full genomes, this study proposed an immune

signal pathway associated with eicosanoid biosynthesis in honeybees.

2. Materials and methods

2.1. Honeybee larvae collection and diet preparation

The experiment was carried out on two species, A. mellifera and A. cerana, which were reared

in the experimental apiary of Andong National University. The honeybees were raised in non-

cultivated areas where exposure to agricultural chemicals such as pesticides including neonico-

tinoids was minimized. The experimental larvae were collected from beehives at the experi-

mental apiary. To isolate the queen and a few workers, a cage was used to separate them on a

new frame for 24 h. Afterward, the queens were released, and the frame containing newly laid

eggs was returned to the hive with a protective cage for an additional 70 h. Under these rearing

conditions, larvae underwent five instars (L1-L5). Larval stage used 2 days-old L5 individuals

for immunological assays. Bioassays against the bacterial pathogen used L3 larvae.

2.2. Bacterial culture

The bacterial pathogen, P. larvae, used in this study was obtained from Korean Agricultural

Colony Collection (KACC, RDA, Wanju, Korea) with an accession number of

NZ_CP019687.1. The bacterium was grown in brain heart infusion medium (BHI: Millipore,

Burlington, MA, USA) for 18 h at 30˚C with shaking at 180 rpm.

2.3. Chemicals

Arachidonic acid (AA, 5,8,11,14-eicosatetraenoic acid) and dexamethasone (DEX, (11β, 16α)-

9-fluoro-11,17,21-trihydroxy-16-methylpregna-1,4-diene-3) were obtained from Sigma-

Aldrich Korea (Seoul, Korea). They were dissolved in dimethyl sulfoxide (DMSO) to prepare

test solutions. To prevent any melanization of hemolymph, an anticoagulant buffer (ACB) was

prepared with 186 mM NaCl, 17 mM Na2EDTA, and 41 mM citric acid and adjusted to pH 4.5

with acetic acid. Phosphate-buffered saline (PBS) was prepared with 100 mM phosphate plus

0.75% NaCl and pH adjusted to 7.4 with NaOH.

2.4. Hemocyte counts

Ninety μL of ACB was mixed with the hemolymph samples collected from 25 individuals of L5

instar larvae. The collected hemolymph suspension was then centrifuged at 1,000 × g for 3 min

to obtain the cell pellet which was then resuspended in 40 μL of TC-100 insect tissue culture

medium (Hyclone, Daegu, Korea). Total hemocyte count (THC) and differential hemocyte

count (DHC) were determined with a hemocytometer. The classification of hemocyte types

was based on the morphological characteristics described by Lavine and Strand [35]. Each

treatment was replicated independently three times.
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2.5. Hemocyte-spreading assay

L5 instar larvae of both honeybee species were used for the hemocyte-spreading behavior.

Hemocytes were collected using ACB as described above and incubated on ice for 20 min. The

diluted hemolymph was then centrifuged at 1,000 × g for 3 min at 4˚C to get the pellet, which

was re-suspended in 300 μL of filter-sterilized TC-100 insect cell culture medium. Ten μL of

hemocyte suspension was laid on a glass coverslip. After removing supernatant, hemocytes

were fixed with 4% paraformaldehyde for 10 min at 25˚C. After washing three times with fil-

ter-sterilized PBS, hemocytes were then permeabilized with 0.2% Triton-X in PBS for 2 min at

25˚C. After washing three times, hemocytes were incubated with 5% skim milk for 10 min at

25˚C and subsequently with fluorescein isothiocyanate (FITC)-tagged phalloidin in PBS for 60

min. After washing three times, the cells were incubated with 4´,6-diamidino-2-phenylindole

(DAPI, 1 mg/mL). Finally, after washing twice in PBS, the cells were observed under a fluores-

cence microscope (DM2500, Leica, Wetzlar, Germany) at 400 × magnification. Hemocyte-

spreading was determined based on the extension of F-actin growth beyond the original cell

boundary. Scoring the spread cells was performed by counting the cells exhibiting F-actin

growth among 100 randomly chosen cells. Each treatment was replicated three times with

independent hemocyte preparations.

