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Abstract

The cloud is becoming a hub for sensitive data as technology develops, making it increas-

ingly vulnerable, especially as more people get access. Data should be protected and

secured since a larger number of individuals utilize the cloud for a variety of purposes. Confi-

dentiality and privacy of data is attained through the use of cryptographic techniques. While

each cryptographic method completes the same objective, they all employ different amounts

of CPU, memory, throughput, encryption, and decryption times. It is necessary to contrast

the various possibilities in order to choose the optimal cryptographic algorithm. An integrated

data size of 5n�102 (KB (2 1,2,4,10,20,40) is evaluated in this article. Performance metrics

including run time, memory use, and throughput time were used in the comparison. To deter-

mine the effectiveness of each cryptographic technique, the data sizes were run fifteen (15)

times, and the mean simulation results were then reported. In terms of run time trend, NCS is

superior to the other algorithms according to Friedman’s test and Bonferroni’s Post Hoc test.

1.0 Introduction

Human activity has risen, making communication more difficult, and necessitating data pro-

tection. [1]. A paradigm shift in data storage needs to be implemented in order to secure these

enormous amount of data [2]. Due to the enormous amount of data produced by numerous

social media platforms, including Facebook, Twitter, Instagram, and e-commerce websites,

cloud computing is currently the preferred option [3].

Amazon’s four-hour cloud computing downtime in 2017 cost S&P 500 Company $150 mil-

lion, according to a Maeser [4]. A network traffic control organization called Apica predicted

that the top 54 e-commerce sites will experience a decline in activity of at least 20% [4].

According to Ponemon, Fortune 1000 companies lost just over $ 2.5 billion in 2015 as a result

of data center shutdowns brought on by hackers. According to Maeser [4], the need for cloud

computing will increase by about 266% between 2013 and 2020 as a result of the massive vol-

umes of data that the Internet of Things will produce.
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Once more, Maeser [4] stressed that the infrastructure-as-a-service aspect of cloud comput-

ing will result in an increase in demand of roughly 85%.

Because of the benefits of agility, scalability, availability, accelerating the development of

work, and lowering operating costs by utilizing pay-as-you-use services, cloud computing con-

tinues to gain popularity over traditional on-site data centers [5, 6]. As a result, Information

Technology giants are now investing far more money on cloud computing than they did in the

past. These advantages have led businesses to use cloud services such as Software-as-a-Service

(SaaS), Infrastructure-as-a-Service (IaaS), Platform-as-a-Service, and Container-as-a-Service

(CaaS) for their pay-as-you-use activities on the cloud [7–9].

The adoption of cloud computing is accompanied by a number of security issues, such as

data privacy and confidentiality [10–12]. In order to guarantee the secrecy and privacy of

cloud data, cryptographic techniques have shown to be an effective and efficient methods

[12–16, 18].

In this study, the symmetric algorithms Enhanced RSA (ERSA) [17], Non-Deterministic

Cryptographic Scheme (NCS) [18], Enhanced Homomorphic Scheme (EHS) [19], Chacaha20,

and Salsa20 are compared based on run time trend, throughput time, and memory usage to

determine which algorithm among them could be used to ensure the confidentiality and pri-

vacy of cloud data.

1.1 Identified problem

The biggest problem with cloud computing has been data security. Researchers have suggested

many encryption technique variations to protect cloud data [20]. Enhanced RSA [17], Non-

Deterministic Cryptographic Scheme [18], Enhanced Homomorphism Scheme [19], Cha-

cha20, and Salsa20 are a few examples of these techniques. These suggested encryption tech-

niques are effective in limiting unauthorized access to sensitive information.

In terms of run time trend, throughput time, and memory complexity, it is unclear which

one performs better than the other. Such knowledge is essential for industry startups, other

professionals, and researchers who are interested in utilizing effective algorithms to protect

privacy and confidentiality of data in the cloud. Therefore, the major goal of this research is to

test Enhanced RSA, Non-Deterministic Cryptographic Schemes, Enhanced Homomorphism

Schemes, Chacha20, and Salsa20 in order to determine the computational statistics of the best

method. Once more, this study offers a solid framework that theoretically and practically com-

bines all of the recognized algorithms into a robust system. The principal contribution of this

paper is the proposition of a comprehensive cryptographic scheme(s) that can be used to

ensure confidentiality and privacy of cloud data.

