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Abstract

Salmonids are especially vulnerable during their embryonic development, but monitoring of
their spawning grounds is rare and often relies on manual counting of their nests (redds).
This method, however, is prone to sampling errors resulting in over- or underestimations of
redd counts. Salmonid spawning habitat in shallow water areas can be distinguished by
their visible reflection which makes the use of standard unmanned aerial vehicles (UAV) a
viable option for their mapping. Here, we aimed to develop a standardised approach to
detect salmonid spawning habitat that is easy and low-cost. We used a semi-automated
approach by applying supervised classification techniques to UAV derived RGB imagery
from two contrasting lakes in Iceland. For both lakes six endmember classes were obtained
with high accuracies. Most importantly, producer’s and user’s accuracy for classifying
spawning redds was >90% after applying post-classification improvements for both study
areas. What we are proposing here is an entirely new approach for monitoring spawning
habitats which will address some the major shortcomings of the widely used redd count
method e.g. collecting and analysing large amounts of data cost and time efficiently, limiting
observer bias, and allowing for precise quantification over different temporal and spatial
scales.

Introduction

Salmonids encompass a diverse group of cold-temperate fish and hold an important role cul-
turally [1, 2] and economically as a fisheries resource [3, 4]. They also play a key-role in shap-
ing various ecological processes crucial to the functioning and health of freshwater and marine
environments [5-7]. However, many salmonid species have been in decline due to anthropo-
genic stressors with climate change a major driver [8-12]. Salmonids are especially vulnerable
during their embryonic development [13], relying on highly oxygenated water flow and low
temperatures. Thus, rising temperatures [8] and other anthropogenic stressors such as human
disturbance [14] present a major threat to their survival. This makes identifying and mapping
the breeding and nursery grounds of these species important for their conservation.
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Nursery grounds are habitats which contribute disproportionally to the size and numbers
of adults [15] and information on relative abundance and maturity status of fish, as well as
information on their geographical and ecological characteristics can be used to identify them
[16, 17]. Most salmonid species are characterised as gravel nests spawners [18] and spawning
redds (i.e. spawning nests) appear as irregular or regular shapes that contrast with the undis-
turbed area surrounding them [19], making them visible from above. Spawning redds provide
an important source of information for management purposes, including monitoring popula-
tion size and estimating carrying capacity of spawning habitats [20]. However, the monitoring
of their spawning grounds is rare and often relies on manual counting of the redds [20-23].
This method is prone to sampling errors resulting in over- and/or underestimations of redd
numbers with observer counts ranging from 28% to 254% [24, 25]. Sampling error can be
assigned to a wide variety of factors, such as, low visibility due to physical characteristics of the
spawning redd location (e.g. water depth, substrate composition), variation in redds (e.g. redd
size, superimposition), incomplete sampling of spawning areas in space and/or time, and inex-
perienced observers, among others [24, 26]. Apart from sampling errors, manual redd count-
ing is a time-consuming, it can be unsafe and at times difficult, and it does not allow for
precise quantification over different temporal and/or spatial scales [24].

The use of unmanned aerial vehicles (UAVs), also known as drones, for detecting salmonid
redds is being explored to address some of the shortcomings [27]. UAVs have already shown
their potential in supporting ecological fieldwork by providing high-frequency, high-quality,
and low-cost data [28-30]. For example, the use of UAVs have been essential in monitoring
breeding colonies of seabird populations [31], characterising sensitive habitats such as juvenile
fish nursery grounds [29], and supporting monitoring of salmonid spawning nests [21].
Despite the research on using UAVs to detect salmonid redds, there is still a great need for
developing an easy, standardised, and low-cost approach to map entire spawning habitats as
current methods either still rely on manual counting [27, 32], utilise rather complex methodol-
ogy [33] or need specialised equipment [34].

