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Abstract

Protein hotspot residues are key sites that mediate protein-protein interactions. Accurate

identification of these residues is essential for understanding the mechanism from protein to

function and for designing drug targets. Current research has mostly focused on using

machine learning methods to predict hot spots from known interface residues, which artifi-

cially extract the corresponding features of amino acid residues from sequence, structure,

evolution, energy, and other information to train and test machine learning models. The pro-

cess is cumbersome, time-consuming and laborious to some extent. This paper proposes a

novel idea that develops a pre-trained protein sequence embedding model combined with a

one-dimensional convolutional neural network, called Embed-1dCNN, to predict protein hot-

spot residues. In order to obtain large data samples, this work integrates and extracts data

from the datasets of ASEdb, BID, SKEMPI and dbMPIKT to generate a new dataset, and

adopts the SMOTE algorithm to expand positive samples to form the training set. The exper-

imental results show that the method achieves an F1 score of 0.82 on the test set. Com-

pared with other hot spot prediction methods, our model achieved better prediction

performance.

1. Introduction

Protein-protein interaction is the critical link in the maintenance of cellular life activities and

the exertion of cellular functions [1]. In this process, hot spot residues, which contribute most

of the binding free energy, are essential for mediating protein interactions and stabilizing the

structure of the protein complex [2]. Accurate identification of these hot spots is conducive to

understanding the mechanism of protein-protein interactions, conducting protein engineer-

ing research, and designing drug targets [3, 4]. In recent decades, alanine mutagenesis scan-

ning has been the most widely used biological experiment for hot spot identification [5].

However, due to its long experimental cycle and high resource consumption, computational

and mathematical models are gradually being used to help us understand the omics data
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generated by high-throughput experimental techniques, and even increasingly used to identify

hot spot residues [6].

Currently, many machine learning methods have been developed to predict hot spot resi-

dues. Wang et al. [7] extracted 600-dimensional features to represent amino acid residues,

including sequence features, structural features, energetic features, and exposure features.

Then, the author used mRMR and sequential forward feature selection algorithm to select a

set of 26 optimal features, and finally used Extreme Gradient Boosting (XGBoost) for pre-

diction. Hu et al. [8] extracted the physicochemical and biochemical properties of each

amino acid combined with pseudo-amino acid composition and relative solvent surface

area feature as molecular descriptors to describe each amino acid residue in protein. Ye

et al. [9] used the RF algorithm to select the optimal 58-dimensional feature subset, which

includes microenvironment and network features, and then applied the support vector

machine (SVM) to construct the model. Qiao et al. [10] generated 82 features, including 10

physicochemical properties, B-factor, 36 bound features, 5 evolutionary conservation fea-

tures, and 30 solvent-accessible surface features, and then built the hotspot prediction

model by a hybrid feature selection strategy that includes 3 different feature selection meth-

ods: F-score, mRMR and decision tree. To construct SpotOn [11] prediction model, Mor-

eira et al. calculated 881 features: 35 structure-based features and the other evolutionary/

sequence-based features. In these experiments, feature engineering is always an important

procedure and is widely studied. Researchers hope to obtain as many effective features as

possible to describe each amino acid residue from sequence, structure, evolution, energy,

and other information. However, the process of manually extracting features is cumbersome

and limited to some extent. So far, only protein sequence information can be easily

obtained, and only a small part of other information, such as structural information, has

been successfully resolved.

In recent years, unsupervised learning neural network models have emerged in the field of

natural language processing (NLP). Pre-trained language models can solve a variety of NLP

tasks in new data sets, such as text classification and translation. As for protein, it can be

regarded as the carrier of the "language of life" of organisms and as a "sentence", while the

amino acid residues in protein can be regarded as "characters" or "words". At this point, pro-

tein can be viewed as an object that a natural language model can handle. By applying the

model to an unlabeled protein database for training, the sequence information of proteins can

be learned. This information is believed to reflect the physicochemical properties of each

amino acid, and also related to structure and function to some extent [12]. Compared with

manual feature extraction, the neural network-based extraction method is rather convenient

and fast [13], which can learn deeper semantic and contextual information. Cui et al. [14] sum-

marized the characterization methods that can represent protein sequences in recent years,

including end-to-end embedding model, non-contextual embedding methods, transfer learn-

ing methods, and other methods for specific tasks. One-hot coding is a simple end-to-end

embedding coding method, and is often used as a set of features in the prediction task [15].