2.0 Literature review

Cloud computing users save their data in the cloud making it a remote location based system.

It compromises secrecy, which is essential for cloud computing to be acceptable. To boost

security and trustworthiness, cryptography is often used in cloud computing.

ALmarwani et al. [21] presented a unique tagging approach called Tagging of Outsourced

Data (TOD) in an endeavor to protect the secrecy of data stored in the cloud. Their method

supported cloud data through verification. Their method had a short run time, enabling for

widespread use by mobile devices. Tahir et al. [22] presented a genetic algorithm called Cryp-

toGa to help Almarwani et al. achieve data privacy. When compared to state-of-the-art algo-

rithms like AES, RSA, and DES, their approach had shorter execution times.

Shen et al. [23] advocated using proxy re-encryption and Oblivious Random Access Mem-

ory (ORAM). Their technique was designed to ensure multi-user data sharing on the cloud.
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The ciphertext gained through the proxy re-encryption enabled members to regulate access

and, as a consequence, establish data privacy.

Garad et al. [24] suggested a cryptosystem to protect submitted files to the cloud server.

AES-CCM, AES-GCM, and CHACHA20_POLY1305 were the asymmetric cryptographic

algorithms they employed. They divide the file into N pieces, then use various cryptographic

techniques to encrypt each portion. Thabit, et al. [25], ensured the confidentiality and privacy

of cloud data by proposing a Lightweight Cryptographic Algorithm. Their algorithm inte-

grated Feistel and substitution schemes to raise the encryption complexity of their algorithm.

Their algorithm was very effective regarding run time. Tiwari and Neogi [26] proposed a secu-

rity scheme that secured a multi-tenant hybrid cloud by combining Kerberos Authentication

Protocol with Resource Allocation Manager Unit (RAMU). Their scheme allowed for more

resource access while also improving client confidentiality and security. The model validates

the user’s request before providing access, preventing the password from being revealed to

hackers during transmission. The Key Distribution Centre (KDC) validates the request and

RAMU grants access after reviewing the control database and resource allocation map. Gadde

et al. [27] suggested an Improved Blowfish cryptography strategy for encrypting and decrypt-

ing sensitive data in the cloud server using the optimum key. Optimal key creation is a critical

method for achieving integrity and confidentiality goals of integrity and confidentiality. Simi-

larly, data restoration is the inverse process of sanitization (decryption). In [28] a four-step

data security approach in cloud computing was proposed. They used the least significant bit of

LSB approaches to integrate three cryptographic algorithms, RSA, AES, and identity-based

encryption, with steganography to attain confidentiality and privacy of cloud data.

3.0 Methodology

3.1 Enhanced RSA

Enhanced RSA Improved traditional RSA’s security by combining classic RSA with Gaussian

interpolation formula. The integration raises the security of RSA to the fifth level. After

encrypting the message’s ASCII values with Gaussian First Forward interpolation, the conven-

tional RSA is used to encrypt and decode the message at the second and third levels. The last

stage uses Gaussian First Backward interpolation to decode the data again, as seen in Fig 1.

The integration helps to overcome the classic RSA factorization problem [17].

Fig 1. Work flow diagram of enhanced RSA [17].

https://doi.org/10.1371/journal.pone.0290831.g001
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3.2 Non-Deterministic Cryptographic Scheme

This method consists of three stages: key generation, encryption, and decryption. The three

levels of key production are meant to produce secret keys that help to secure the algorithm

[18]. These include the use of Good Prime numbers, the Linear Congruential Generator, the

Fixed Sliding Window Algorithm, and XORing the output with the plaintext. In NCS a sub

array of
n a i½ �ð Þ

4

� �
is computed on the twelve numbers generated after the application of the Fixed

Sliding Window [18].