2.6. Nodulation assay

Hemocyte nodule formation was evaluated in L5 larvae of A. mellifera and A. cerana. Each

larva was injected with 1 μL of overnight-cultured P. larvae (5 × 107 cells/mL) and 1 μL of a

test chemical (DEX or AA, 1 μg per larva), into the hemocoel through the proleg using a

micro-syringe (Hamilton, Reno, NV, USA). For controls, DMSO was injected along

with the bacteria. The injected larvae were then incubated at 25˚C for 8 h to reduce any vari-

ation in the nodule formation depending on varying ambient temperatures. After incuba-

tion, the larvae were dissected to count the melanized nodules under a microscope (Stemi

SV11, Zeiss, Jena, Germany) at 50× magnification. In each treatment, nine larvae were

assessed.

2.7. Bioinformatics to predict PLA2 genes

Eight PLA2 genes were retrieved with accession numbers XM_016916293.2 (Am-PLA2A),

XM_393116.7 (Am-PLA2B), XM_624469.6 (Am-PLA2C), JQ_900376.1 (Am-PLA2D),

XM_017064190.2 (Ac-PLA2A), XM_017059900.2 (Ac-PLA2B), XM_017051624.2 (Ac-PLA2C),

XM_ 017066061.2 (Ac-PLA2D). MEGA10 was used to construct a phylogenetic tree using the

Neighbor-joining method. Bootstrap values at each branch were calculated with 1,000 repeats.

Interpro (http://www.ebi.ac.uk/interpro/) and Expasy (WWW.expasy.com) were used to pre-

dict domain and signal peptides.

2.8. RNA extraction, cDNA construction, and qPCR

L5 instar larvae, 2–3 day old pupae, and young worker bees less than 1 week old after emer-

gence were used for total RNA extraction after removing their intestines to avoid any contami-

nation derived from non-target organisms using Trizol reagent (Invitrogen, Carlsbad, CA,

USA) according to the manufacturer’s instructions. Extracted RNA was used for synthesizing

complementary DNA (cDNA) using RT-premix (Intron Biotechnology, Seoul, Korea) con-

taining an oligo-dT primer. Synthesized cDNA was quantified with a spectrophotometer

(NanoDrop, Thermo Fisher Scientific, Wilmington, DE, USA). Synthesized cDNA (80 ng

per μL) was used as a template for quantitative PCR (qPCR) using gene-specific primers (S1
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Table). qPCR was performed using SYBR Green real-time PCR master mixture (Toyobo,

Osaka, Japan) according to the guidelines of Bustin et al. [36] on a real-time PCR system (Step

One Plus Real-Time PCR System, Applied Biosystems, Singapore). The reaction mixture

(20 μL) contained 10 μL of Power SYBR Green PCR Master Mix, 1 μL of cDNA template (80

ng), and 1 μL each of forward and reverse primers, and 7 μL of deionized distilled water. The

temperature program for qPCR began with 95˚C heat treatment for 10 min followed by 40

cycles of denaturation at 94˚C for 30 s, annealing at 52˚C for 30 s, and extension at 72˚C for 30

s. The ribosomal protein gene, RL32, was used as an endogenous control. Each treatment was

replicated three times with independent samples. Expression analysis of qPCR was calculated

by comparative CT method [37].

2.9. Virulence assay of P. larvae against the honeybee larvae

Test L3 larvae were fed with an artificial diet containing royal jelly (44.3%), glucose (5.3%),

fructose (5.3%), yeast (0.9%), and sterilized water (44.3%) [38]. Diet was placed into wells of 48

well-plates containing individual larva. For the virulence test treatment, the artificial diet

included P. larvae at the pre-determined bacterial concentrations in colony-forming unit

(CFU). Ten larvae were used in each concentration treatment and replicated three times.

2.10. dsRNA preparation and RNAi treatment

T7 promoter sequence was linked to gene-specific primers at the 5’ end. Using these primers, a

partial PLA2 gene was amplified. The PCR product was then used to generate double-stranded

RNA (dsRNA) using the Megascript RNAi Kit (Ambion, Austin, TX, USA). The dsRNA was

mixed with a transfection reagent (Metafectene Pro, Biontex, Planegg, Germany) in 1:1 ratio.