The representative model of non-contextual embedding is Word2Vec, which often uses the

CBOW or skip-gram approach in the training process [16]. ProtVec is a commonly used tool

for protein sequence embedding, which is derived from the Word2Vec method [17]. ProtVecX

is proposed by Asgari et al. which uses peptide pair encoding (PPE) subsequences to extend

the ProVec model to variable length protein embedding, and performs well in three protein

classification tasks [18]. Notably, these three methods can only capture the local environment

while ignoring the entire sequence ordering information. In other words, they are not contex-

tualized. The specific task model usually includes graph and extract-based feature

representation.
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Compared with the above embedding methods, the transfer learning-based encoding

model has the fastest development and has been widely used in various protein prediction

tasks. The representative model is Elmo [19], which was first used in the NLP field, compared

with the word embedding proposed in 2013 [20] and the Glove model proposed in 2014 [21].

The trained Elmo model can provide the corresponding word vector according to the contex-

tual information of a word, avoiding that the same word can get the same vector representa-

tion in different sentences. Michael Heinzinger successfully migrated the Elmo model to the

field of protein sequence and performed well in a number of tasks such as secondary structure

and prediction of regions with intrinsic disorder [22]. Similarly, BERT was developed by Jacob

Devlin. It combines the left and right contexts of all layers, pre-trains deep representations in

unlabeled text, and achieves good performance on 11 NLP tasks [23]. As an improved version

of BERT, BioBERT initializes the model weights from BERT, is trained on biochemical domain

corpora, and then applied to biochemical text mining tasks [24].

Inspired by these researches, this paper proposes an Embed-1dCNN model, which applies

the protein embedding model combined with CNN to protein hotspot residue prediction for

the first time. The method first extracts the information of protein hot spot residues from four

data sets. Then, the embed4117 protein sequence embedding model trained by Bepler [25] is

used to extract the characteristics of each amino acid residue in the protein sequence. To make

all input data with the same dimension of size, the protein sequence is cut into fragments of

the same size, and then a one-dimensional convolutional neural network (1dCNN) is used to

process each sliding sequence window and perform the prediction work. The flow chart is

shown in Fig 2. The experimental results of our model show that our method achieves 82% of

F1 score and 89% of AUC better than the previous methods on the test set.

2. Materials and Methods

2.1. Data sets

In this work, 120 protein sequences were extracted from four data sets of ASEdb [26], BID

[27], SKEMPI [28], and dbMPIKT [29], ensuring that the similarities between the protein

sequences were less than 30%. Furthermore, hot spot residues were defined in the same way as

in Liu’s method [30], i.e., interface residues with ΔΔG> 2 kcal/mol are considered as hot spot

residues. Finally, the data set called MIX is obtained (shown in Table 1). Specifically, the data

set contains 349 hot spot residues, 22244 non-hot spot residues, and the ratio of hotspots to

non-hotspots is about 1:63. In order to balance the used data set, non-hotspots are resampled

at the interval of 63, and 63 subsets with 349 non-hotspots are obtained. Finally, the MIX

(new) dataset with the balanced hotspots and non-hotspots is obtained (as shown in Table 2).

The work randomly sampled 1/5 of MIX (new) as a test set, and 1/5 of the remaining samples

Table 1. Composition of MIX set.

Data set Number of sequences Hot spots Non-hot spots Total Ratio (pos: neg)

MIX 120 349 22244 22593 � 1:63

https://doi.org/10.1371/journal.pone.0290899.t001

Table 2. Composition of MIX (new) set.

Data set Hot spots Non-hot spots Total

MIX (new) 349 349 698

https://doi.org/10.1371/journal.pone.0290899.t002
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as a validation set. Since deep learning is more inclined to deal with the problem of large

amounts of data, the interval sampling method was further used for the negative sample set to

expand the negative data in the training set. At the same time, the SMOTE algorithm [31] is

used to synthesize new hotspot samples. The details of the new data sets are shown in Table 3.