3.3 Enhanced Homomorphism Scheme

Enhanced Homomorphism Scheme (EHS) is developed and implemented by the amalgam-

ation of Good Prime Numbers (GPN), Linear Congruential Generator (LCG), Fixed Sliding

Window Algorithm (FSWA), and Gentry’s Algorithm. Two stages are considered in this algo-

rithm, the generation of keys and the application of the homomorphism scheme. Three proce-

dures are used to generate the keys which includes the generation of two good prime numbers

with the product as a seed for the Linear Congruential Generator to produce twelve numbers.

The sliding window algorithm is applied on the twelve numbers using a sub-array of three
n a i½ �ð Þ

3

� �
. The first value is si, second value sj, the third value sk, fourth value is sl and with M the

plaintext as seen in Eq 1 for data encryption [19].

C ¼ M þ si∗sj þ sk∗sl ð1Þ

3.4 Salsa20

The Salsa20 stream cipher, initially developed by Bernstein in 2008, has 20 rounds, while it’s

more recent variations, Salsa20/8 and Salsa20/12, have 8 and 12 rounds respectively. Salsa20/

20 refers to the 20-round Salsa20. The Salsa20 stream cipher accepts keys of 128 and 256 bits.

The Salsa20 core is composed of a 256-bit key (n0, n1, n2, n3, n4, n5, n6, n7), a 64-bit block

counter (e0, e1), a 64-bit nonce (d0, d1), and four 32-bit diagonal constants (c0, c1, c2, c3) that

may be mapped into a 4 4 matrix as in Eq 2.
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The three operations of Salsa20, addition, rotation, and XOR, give desired cryptographic

features, with modular addition providing non-linearity and bit rotation providing diffusion

in a word. The diffusion attribute is propagated from one word to the next via the XOR tech-

nique [29].

3.5 Chacha20

Chacha20 is a 2008 update of Salsa20 that uses a new round function to boost diffusion.

Salsa20 uses a 32-bit module addition, XOR, and rotation operations based core hash function,

whereas Chacha20 uses an internal state of sixteen 32-bit words arranged as a 4 × 4 matrix to

map a 256-bit key (128-bit key is also suitable for Salsa20), a 64-bit nonce, and a 64-bit counter

to a 512-bit block key stream. While the configurations differ, their beginning states are both

made up of 8 words of key, 2 words of stream position (counter), 2 words of nonce, and 4

words of constant. Chacha20 is a replacement for Salsa20’s quarterround, which updates each

word twice with the same amount of operations as shown in Eq 3. Unlike Salsa20, which
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alternates quarterrounds down columns and across rows, Chacha20 executes quarterrounds

down columns and along diagonals in a doubleround. Chacha20 likewise employs 10 double-

round iterations and the same output function [30].

kþ ¼ x; z� ¼ k; z�<¼ 16;

yþ ¼ z; x� ¼ y; x�<¼ 12;

kþ ¼ x; z� ¼ k; z�<¼ 8;

yþ ¼ z; x� ¼ y; x�<¼ 7;

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð3Þ

3.6 The proposed framework of the system

This section provides a broad summary of the comparative study of the enhanced RSA, Non-

Deterministic Cryptographic Scheme, enhanced Homomorphism Scheme, Chacha20, and

Salsa20. For the ERSA, NCS, EHS, ChaCa20, and Salsa20, the architecture is divided into five

phases: key generation, encryption, decryption, memory utilization, and throughput. From

Fig 2, the user registers with a cloud service provider. The registered client uploads the plain-

text onto the cloud after encryption using either ERSA, NCS, EHS, Chaca20, or Salsa20 to

obtain Ciphertext from which Encryption time, memory usage, and throughput time are com-

puted. This is achieved using any digital device [6]. The decryption time, memory storage

Fig 2. Framework for the proposed model.

https://doi.org/10.1371/journal.pone.0290831.g002
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time, and throughput time are calculated once the Ciphertext has been downloaded. Figs 3

and 4 show a snapshot of the run time for 4KB data for Chacha20 using the system, with fur-

ther information available at https://github.com/Elkie1/Chacha20.