Late L4 larvae were used for RNAi treatment. To administer the dsRNA, a microsyringe

(Hamilton, Reno, NV, USA) was employed to inject 1 μg of dsRNA per larva. A green fluores-

cence protein (GFP) was used as a control to prepare dsRNA. Each treatment was replicated

three times using independent RNA preparations.

2.11. Statistical analysis

All experiments in this study were conducted in three individual replications. The results were

plotted using Sigma plot 10.0. Statistical analysis was performed using PROC GLM of the SAS

program [39] with a one-way analysis of variance. Significant differences among the means

were determined using the LSD test at a Type I error of 0.05, indicated by different letters.

3. Results

3.1. Comparative analysis of P. larvae virulence against honeybees

Bacterial administration of P. larvae to larvae used a feeding method, in which live bacterial

cells were incorporated in the artificial diet. The fed larvae suffered from bacterial pathogenic-

ity and some died with a blackened cadaver (Fig 1A). Virulence was dependent on the incuba-

tion time and A. cerana appeared to be more susceptible than A. mellifera in the median lethal

time (LT50): 3.65 days for A. mellifera and 2.48 days for A. cerana (Fig 1B) at the bacterial con-

centration (105 cfu/mL) by feeding. This differential susceptibility between two honey bee spe-

cies was also appeared in the median lethal dose (LC50): 1.1 × 105 cfu for A. mellifera and

2.4 × 104 cfu for A. cerana (Fig 1C) at 5 days after bacterial treatment. However, these two

median values were not statistically different at Type error = 0.05.
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3.2. Comparative analysis of immune responses of two honeybees

Hemocytes were classified on the basis of cell morphology (Fig 2A). Total hemocyte counts

were not significantly different between the two honeybees (Fig 2B). At least three different

types of hemocytes were discriminated, most of which were granulocytes (> 80%) in both spe-

cies (Fig 2C). Granulocytes and plasmatocytes in particular, showed spreading on the plastic

surface. Specifically, granulocytes were spread in all directions around the entire cell contour

while plasmatocytes were spread unequally in specific directions. Oenocytoid cells were

unspread and had a small nucleus compared to cytoplasm. The bacterial treatment signifi-

cantly increased the hemocyte-spreading behavior in both honeybee species (Fig 2D).

Hemocoelic injection of the bacteria into larvae stimulated nodule formation. The nodula-

tion was dependent on the incubation time and reached maximal levels 8 h after the bacterial

infection (Fig 3A). Most nodules were detected near the trachea and on the fat body (see inset

photos). The kinetics of nodule formation was not much different in the two species in terms

of the time to form the maximal number of nodules and the number of nodules. Moreover,

Fig 1. Relative virulence of P. larvae against honeybee larvae of A. mellifera (‘Am’) and A. cerana (‘Ac’). (A)

Pathogenic symptom of the infected larvae. (B) Time-mortality curves of two honeybee species infected with P. larvae.

L2 larvae were treated with bacteria (105 cfu/mL) by feeding. (C) Dose-mortality curves at 5 days after bacterial

treatment (‘DAT’). An experimental unit consisted of 10 larvae. Each dose was replicated three times. Different letters

above standard deviation bars indicate significant differences among means at Type I error = 0.05.

https://doi.org/10.1371/journal.pone.0290929.g001
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there was no difference in the numbers of nodules between the injections of live and dead P.

larvae (Fig 3B).

Two AMPs were assessed in their expression levels after the bacterial infection of P. larvae
(Fig 3C). The bacterial infection significantly up-regulated the gene expression of apolipo-
phorin III (ApoLpIII), but not that of defensin in both honeybee species.

3.3. Eicosanoids mediate both cellular and humoral immune responses in

honeybees

Immune responses are mediated by eicosanoids in insects [29]. To test this hypothesis in hon-

eybees, eicosanoid biosynthesis was inhibited by dexamethasone (DEX, a specific inhibitor of

PLA2). DEX treatment significantly suppressed the formation of nodules in response to P. lar-
vae infection in both species (Fig 4A). However, arachidonic acid (AA, a catalytic product of

Fig 2. Hemocytes and their behavior (A. mellifera (‘Am’) and A. cerana (‘Ac’)). (A) Hemocyte types: Granulocyte