2.1.1. Smote algorithm. The SMOTE (Synthetic Minority Over-sampling Technique)

algorithm was used to generate new data from existing data using established rules. Compared

to direct copying of minority samples, this technique is less likely to cause overfitting. A sche-

matic diagram of the SMOTE algorithm is shown in Fig 1.

The SMOTE algorithm is described as follows:

1. For minority samples, the SMOTE algorithm randomly selects a sample point Xold, and cal-

culates its distances to all minority samples based on Euclidean distance. Then set the k
nearest-neighbor sample points of point Xold are set as X1, X2, X3,. . ., Xn,. . ., Xk,

respectively.

2. Xn is randomly selected from the k nearest neighbors and connected to Xold. Then, a ran-

dom number r between (0, 1) is generated. Finally, a new minority sample is generated

according to the following formula:

Xnew ¼ Xold þ r ∗ Xn � Xoldð Þ; where r ¼ random 0; 1ð Þ: ð1Þ

As a result, a total of 1378 new hotspot samples have been generated by the SMOTE algo-

rithm, based on 232 hotspot samples, so that the number of hotspots and non-hotspots in the

training set is balanced.

2.1.2. Interval sampling. In order to collect non-hotspots more reasonably and to make

the experimental results repeatable, this work samples the non-hotspots at equal intervals.

Since the number of non-hotspots is about 63 times the number of hotspots, one sample is

Table 3. The final data sets used in this work.

Data set Hot spots Non-hot spots Total

Training set 232+1378 (SMOTE) 214+349∗4 3220

Validation set 49 63 112

Test set 68 72 140

Total 349+1378 1745 (349×5) 3472

https://doi.org/10.1371/journal.pone.0290899.t003

Fig 1. Illustrates SMOTE for generating new data. (a) shows the sample points distributed in the original space,

where the circle represents majority samples, and the triangle represents minority samples. The black boxes in (b)

represent the synthesized new sample points.

https://doi.org/10.1371/journal.pone.0290899.g001
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taken every 63 negative hotspots. Using this method, a total of 1745 (349×5) non-hotspots are

collected.

2.2. Embed-1dCNN method for protein hot spot residues prediction

This paper proposes an Embed-1dCNN model that applies one protein embedding model

combined with CNN. The Embed-1dCNN workflow is shown in Fig 2.

2.2.1. Protein sequence embedding model. Unlike traditional feature engineering meth-

ods, this paper uses a pre-trained protein sequence embedding model (Embed4117) to obtain

the feature vectors of amino acid residues in protein sequences. This model was trained by

Tristan Bepler [25]. Its structure is shown in Fig 3.

Embed4117 consists of a two-layer LSTM network with 1024 LSTM units in each layer. The

network incorporates forward and backward propagation processes that can capture informa-

tion from protein sequences in both forward and backward directions. Embed4117 is trained

on the Pfam database (Protein Family Database). There are 21,827,419 protein sequences in

Fig 2. Overall framework of Embed-1dCNN. Step 1: Obtain data from the four sets of protein hotspots to generate

the training, validation and test sets; Step 2: Put protein sequences into the pre-trained protein sequence embedding

model to obtain amino acid descriptors; Step 3: Separate protein sequences with specific length and place sliced

sequences into three layers of a one-dimensional convolutional neural network for prediction; Step 4: Evaluate the

performance of the model on the validation and test sets.

https://doi.org/10.1371/journal.pone.0290899.g002

Fig 3. Pre-trained protein language model.

https://doi.org/10.1371/journal.pone.0290899.g003
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Pfam, which have been classified into different families using multiple sequence alignments

and hidden Markov models [32]. By inputting a protein sequence into this pre-trained model,

4096-dimensional features can be obtained to describe each amino acid residue in the protein.

These features are used to represent the characterization of amino acid residues. Then, each

original protein sequence is expressed as a 21-dimensional one-hot vector and can be

concatenated with the previous 4096 features to obtain a 4117-dimensional feature vector.