4.0 Experimentation

The comparative analysis of the Enhanced RSA [17], Non-Deterministic Cryptographic

Scheme [18], Enhanced Homomorphism Scheme [19], Salsa20 and Chacha20 was imple-

mented on an i7 Lenovo computer, 2.10 GHz CPU using C# language. C# programming

Fig 3. Encrypted performance for Chacha20 using 4KB data.

https://doi.org/10.1371/journal.pone.0290831.g003

Fig 4. Decrypted performance for Chacha20 using 4KB data.

https://doi.org/10.1371/journal.pone.0290831.g004
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language is preferable because it influences the execution time of data as was implemented in a

NET C# programming language where it was used to test the execution of AES algorithm

resulting in 300MB/seconds while OpenSSL C simulation produced a 960 MB/seconds average

speed [31].

4.1 Description of dataset used in this work

The study’s dataset was collected from the Kaggle database [32]. The dataset was used to assess

the robustness of the algorithms in terms of run time trend, memory use, and throughput. The

dataset is an English-to-French translation that includes text, numbers, and special characters.

This is critical since Loyka et al.’s [33] investigation showed divergent results when only text

and numbers were utilized. The proposed algorithms were evaluated using data sizes of 5n�102

(KB (2 1,2,4,10,20,40). The dataset was run fifteen (15) times to ensure the accuracy of the run

time, and the mean and standard deviation of the execution were computed.

5.0 Results

5.1 Encryption time

From Table 1, Chacha20 had the lowest mean encryption time of 15.9047±1.69 milliseconds

followed by NCS (52.13±31.1766) with Salsa20 having the highest mean encryption time of

853±85.06 milliseconds when data size of 500KB (0.5MB) was executed. The encryption time

increased from 853±85.06 milliseconds to 1302.8 ±703.97 milliseconds for Salsa20 when the

data size was increased to 1000KB making it linear [34, 35]. The encryption time for ERSA

also increased from 462.93±40.93 milliseconds to 575.67±57.05 millisecond when data size

was raised to 1000KB. However, the encryption time for NCS reduced from 147.33±172.41

milliseconds to 85.8±54.46 milliseconds and to 82.2±75.17 milliseconds when data size was

increased from 500KB to 1000KB, and from 2000KB to 5000KB.

5.2 Decryption time

Table 2, presents the comparison of the mean decryption time trend for Salsa20, Chacha20,

ERSA, NCS, and EHS. With data size of 500KB, NCS had the lowest decryption time of 74

±45.16 milliseconds followed by Chacha20 (281.33±35.42) and EHS with a decryption time of

368.4±133.88 milliseconds. When the data size was increased to 1000KB, NCS had the lowest

decryption time of 105.6±71.78 milliseconds with Salsa20 having the highest run time of 869.4

±223.18. From Table 2, it could be seen that for Salsa20, Chacha20 and ERSA their run time

increases as data sizes increases making them linear (O (N)). However, the run time for NCS

and EHS alternates as the sizes of the data increases making it non-linear.

Table 1. Comparing the mean encryption time for Salsa20, Chacha20, ERSA, NCS, and EHS.

Data Size(KB) Salsa20 (ms) Chacha20(ms) ERSA (ms) [17] NCS (ms) [18] EHS (ms) [19]

500 853±85.06 15.9047±1.69 462.93±40.93 52.13±31.1766 178.27±64.57

1000 1302.8 ±703.97 19.8653±1.65 575.67±57.05 147.33±172.41 204.33±132.99

2000 2936.2±777.81 195.5867±32.21 695.93±71.59 85.8±54.46 268.93±158.19

5000 5916.33±764.99 4186.7373±1343.42 738±150.31 82.2±75.17 139.27±75.45

10000 11536.27±2860.06 5995.722±1932.96 866.67±84.74 98.07±121.57 118.67±39.85

20000 32531.07±46652.36 7769.3793±1169.29 1679.4±2514.36 163.07±168.07 148.53±95.19

https://doi.org/10.1371/journal.pone.0290831.t001
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5.3 Encryption throughput (KB/ms)

The number of units of data that can be processed at a given time is considered throughput

[36]. This is computed using Eq 4.