(‘GR’), plasmatocyte (‘PL’), and oenocytoid (‘OE’). Cytoplasm was stained with FITC against F-actin while nucleus was

stained with DAPI. Scale bar indicates 10 μm. (B) Comparison of the total hemocyte count (THC) between two

species. ‘NS’ stands for no significance. (C) Differential hemocyte counts. The statistical analysis was performed by Χ2

test to compare the hemocyte composition between two species. (D) Hemocyte-spreading behavior. Each larva was

injected with 1 μL of P. larvae (‘Pl’, 5 × 104 cells). Each measurement for the spreading behavior used 100 randomly

chosen hemocytes. Each treatment was replicated three times by individual sample preparation. Different letters above

the standard deviation bars indicate significant difference among means at Type I error = 0.05.

https://doi.org/10.1371/journal.pone.0290929.g002
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PLA2) significantly rescued the inhibitory activity of DEX in both species. Similarly, ApoLpIII
expression was also modulated by DEX and AA in both species (Fig 4B).

3.4. PLA2 orthologs encoded in in two honeybee genomes

From each honeybee genome, four PLA2 genes (PLA2A ~ PLA2D) were obtained and showed

an orthologous relationship (Fig 5A). The four PLA2s were classified into secretory (sPLA2),

calcium-independent (iPLA2), and lysosomal (LPLA2). PLA2A and PLA2B are secretory, while

PLA2C is calcium-independent and PLA2D is lysosomal. PLA2A and PLA2B have signal pep-

tides in their N termini and calcium-binding domains in addition to a catalytic domain (Fig

5B), which represent the typical domain composition of most sPLA2s [40]. In contrast, PLA2C

has five ankyrin repeats in addition to a catalytic domain [41]. PLA2D was classified into

Group XV PLA2s specific to lysosomal PLA2s [42].

Fig 3. Immune responses of honeybees A. mellifera (‘Am’) and A. cerana (‘Ac’). (A) Cellular immune response

observed by nodule formation upon infection of P. larvae by bacterial injection to L5 instar larvae at different time

points. Each larva was injected with 1 μL of P. larvae (5 × 104 cells). Each treatment was replicated three times. At 8 h

after injection, the total number of nodules was counted. PBS was injected for controls. ‘FB’ and ‘TR’ stands for fat

body and trachea, respectively. Arrows indicate nodules. (B) Comparison of live and heat-killed P. larvae in forming

nodules in the honeybee larvae. Heat-killing (‘Hk’) treatment used 98˚C for 20 min. Control (‘CON’) used sterilized

PBS for injection. Different letters above the standard deviation bars indicate significant difference among means at

Type I error = 0.05. (C) Humoral immune response assessed by expression of two AMP genes: apolipophorin III
(‘ApoLpIII’) and defensin (‘Def’) at 8 h after bacterial injection. Each treatment was replicated three times. Asterisk

stands for significant difference while ‘NS’ is no significant difference.

https://doi.org/10.1371/journal.pone.0290929.g003
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3.5. Expression profile of four PLA2 genes

Fig 6 shows that the four PLA2 genes were expressed in different developmental stages of both

honeybee species. Of note, PLA2D was highly expressed in all developmental stages. In addi-

tion, PLA2C was also relatively highly expressed like PLA2D in both species. In contrast, the

Group III PLA2A and Group XII PLA2B were expressed at low levels in all developmental

stages in both species. However, PLA2B was highly induced in adults.

3.6. Induction of PLA2 expression upon P. larvae infection

Upon infection with P. larvae, PLA2 activities were significantly up-regulated in larval and adult

stages of the two honeybees (Fig 7A). The induction of elevated enzyme activity was further sup-

ported by up-regulation of PLA2 gene expression in A. mellifera (Fig 7B) and A. cerana.