2.2.2. Data processing and model construction. To obtain a feature map that represents

amino acid residues in the same scale, sliding windows of different sizes (21, 23, 25. . .39, 41)

are applied to represent the amino acid residue at the center position. As shown in Fig 4, the

red box is a typical sliding protein window. It should be noted that if the number of residues to

the left or right of the central amino acid residue is not enough to meet the requirements of the

sliding window size, then the empty position is described as a 4117-dimensional feature vector

whose element values are all 0. Unlike the two-dimensional convolution, the data of protein

sequences belong to the one-dimensional sequence structure, so this work adopts the 1dCNN

method [33]. The main difference between these two types of convolution is that the kernel

height of 1dCNN is consistent with the feature size, whose convolution kernel only slides in

the horizontal direction, but not in the vertical direction. The process of one-dimensional con-

volution is shown in Fig 4.

In this work, a total of three layers of one-dimensional convolutional operations are used,

as shown in the green part of Fig 5. Among these three layers, the number of convolution ker-

nels is 64, 16, and 4, respectively; the sizes of the convolution kernels are 7, 5, and 3, respec-

tively; the pool used is maximum pooling with size 2; the activation function used is the ’relu’

activation function; the padding is the ’same’ padding; and the value of dropout is set to 0.5,

Fig 4. One-dimensional convolution diagram.

https://doi.org/10.1371/journal.pone.0290899.g004

Fig 5. Illustration of the Embed-1dCNN model.

https://doi.org/10.1371/journal.pone.0290899.g005
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which means that half of the connections between neurons are discarded, which can effectively

avoid the occurrence of overfitting. The number of neurons in the fully connected layer is 8,

and the activation function is used to generate the final probability value. The network opti-

mizer uses the Rmsprop (Root Mean Square Prop), and the loss function is the binary cross-

entropy loss. Since the protein sequence used as input data is simple, in order to avoid too

much fluctuation each time, the model adopts the method of early stopping and saving itself,

which makes the validation set yield the best experimental results each time. The F1 score is

used as the evaluation criterion in the process. The structure of the Embed-1dCNN model is

shown in Fig 5.

2.3. Evaluation criteria

This paper uses the commonly used machine learning evaluation criteria, including accuracy,

recall, precision, F1 score, and specificity, to evaluate the performance of the model [34]. In

addition, this paper draws the receiver operating characteristic (ROC) curve and calculates the

corresponding AUC value [35]. The detailed calculations are:

Acc ¼
TPþ TN

TPþ FPþ TNþ FN
ð2Þ

Recall ¼
TP

TPþ FN
ð3Þ

Pre ¼
TP

TPþ FP
ð4Þ

Spe ¼
FP

FPþ TN
ð5Þ

F1 ¼
2� Pre� Recall
Preþ Recall

ð6Þ

where TP, TN, FP, FN represent the number of true positives (correctly predicted hot spot res-

idues), true negatives (correctly predicted non-hot spot residues), false positives (non-hot spot

residues falsely predicted as hot spot residues), and false negatives (hot spot residues falsely

predicted as non-hot spot residues), respectively. The ROC curve refers to the recall (sensitiv-

ity) and specificity. The AUC is the area under the ROC curve.

3. Results and discussion

3.1. Setting of hyper-parameters for the proposed method

In order to obtain the best performance of the proposed method, different combinations of

hyperparameters have been investigated in this work. Tables 4–6 show the performance com-

parison of different hyperparameters. As shown in Table 4, it can be seen that numbers of 64,

Table 4. Prediction performance of Embed-1dCNN on the validation set and test set.

Data sets Acc Recall Pre F1 Spe

validation 0.8929 0.8289 0.9378 0.8692 0.9397

test 0.8514 0.7206 0.9662 0.8249 0.9750

https://doi.org/10.1371/journal.pone.0290899.t004
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16, and 4 achieve relatively good results with fewer parameters, therefore a set of hyper-param-

eters, (64, 16, 4), was selected in this work. Similarly, for the three layers of the method, the

sizes of the convolution kernels are set to (7, 5, 3) (see Table 5), and "relu" is set as the activa-

tion function of the method (see Table 6). The performance comparison is also shown in S4

File.