Throughput ¼
Size of Data
Run Time

ð4Þ

From Table 3, with 500KB of data, Salsa20 had the lowest mean encryption throughput

time of 0.039078 KB/ms with Chacha20 having the highest throughput time of 31.43731 KB/

ms. Also, when the data size was increased to 2000KB, NCS had the highest mean encryption

throughput time of 23.31002 KB/ms with Salsa20 having the lowest mean encryption through-

put time of 0.04541KB/ms followed by ERSA with a mean encryption throughput time of

2.87383 KB/ms. However, when data size was increased to 10000KB, NCS had the highest

encryption throughput 101.9714 KB/ms. However, with a data size of 20000KB, EHS had the

highest mean encryption throughput time of 134.6499102 KB/ms followed by NCS with a

mean encryption throughput time of 122.6492 KB/ms.

5.4 Decryption throughput

From Table 4, NCS had the highest mean decryption throughput time of 6.756757 KB/ms with

Salsa20 having the lowest mean decryption throughput time of 0.575109 KB/ms when data

size of 500KB was executed. Again when the data size was increased to 2000KB, NCS had the

highest mean decryption throughput of 12.53656 KB/ms followed by EHS with a mean decryp-

tion throughput time of 8.517887564 KB/ms. However, with a data size of 20000KB, EHS had

the highest mean decryption throughput time of 145.0676983 KB/ms followed by NCS with a

mean decryption throughput time of 125.8917 KB/ms.

Table 3. Comparing the mean encryption throughput (KB/ms) for Salsa20, Chacha20, ERSA, NCS, and EHS.

Data Size (KB) Salsa20(KB/ms) Chacha20(KB/ms) ERSA (KB/ms) [17] NCS (KB/ms) [18] EHS (KB/ms) [19]

500 0.039078 31.43731 1.080069 9.590793 2.804786836

1000 0.051172 50.33895 1.737116 6.78733 4.893964111

2000 0.04541 10.22565 2.873838 23.31002 7.436787308

5000 0.056341 1.194247 6.775068 60.82725 35.90234562

10000 0.057789 1.667856 11.53846 101.9714 84.26966292

20000 0.040986 2.574208 11.90902 122.6492 134.6499102

https://doi.org/10.1371/journal.pone.0290831.t003

Table 2. Comparing the mean and standard deviation decryption time for Salsa20, Chacha20, ERSA, NCS, and EHS.

Data Size (KB) Salsa20 (ms) Chacha20(ms) ERSA (ms) [17] NCS (ms) [18] EHS (ms) [19]

500 869.4±223.18 281.33±35.42 391.4±47.08 74±45.16 368.4±133.88

1000 2152.13±2469.76 508±73.48 514.2±75.87 105.6±71.78 277.4±144.83

2000 3020.41±1369.13 1524.93±2466.48 612.4±89.93 159.53±108.66 234.8±105.27

5000 5888.8±864.34 6138.27±1792.07 732.93±94.29 151.07±155.33 253.13±168.95

10000 10582.13±1274.53 10028.53±2757.07 1375.47±121.33 115.93±123.58 315.53±122.98

20000 19699.33±1068.30 15893.53±1934.37 1874.73±3528.41 158.87±144.66 137.87±71.83

https://doi.org/10.1371/journal.pone.0290831.t002
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5.5 Encryption memory usage

From Table 5, with a data size of 500KB, Salsa20 has high memory complexity of 196.4±32.24

megabytes followed by Chcaha20 (191.8±35.91 megabytes) with EHS having the lowest mem-

ory complexity of 16±2.75 megabytes. When data size was increased to 20000KB, Salsa20 used

6160.27±650.17 megabytes of memory which was still the highest followed by Chacha20

(6092.27±653.58) while NCS used the least memory complexity of 16.4±3.78 megabytes.

5.6 Decryption memory usage

From Table 6, Salsa20 has the highest mean memory complexity of 192.13±34.41 megabytes of

memory when 500KB of data was decrypted with NCS having the lowest mean memory com-

plexity of 15.87±3.04 megabytes. However, when data size was increased to 20000 KB, Cha-

cha20 had the highest memory complexity of 6281.4±713.08 megabytes with NCS still having

the lowest memory complexity of 17.07±3.28 megabytes.