3.7. RNAi against PLA2 genes increased the virulence of P. larvae
To clarify the role of immune-associated PLA2(s) in honeybees, gene-specific dsRNAs were

injected into larvae to suppress target PLA2 genes. dsRNA effectively suppressed the

Fig 4. Eicosanoid mediation of the immune responses in honeybee species: A. mellifera (‘Am’) and A. cerana
(‘Ac’). L5 instar larvae were immune-challenged by injection with 1 μL of P. larvae (5 × 104 cells). (A) Inhibitory effect

of dexamethasone (‘DEX’, 1 μg/larva) on nodule formation in response to bacterial infection. Rescue by addition of

arachidonic acid (1 μg/larva). (B) Influence of DEX on ApoLpIII gene expression upon bacterial infection. Different

letters above the standard deviation bars indicate significant differences among means at Type I error = 0.05.

https://doi.org/10.1371/journal.pone.0290929.g004
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expression levels of target genes in both species (S1 Fig). Under these conditions, the honeybee

larvae were significantly suppressed in their ability to form nodules in response to immune

challenge with P. larvae (Fig 8A). Although all four RNAi treatments were effective at sup-

pressing the cellular immune response, RNAi treatments against PLA2A or PLA2B appeared to

be more potent than those of PLA2C or PLA2D. Similarly, all four RNAi treatments were effec-

tive at suppressing induction of ApoLpIII in the face of bacterial challenge (Fig 8B). In this

humoral immune response, RNAi treatments against PLA2A or PLA2B were much more

potent at suppressing AMP gene expression than that of PLA2C or PLA2D.

4. Discussion

Immunosuppression makes honeybees highly susceptible to pathogens and can lead to colony

collapse [43]. For example, the honeybees that are malnourished as a result of protein defi-

ciency in their diet may be altered in specific components of the immune system, which can

lead to fatal immunosuppression [44]. The American foulbrood disease caused by P. larvae

Fig 5. Orthologs of four PLA2 genes encoded in honeybee species: A. mellifera (‘Am’ in yellow arrows) and A.

cerana (‘Ac’ in orange arrows). (A) Phylogenetic tree of the honeybee PLA2s with different PLA2, groups delineated.

Honeybee PLA2s were clustered in four types: secretory (sPLA2), lysosomal (LPLA2), Ca2+-independent cellular

(iPLA2), and Ca2+-dependent cellular (cPLA2). (B) Variation of functional domains among the honeybee PLA2s.

Cysteine (‘C’) residues are denoted.

https://doi.org/10.1371/journal.pone.0290929.g005
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becomes serious when honeybees are also suffering from immunosuppression after exposure

to sublethal doses of insecticides [24]. This investigation has shown that eicosanoids play a cru-

cial role in defending honeybees against American foulbrood disease.

Asian honeybees were shown to be more susceptible to the American foulbrood pathogen,

P. larvae than the European honeybees. This supports the earlier comparative pathogenicity

testing performed by Krongdang et al. [45]. However, bacterial virulence may be altered by the

gut microbiota. In a similar Asian honeybee, A. cerana japonica, five species of gut bacteria

exhibited a strong antagonistic activity against P. larvae growth and their relative abundance

may modulate its bacterial virulence [46].

Both honeybee species exhibited similar hemocyte compositions in THC and DHC, in

which granulocytes were predominant among the three different hemocytes that were identi-

fied. They also showed cellular immune responses upon challenge such as hemocyte-spreading

behavior and nodule formation against P. larvae infection. In addition, they showed up-regula-

tion of specific AMPs such as apolipophorin III (ApoLpIII). Collectively, these observations

suggest that the two honeybee species share cellular and humoral immune responses. In

Fig 6. Expression profile of four PLA2s (PLA2A, PLA2B, PLA2C, PLA2D) in different developmental stages of

honeybee species: A. mellifera (‘Am’) and A. cerana (‘Ac’). Different letters above standard deviation bars indicate

significant difference among means at Type I error = 0.05. Ribosomal protein RPL32 was used as a reference gene.

Each treatment was replicated three times with independent sample preparations.

https://doi.org/10.1371/journal.pone.0290929.g006
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Fig 7. Induction of PLA2 enzyme activities and gene expression in response to immune-challenge by injection

with 1 μL of P. larvae (5 × 104 cells) in honeybee species: A. mellifera (‘Am’) and A. cerana (‘Ac’). (A) Induction in