3.2. Experimental performance of the model Embed-1dCNN on the

validation set and test set

The experimental results on the validation set and the test set are shown in Table 4. As a com-

prehensive evaluation criterion, it can be seen that the F1 score on the validation set reaches

0.86, while on the test set it is 0.82. The accuracies on the validation set and the test set are 0.89

and 0.85, respectively. Note that the sliding window is 33 at this point. To observe the experi-

mental results more intuitively, the ROC curve was drawn and the corresponding AUC value

was calculated. As shown in Fig 6, the AUC value obtained on the validation set is 0.92, while

on the test set it is 0.89. In general, the model has achieved relatively good experimental

performance.

3.3. Performance influence of the number of convolutional layers

To explore the influence of the number of convolutional layers on the experimental results, dif-

ferent layers of convolutional networks were examined and performance changes were

observed. In general, the more complex the structure and the more layers of the network, the

easier it was to capture the deeper representations and the better the prediction performance

of the network. However, this can increase the computational complexity of the network. In

this work, the effect of different network layers (2, 3, 4, 5) on the performance was investigated

(as shown in Fig 7). It can be seen that when the two-layer 1dCNN is increased to three layers,

the model obtains a slight improvement in terms of accuracy and F1 score, but as the number

of network layers is further increased, the experimental performance has decreased. When the

network is 4 and 5 layers, the F1 score of the model is reduced by 2.7% and 5.5%, respectively,

compared to the model with 3 layers. This may be due to the small and relatively simple data,

Table 6. Performance comparison of different classifiers on validation set.

Classifier Model Acc Recall Pre F1 Spe

KNN 0.6714 0.6471 0.6667 0.6567 0.6944

ADB 0.6643 0.6471 0.6567 0.6519 0.6806

SVM 0.7143 0.6618 0.7258 0.6923 0.7639

GBDT 0.7071 0.7059 0.6957 0.7007 0.7083

ExtraTrees 0.7214 0.7206 0.7101 0.7153 0.7222

MLP 0.7214 0.7206 0.7206 0.7206 0.7361

LR 0.7571 0.7059 0.7742 0.7385 0.8056

Embed-1dCNN (SMOTE) 0.8929 0.8289 0.9378 0.8692 0.9397

https://doi.org/10.1371/journal.pone.0290899.t006

Table 5. Performance comparison of the model with two techniques when sliding window length is 33.

Model Acc Recall Pre F1 Spe

Embed-1dCNN (SMOTE) 0.8929 0.8289 0.9378 0.8692 0.9397

Embed-1dCNN (class_weight) 0.8888 0.8364 0.9091 0.8594 0.9312

https://doi.org/10.1371/journal.pone.0290899.t005
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so the complex network structure has a negative effect after increasing the number of parame-

ters. It should be noted that the hyperparameters of the increased or decreased convolutional

layer of the model are the same as those of the second layer in the original model architecture.

3.4 Performance comparison of SMOTE vs. ‘class_weight’ for processing

imbalanced data sets under different sliding windows

Since the ratio of hotspots to non-hot spots in the training set is very unbalanced, expecting to

use the SMOTE techniques to synthesize hotspot samples, another technique, which sets the

Fig 6. ROC curve and AUC value of validation and test set.

https://doi.org/10.1371/journal.pone.0290899.g006

Fig 7. Performance comparison of the model with different convolution layers.

https://doi.org/10.1371/journal.pone.0290899.g007
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class weight, parameter of ’class_weight’, of samples for the neural network model to increase

the cost of misclassification of minority samples, was also investigated. As shown in Fig 8, in

this work, these two techniques were tried with different sliding window lengths, and the eval-

uation indicators include ’F1 score’ and ’accuracy’.

It can be seen intuitively that the model with both techniques gives the best performance

with a sliding window length of 33. To better compare the experimental performance of these

two methods with the sliding window width of 33, the detailed performance comparison can

be seen in Table 5. The details of the prediction results of the two groups of models on the four

evaluation indicators can be seen in S1 File.