5.7 Comparing significance difference between the encryption and

decryption times using Friedman Test and Bonferroni Post Hoc test

The Friedman’s Test tests the hypothesis that “all treatment effects are zero” as against the

alternate hypothesis “not all treatment effects are zero”. From the output in Tables 7 and 9,

Table 5. Comparing the mean encryption memory usage for Salsa20, Chacha20, ERSA, NCS, and EHS (MB).

Data Size (KB) Salsa20 (MB) Chacha20(MB) ERSA (MB) [17] NCS (MB) [18] EHS (MB) [19]

500 196.4±32.24 191.8±35.91 20.6±2.59 17.13±1.99 16±2.75

1000 270.33±34.78 265.13±38.54 20.6±2.47 16.13±3.87 16.13±3.64

2000 588.6±66.89 597.67±66.57 20.6±2.13 16.33±3.75 16.53±3.25

5000 1443.2±192.69 1392.33±224.02 20.13±2.07 16.13±3.98 16.47±3.62

10000 3436.13±355.35 3453.13±365.96 21.33±2.09 15.87±3.44 17.4±3.62

20000 6160.27±650.17 6092.27±653.58 20.73±2.46 16.4±3.78 17.6±3.12

https://doi.org/10.1371/journal.pone.0290831.t005

Table 4. Comparing the mean decryption throughput (KB/ms) for Salsa20, Chacha20, ERSA, NCS, and EHS.

Data Size (KB) Salsa20(KB/ms) Chacha20(KB/ms) ERSA (KB/ms) [17] NCS (KB/ms) [18] EHS(KB/ms)[19]

500 0.575109 1.777251 1.277466 6.756757 1.357220413

1000 0.464655 1.968504 1.944769 9.469697 3.604902668

2000 0.662161 1.311533 3.265839 12.53656 8.517887564

5000 0.849069 0.814562 6.821903 33.09797 19.75243613

10000 0.9449 0.997155 7.27062 86.25647 31.6923727

20000 1.015263 1.258373 10.66818 125.8917 145.0676983

https://doi.org/10.1371/journal.pone.0290831.t004

Table 6. Comparing the mean decryption memory usage for Salsa20, Chacha20, ERSA, NCS, and EHS (MB).

Data Size (KB) Salsa20(MB) Chacha20(MB) ERSA (MB) [17] NCS (MB) [18] EHS (MB) [19]

500 192.13±34.41 191.87±35.89 20.67±2.16 15.87±3.04 16.2±3.05

1000 270±34.78 259.47±40.63 20.23±2.37 16.13±3.87 17.5±3.74

2000 595.13±68.94 587.47±78.23 20.6±2.32 16.47±3.6 17.6±3.15

5000 1360.53±236.62 1384.53±241.7 20.87±2.13 16.33±3.79 17.6±3.64

10000 3453.73±368.56 3404.87±374.45 20.53±2.19 16.2±3.14 17.7±3.13

20000 6267.13±732.39 6281.4±713.08 21.2±2.83 17.07±3.28 18.2±2.68

https://doi.org/10.1371/journal.pone.0290831.t006
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P-Value = 0.00 < 0.05(alpha value), which indicates that the difference in the encryption times

is statistically significant for the different algorithms and data sizes.

A Post Hoc Bonferroni pairwise comparison test was used to see if there was a significant

difference between pairs of algorithms and data sizes. The encryption timings for EHS and

NCS were statistically different from Salsa20, Chacha20, and ERSA with P-Values less than

0.05 (P − Value< 0.05, Reject H0) according to Table 8.

From Table 10, the decryption Times for Salsa20—Chacha20, ERSA -EHS, and NCS -EHS

are statistically not different.

6.0 Discussions

From Table 1, it could be deduced that the encryption times for Salsa20 and Chacha20 were

proportional to the data sizes executed which resulted from the addictive, XORing, and con-

stant distance rotation during execution [37, 38]. ERSA encryption times also showed a pro-

portional relationship between data size and encryption time [17]. This made their encryption

times predictable, deterministic, and patterned which confirms the work of Masram et al. [39]

and [38, 40–45]. The use of longer keys ensures higher security but results in higher CPU utili-

zation when encryption time is dependent on data size (O (N)) [46]. However, the use of

smaller keys is the best employed in cloud computing due to less CPU engagement [47].