PLA2 enzyme activities in larvae and adults. The enzyme was extracted from the whole body of L5 instar larvae and the

venom gland-removed adults. Different letters above standard deviation bars indicate significant difference among

means at Type I error = 0.05. Induction of gene expression of four different PLA2s after immune challenge in the larva

and adult (‘A’) of Am (B) and Ac (C). The mRNA expression levels of each PLA2 gene were measured at 8 h after
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general, bees have an innate immune system supplemented by physical barriers (integument

and peritrophic matrix), that include cellular, and humoral responses to defend against patho-

gens and parasites [47]. In particular, hemocytes represent the primary immune effectors for

cellular immunity by exhibiting phagocytosis, nodule formation, and encapsulation, as well as

the initiation of phenoloxidase (PO) that regulates coagulation or melanization [35]. Hemo-

cytes of the honeybee are classified by their morphology with behavioral differences in lectin-

binding and phagocytosis [48]. At least three types of hemocytes were observed here through

all developmental stages and they included granulocytes, plasmatocytes, and oenocytoids [49].

However, the hemocyte composition varies with developmental stages and castes, and it is the

phagocytic granulocytes that are most abundant at the larval stage but significantly diminish

bacterial infection. Each treatment was replicated three times with independent sample preparations. Asterisks above

standard deviation bars indicate significant difference among means at Type I error = 0.05. Ribosomal protein RPL32
was used as a reference gene. Each treatment was replicated three times with independent sample preparations.

https://doi.org/10.1371/journal.pone.0290929.g007

Fig 8. Functional association of four honeybee PLA2s with immune responses in A. mellifera (‘Am’) and A. cerana
(‘Ac’). Individual RNAi treatments were applied to specifically suppress PLA2-A using dsPLA2A, PLA2-B using

dsPLA2B, PLA2-C using dsPLA2C, or PLA2-D using dsPLA2D. After 24 h post-injection of dsRNA, the immune

challenge was performed by injecting 1 μL of P. larvae (5 × 104 cells) into larvae or adults. Effects of the RNAi

treatments on nodule formation (A) and ApoLpIII expression (B). GFP was used as a control dsRNA (‘dsCON’). Each

treatment was replicated three times. Ribosomal protein gene RL32 was used as an internal control for RT-qPCR.

https://doi.org/10.1371/journal.pone.0290929.g008

PLOS ONE Honeybee immunity against the American founbrood disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0290929 February 6, 2024 13 / 19

https://doi.org/10.1371/journal.pone.0290929.g007
https://doi.org/10.1371/journal.pone.0290929.g008
https://doi.org/10.1371/journal.pone.0290929


after adult emergence. Our current hemocyte analysis in both honeybee species supports the

observation of Gabor et al. [49] at the larval stage of A. mellifera. In addition to the hemocytic

activity, PO activity is required for nodulation. A serine protease called AccSp10 was identified

in A. cerana and acted as a humoral factor to defend the microbial pathogens by suppressing

bacterial growth and mediating melanization through activating PO activity [50]. In A. melli-
fera, 57 genes encode serine peptidases, however, only 6 show chymotrypsin-like specificity

[51]. Thus, the two honeybee species studies here are genetically well programmed for express-

ing PO activity. Our AMP analysis indicated that ApoLpIII was highly up-regulated against P.

larvae, suggesting a crucial role in defending against the bacterial pathogen. ApoLpIII was also

demonstrated in A. cerana against other insect pathogens such as Bacillus thuringiensis and

Beauveria bassiana [52]. This supports the immune-associated defense role of ApoLpIII

against P. larvae infection in both honeybee species. In addition to the AMPs, vitellogenin (Vg,

a yolk protein) plays a crucial role in defence against pathogens and neutralizing oxidative

stress in honey bees [53]. Vg is expressed in fat body and venom glands of worker bees and Vg

gene expression was highly up-regulated in response to pathogen infection and oxidative stress

in A. cerana [54].

PLA2 is associated with the cellular and humoral immune responses of honeybees. Dexa-

methasone treatment inhibited nodule formation and ApoLpIII expression while the addition

of arachidonic acid (= a catalytic product of PLA2) to the inhibitor treatment significantly res-

cued the immune responses. Eicosanoids are a subgroup of the oxygenated C20 polyunsatu-

rated fatty acids and mediate many physiological processes in insects and other invertebrates

[55]. They are usually synthesized from phospholipids by the catalytic activity of PLA2 [56].

This suggests that the eicosanoids produced by PLA2 catalysis promote the immune responses

in honeybees.