In general, whether the SMOTE algorithm is used to balance the hotspots and non-hot

spots in the training set, or a higher misclassification weight is set for the minority samples, the

model has achieved good prediction performance. At the same time, the result of Embed-

1dCNN (SMOTE) is better than Embed-1dCNN (class_weight) in terms of accuracy, preci-

sion, f1 score and specificity. And the recall is slightly worse than Embed-1dCNN

(class_weight).

3.5. Performance comparison with other classifiers

To illustrate the advantages of convolutional neural networks as predictive classifiers in this

work, this paper also compared with a variety of traditional machine learning algorithms on

the validation set, as shown in Table 6. Compared with the 7 groups of machine learning algo-

rithms, KNN, ADB, SVM, GBDT, ExtraTrees, MLP and LR implemented by WEKA software

[36], the proposed convolutional neural network achieves an improvement in F1 score of

21.25%, 21.73%, 17.69%, 16.85%, 15.39%, 14.86% and 13.07%, respectively. In addition, MLP

and LR also achieve relatively good results.

3.6. Performance comparison of the model before and after the expansion

of the training set

To illustrate the necessity of training data expansion, the performance comparison of the

model before and after training data expansion was examined. As shown in Table 7, after the

training data expansion, the accuracy and F1 score of the model increased by 12.5% and

10.52%, respectively, compared to the model before the training data expansion. The improve-

ment in prediction performance after the expansion is obvious, which indirectly shows that

Fig 8. Illustration of the F1 score and accuracy of two experimental techniques under different sliding windows.

(a) indicates that new samples are synthesized by the SMOTE algorithm; (b) indicates that "class_weight" is set for the

model.

https://doi.org/10.1371/journal.pone.0290899.g008
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the convolutional neural network can learn more effective information from the training

samples.

3.7. Compare with the state-of-the-art method

In the previous hot spot residue prediction experiments, Liu’s model achieved higher predic-

tion performance on the BID test set. The method developed an ensemble learning method

based on KNN and SVM classifiers, and conducted experiments based entirely on sequence

features, which is the same type of feature used in this work. The performance comparison is

shown in Table 8. It can be seen that the F1 score and accuracy of our model are better than

those of Liu’s method [37]. It shows that our model has certain advantages in dealing with

such problems.

3.8. Comparison of experimental results of different protein embedding

models

Furthermore, different protein sequence embedding models were investigated and compared

with the Embed4117 embedding model used in our proposed method, as shown in Fig 9. The

first one is called "Embed100" in the work of Tristan Bepler and Bonnie Berger [25], which

also adds an encoder structure to the Embed4117. When it outputs a 4117-dimensional feature

vector, it is embedded into this encoder, which contains a 3-layer BiLSTM structure and a lin-

ear layer, and outputs 100-dimensional features. The second is called "seqvec", which applied

the NLP model ELMo to solve protein sequence-related problems through transfer learning

and trained the protein embedding model. Third, Babbler-1900 embedding model was trained

a 1900 hidden unit multiplicative long-short term memory (mLSTM) recurrent neural net-

works (RNNs) of amino acid character in UniRef50 [38]. The pretrained model of Babbler-

1900 from TAPE was used in this work [39]. One-hot coding scheme is a common coding

method in the process of data preprocessing. The processed data are usually sparsely distrib-

uted in space. In this work, amino acids in a protein are represented in the form of 21 dimen-

sions (the 21st dimension represents all other types of amino acid residues except the common

20 amino acids). The Bert method has also been implemented in this work, called "Bert_base".

The detailed description of the five embedding models can be found in S3 File.

Fig 9 shows the performance comparison of the six embedding models in terms of accuracy,

F1 score, precision, recall and specificity on the validation set. It can be seen that the perfor-

mance of the proposed model with embed4117 (acc = 0.89, f1 = 0.86, pre = 0.93, recall = 0.82,

spe = 0.93) is better than the other five embedding models on the five indicators. Furthermore,

Table 8. Performance comparison of different methods on the test set.

Method Acc Recall Pre F1 Spe

Liu’s 0.6500 0.8714 0.6040 0.7135 0.4286

Our proposed 0.8514 0.7206 0.9662 0.8249 0.9750

https://doi.org/10.1371/journal.pone.0290899.t008

Table 7. Performance comparison of the model before and after training data expansion.