The encryption time for NCS and EHS is non-patterned, non-deterministic, and unpredict-

able because of the disintegration of the keys through the application of a Fixed Sliding Win-

dow Algorithm and XORing of the keys and the plaintext which makes NCS and EHS resistant

to breaking the resultant cipher through XORing any captured encoded text [48]. Again the

randomization from the application of the Sliding Window Algorithm helps to increase the

security of the encrypted data and also reduces the time complexity of the Non-Deterministic

Table 7. Friedman test of the encryption times for Chacha20, Salsa20, ERSA, NCS and EHS.

Null hypothesis H0: All treatment effects are zero

Alternative hypothesis H1: Not all treatment effects are zero

Method DF Chi-Square P-Value

Not adjusted for ties 4 22.03 0.000

Adjusted for ties 4 22.22 0.000

https://doi.org/10.1371/journal.pone.0290831.t007

Table 8. Bonferroni simultaneous tests for differences of means of encryption time.

Difference of Algorithm Levels Difference of Means SE of Difference Simultaneous 95% CI T-Value Adjusted P-Value

EHS—CHACHA20 -248.98 7.83 (-271.08, -226.89) -31.80 0.000

ERSA—CHACHA20 -167.97 7.83 (-190.07, -145.88) -21.45 0.000

NCS—CHACHA20 -257.23 7.83 (-279.32, -235.13) -32.85 0.000

SALSA20—CHACHA20 0.54 7.83 (-21.55, 22.64) 0.07 1.000

ERSA—EHS 81.01 7.83 (58.92, 103.11) 10.35 0.000

NCS—EHS -8.24 7.83 (-30.34, 13.85) -1.05 1.000

SALSA20—EHS 249.53 7.83 (227.43, 271.62) 31.87 0.000

NCS—ERSA -89.26 7.83 (-111.35, -67.16) -11.40 0.000

SALSA20—ERSA 168.52 7.83 (146.42, 190.61) 21.52 0.000

SALSA20—NCS 257.77 7.83 (235.68, 279.87) 32.92 0.000

Individual confidence level = 99.50%

https://doi.org/10.1371/journal.pone.0290831.t008
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Cryptographic Scheme [49, 50]. From the trend of the encryption time from Table 1, it could

be concluded that encryption times for NCS and EHS are not dependent on data size but the

size of the key while the encryption times for Salsa20, Chacha20, and ERSA are influenced by

data size.

From these discussions, it could be concluded that data size is proportional to the decryp-

tion time for Salsa20, Chaca20, and ERSA as indicated in Table 2. This makes their trend of

decryption time deterministic, predictable, and linear which is supported by the works of

[44, 51]. With a linear trend of decryption time, hackers can predict, intercept and modify

data [52].

Based on these discussions, it is possible to conclude that ERSA, Salsa20, and Chacha20 pro-

duced linear, predictable, deterministic, and high decryption times, making them vulnerable

to side-channel attacks and thus do not guarantee the absolute privacy and confidentiality of

data on the cloud, as suggested by Kumar et al. [34] and Karthik [35]. The application of the

Fixed Sliding Window Algorithm, which disintegrates the huge numbers obtained from the

selection of the good prime numbers as the initial keys, Linear Congruential Generator, and

XORing the keys and the Ciphertext to obtain plaintext, caused NCS and EHS to have unpre-

dictable, non-deterministic, and non-linear decryption time.

This has the advantage of reducing bandwidth utilization since data encryption and decryp-

tion raise the overhead cost of data processing [53]. Again, non-linear encryption timings

aided in increasing data secrecy and privacy while reducing device ripping and wear for indus-

try participants and people [18].

According to Tables 1 and 3, encryption time is inversely related to throughput time. Algo-

rithms with faster throughput times use less CPU, and vice versa [54].

When Tables 2 and 4 were compared, it was possible to deduce that with a long decryption

time, the associated throughput time was short. This supports the findings of Abolade et al.

[54], who discovered that algorithms with a high throughput time need less CPU time.