Four PLA2 genes are encoded by the two honeybee genomes. Of them, PLA2A is known to

be a honeybee venom component. PLA2 and hyaluronidase enzymes account for 11~15% of

the bee venom dry weight in A. mellifera [57,58]. Another sPLA2 is PLA2B, which is classified

in Group XII. Similar Group XII PLA2s were reported in other insects such as the bug, Rhod-
nius prolixus [59] and a moth, Acrolepiopsis sapporensis [60] and known to be associated with

eicosanoid biosynthesis for reproduction. Most insects encode iPLA2s, which are further

divided into ankyrin-possessing or non-ankyrin iPLA2s [29]. PLA2C is classified into ankyrin-

possessing iPLA2. PLA2D is classified as a lysosomal PLA2 (LPLA2) and is the first of this type

known in insects. LPLA2 is localized in the lysosome or late endosome in mammals [42] and

its catalytic activity is optimal at acidic pH and is calcium-independent. Studies on the LPLA2

null mouse suggest a role for the enzyme in the catabolism of pulmonary surfactant and it also

has a role in host defense [61]. Our current study indicates that PLA2D is the same in both

honeybee species. PLA2C and PLA2D were highly expressed in larvae and pupae compared to

the two other sPLA2 genes in both species. This suggests that iPLA2 and LPLA2 of these honey-

bees may have important roles during immature development.

All PLA2 genes were inducible in response to infection by P. larvae in both honeybees.

Under RNAi inhibition of all four, the immune responses measured by nodulation and ApoL-
pIII expression were significantly suppressed. The immunosuppressive effects were more

noticeable in the RNAi treatments specific to sPLA2 genes compared to iPLA2 or LPLA2 genes.

This strongly suggests that the two sPLA2s are highly associated with immune responses in

both honeybee species.

This study demonstrates the physiological role of PLA2 in synthesizing eicosanoids, which

in turn, mediate immune responses of the two honeybee species. This allows us to construct an

eicosanoid signaling pathway in immune mediation from the honeybee genomes (Fig 9).

Upon gut infection by virus, bacteria or fungi, a damage signal is triggered by the release of
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DSP1 from the midgut epithelium in insects [27,62,63]. DSP1 activates PLA2 to catalyze AA

release from phospholipids. AA is then used for synthesis of various eicosanoids through dif-

ferent oxygenases, with the resulting eicosanoids mediating cellular and humoral immune

responses. Critically, all of the enzymes and effectors in the eicosanoid immune signaling path-

way have now been shown to be encoded in the honeybee genomes.
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‘dsPLA2-B’, ‘dsPLA2-C’, ‘dsPLA2-D’). (B) Change of PLA2 expression levels in A. cerana after

injection (1 μg/larva) of dsRNA (‘dsPLA2-A’, ‘dsPLA2-B’, ‘dsPLA2-C’, ‘dsPLA2-D’). GFP was

used as a control dsRNA (‘dsCON’).
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Fig 9. Immune responses mediated by eicosanoids in honeybee species, A. mellifera (A) and A. cerana (B). Upon

immune challenge, a damage signal is triggered by dorsal switch protein 1 (DSP1). Release of DSP1 activates

phospholipase A2 (PLA2) to initiate eicosanoid biosynthesis. The catalytic activity of PLA2 produces arachidonic acid

(AA), which is oxygenated by cyclooxygenase (COX) to produce prostaglandin H2 (PGH2). PGH2 is then isomerized

to PGE2 by PGE2 synthase (PGES). AA is alternatively oxygenated by lipoxygenase (LOX) to produce leukotriene (LT)

or oxygenated by epoxygenase (EPX) to epoxyeicosatrienoic acid (EET). These eicosanoids including PGE2 mediate

cellular immune responses via phenoloxidase-activating protease (PAP) and phenoloxidase (PO), and humoral

immune responses by antimicrobial peptides (AMPs) through defensin 1 (Def 1), defensin 2 (Def 2), apolipophorin III

(ApoLpIII), lysozyme (Lyz), transferrin (Tf), and melittin (Mel). GenBank accessions are described in each signal

components.

https://doi.org/10.1371/journal.pone.0290929.g009
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