Model Acc Recall Pre F1 Spe

Embed4117_1dCNN 0.7679 0.8750 0.6981 0.7640 0.6734

Embed4117_1dCNN (data expansion) 0.8929 0.8289 0.9378 0.8692 0.9397

https://doi.org/10.1371/journal.pone.0290899.t007
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the Babbler model performs well in F1 score and recall, while ’seqvec’ performs well in accuracy,

precision and specificity. In general, Embed4117 achieves the best performance for predicting

protein hotspot residues among the six embedding models. The details of the prediction results

of the six groups of protein sequence embedding models can be found in S2 File.

3.9. Case studies

To present the prediction performance of the model in a more intuitive way, the PyMOL soft-

ware was used to visualize the prediction results of proteins with PDB IDs: 3HHR and 1CZ8. As

shown in Fig 10, protein 3HHR consists of three chains: chain A in green is human growth hor-

mone (hGH), which is required for human growth and development, and chains B and C in

white are the extracellular domain of human growth hormone receptors (hGHbp). In chain A

there are 3 hot spots in red (172K, 175T and 178R) and 3 non-hotspots in blue (8R, 9L and 12N).

As shown in Fig 11, protein 1CZ8 consists of six chains: chains V and W are vascular endo-

thelial growth factor A, chains L and X are the light chain of the neutralizing antibody, chains

H and Y are the heavy chain of the neutralizing antibody. In chain W, which is shown in green

(the other five chains are all shown in white), there are 3 hot spots in red (68M, 75G, and 79G)

and 3 non-hot spots in blue (35K, 73H, and 74Q).

4. Conclusion

In this work, the protein sequence embedding learning model was applied in the field of hot

spot residue prediction for the first time, and obtained good prediction performance.

Fig 9. Prediction performance of different embedding models.

https://doi.org/10.1371/journal.pone.0290899.g009
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Specifically, the work first collect the MIX data set, and under sample the negative samples to

construct training, validation and test data sets. At the same time, the SMOTE algorithm is

used to generate new positive samples, which expands the training data and balances the num-

ber of positive and negative samples. Then, the protein sequence embedding model is used to

extract the characterization of each amino acid residue. The protein sequence is separated and

fed into a three-layer one-dimensional convolutional neural network for prediction. Com-

pared with the previous method that predicts hot spot residues from interface residues, our

model achieves good prediction performance. In addition, this work also investigates different

machine learning algorithms and different sequence embedding models on experimental

results. Although Embed-1dCNN has achieved better prediction performance, in actual situa-

tions, hot spot residues account for only 1%~2% of the whole protein sequence, so predicting

hot spot residues from the whole sequence is the future work we expect to do.

Supporting information

S1 File. Shows the prediction results of the two groups of models on the four evaluation

indicators.

(DOCX)

S2 File. Shows the prediction results of six groups of protein sequence embedding models.

(DOCX)

Fig 10. Structure visualization of PDB ID: 3HHR (chain A, B and C). (a) True hotspots and non-hotspots verified

by experiment in chain A; (b) The prediction results of our method. By the proposed method, two (172K, 175T) out of

three hotspots are correctly predicted, while hotspot 178R in yellow is incorrectly predicted as a non-hotspot. Three

non-hotspots are all correctly predicted.

https://doi.org/10.1371/journal.pone.0290899.g010

Fig 11. Structure visualization of PDB ID: 1CZ8 (chains V, W, L, X, H and Y). (a) True hotspots and non-hotspots

verified by experiment in chain W; (b) The prediction results of our method. By the proposed method, three hotspots

(68M, 75G, 79G) are correctly predicted. And the non-hotspot 35K is correctly predicted, while two non-hotspots

(73H and 74Q) in yellow are incorrectly predicted as hotspots.

https://doi.org/10.1371/journal.pone.0290899.g011
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S3 File. Describes the five embedding models.

(DOCX)

S4 File. Shows the performance comparison of different hyperparameters for the proposed

method.

(DOCX)

S5 File.
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