Table 5 shows that algorithms that consume less memory during execution serve to

decrease computational bottlenecks for the CPU and, as a consequence, are regarded as the

best [55]. According to Table 6, Salsa20 is more memory intensive since its operation is based

on 20 cycles with 10 repeating instances [56]. Because the secret key and Ciphertext are

XORed without padding, the NCS had the lowest mean memory usage.

The Friedman Test and Bonferroni Post Hoc test results from Tables 7–10 show that the

encryption and decryption times for NCS and EHS are statistically different from Salsa20,

Chacha20, and ERSA.

It could be summarized that NCS and EHS produced lower, non-deterministic, non-pat-

terned, and secret key-dependent run times as such defeats the idea behind ERSA, Salsa20,

and Chacha20 as the fastest symmetric algorithms which used less memory during data execu-

tion [49]. This makes NCS a lightweight algorithm to be employed in the cloud and other

areas where fast and lightweight algorithms are needed. Also, it could be used in environments

where mobile devices and other devices with less memory are used such as the Internet of

Things.

Table 9. Friedman test of the decryption times for Chacha20, Salsa20, ERSA, NCS and EHS.

Null hypothesis H0: All treatment effects are zero

Alternative hypothesis H1: Not all treatment effects are zero

DF Chi-Square P-Value

4 22.93 0.000

https://doi.org/10.1371/journal.pone.0290831.t009
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7.0 Conclusion

To ensure the secrecy and privacy of data in the cloud, modern cryptographic techniques are

applied to encode and decode data. These encryption techniques have computational over-

heads that have an impact on cloud performance. The symmetric stream cipher algorithms;

ERSA, Salsa20, Chacha20, NCS, and EHS have all been thoroughly examined. For securing the

privacy and secrecy of data stored in the cloud, ERSA, Salsa20, and Chacha20 are seen to be

strong cryptographic schemes. However, compared to NCS and EHS, their run times are lin-

ear, predictable, and long, rendering them vulnerable to side-channel attacks.

Their linear runtime trends result in significant bandwidth use and hardware device wear

and tear during the transfer of large amounts of data, making them unsuitable for a cloud com-

puting environment. Additionally, because of their linear run times, hackers can estimate the

execution time of any piece of data. The Friedman test and Bonferroni Post Hoc test, however,

showed that NCS and EHS had the advantage of producing non-linear run time trends, non-

patterned run time trends, non-deterministic run time trends, lowest run times, high through-

put, and consumed less amount of memory during execution.

Since NCS and EHS will ensure reduced bandwidth usage, prevent tearing and wearing of

hardware, and maximize the utilization of any device without much attention on the specifica-

tion of hardware, this provides industry players and academia optimism that they can fully

embrace cloud computing. Future studies should focus on doing experiments using computers

with greater specifications. Additionally, research should be done to compare the security

strength of NCS to other cutting-edge algorithms.
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Table 10. Bonferroni simultaneous tests for differences of means for decryption time.

Difference of Algorithm Levels Difference of Means SE of Difference Simultaneous 95% CI T-Value Adjusted P-Value

EHS—CHACHA20 -2000.8 32.8 (-2093.3, -1908.3) -61.01 0.000

ERSA—CHACHA20 -1997.6 32.8 (-2090.1, -1905.0) -60.92 0.000

NCS—CHACHA20 -2001.9 32.8 (-2094.5, -1909.4) -61.05 0.000

SALSA20—CHACHA20 4.8 32.8 (-87.7, 97.4) 0.15 1.000

ERSA—EHS 3.2 32.8 (-89.3, 95.7) 0.10 1.000

NCS—EHS -1.1 32.8 (-93.7, 91.4) -0.03 1.000

SALSA20—EHS 2005.6 32.8 (1913.1, 2098.2) 61.16 0.000

NCS—ERSA -4.3 32.8 (-96.9, 88.2) -0.13 1.000

SALSA20—ERSA 2002.4 32.8 (1909.9, 2095.0) 61.06 0.000

SALSA20—NCS 2006.8 32.8 (1914.2, 2099.3) 61.20 0.000

Individual confidence level = 99.50%

https://doi.org/10.1371/journal.pone.0290831.t010
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