Here, we created a pipeline using a semi-automated remote sensing approach by applying
pixel-based image classification techniques to RGB imagery derived from an UAV, which was
tested at two environmentally contrasting Icelandic lakes, lake Thingvallavatn and lake Ellida-
vatn. Lake Thingvallavatn is characterised by contrasting features and heterogenous topogra-
phy, while lake Ellidavatn presents a more homogeneous ground level with low contrast
between spawning redds and the surrounding underwater vegetation. Rather than estimating
the number of spawning redds, the method described here maps the spawning redds visible on
a RGB image allowing for precise quantification of their size over different temporal and spa-
tial scales and it helps limiting sampling errors due to observer bias and/or superimposition.

Material and methods
Study areas

Two study areas (i.e. lake Thingvallavatn, lake Ellidavatn) with contrasting environmental
characteristics were selected within the Icelandic freshwater ecosystems to establish and vali-
date the method presented here.

The method was first established in lake Thingvallavatn, located in southwestern Iceland.
In this study we focussed on the well-studied spawning grounds of Olafsdréttur, an area of the
lake located within the protected area of Thingvellir national park, which is known to host the
spawning of the large benthic Arctic charr (Salvelinus alpinus Linnaeus, 1758) in July and
August each year. The spawning redds in this area are located in both very shallow (i.e. 0.5-1.5
m) and deeper water (i.e. 1.5-5 m). The second study area, lake Ellidavatn, was used to validate
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Fig 1. Aerial images spawning grounds lake Thingvallavatn. (a-c): Aerial images of the lake Thingvallavatn
spawning grounds at different altitudes: 10 m (a), 50 m (b), and 100 m (c). (d): close-up view of the dark spawning
redds that are made by Arctic charr. Two examples of redds have been marked with yellow circles.

https://doi.org/10.1371/journal.pone.0290736.9001

the method. The lake is situated in the urban area of Reykjavik. Here we focussed on Arctic
charr spawning grounds located on the northern shore of the lake in shallow water (+ 1 m)
where they spawn from September to November.

The study is based on the assumption that salmonid redd structures in shallow water areas
can be distinguished by their visible reflection which makes the use of standard UAV a viable
option. Arctic charr females exhibit particular behaviour by cleaning rocks from debris, silt,
and algae to prepare the spots for spawning. Due to this behaviour redds can be identified
from the air as dark areas of gravel and rocks since the cleared debris, silt, and algae have a
lighter colouring than the rocks themselves (Fig 1D). The distinction between spawning redds
and other geographical features depends on the surrounding environment. The two study
areas chosen in this study represent contrasting environments. Lake Thingvallavatn is charac-
terised by well-contrasting features and variance in deep water level, while lake Ellidavatn pres-
ents a more homogeneous ground level with low contrast between spawning redds and the
surrounding underwater vegetation making the distinction of the redds more challenging.

Data acquisition

In preparation to data acquisition the occurrence of spawning redds was verified in lake
Thingvallavatn. This was based on the following two steps: (i) locating spawning redds from
the shore, and (ii) verifying that the observed redds are used for spawning through in-situ
observations and video recordings of spawning activity [35], and noting the presence eggs to
confirm successful spawning. Data collection was undertaken using a DJI Mavic Pro drone in
lake Thingvallavatn and a DJI Mavic 2 Zoom drone in lake Ellidavatn (S1 Table) equipped
with a RGB colour camera and a remote controller to command the drone. For lake
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Thingvallavatn automatic camera settings were used with a polarising filter, while in lake Elli-
davatn manual camera settings set to the lowest ISO and a shutter speed of 1/30 s was used
without a polarising filter. The remote controller was operated on an Android smartphone
with the DJI GO 4 application developed by the UAV manufacturer. On both days of data
acquisition ground truth reference data was collected by visually confirming the presence of
spawning redds from the shore just before the UAV survey. To avoid the sun’s reflection on
the water surface, the aerial surveys were taken before sunset, and in minimal wind conditions
to avoid ripples in the water surface. The aerial surveys were completed on 27-Jul-2018,
between 17:00h and 19:00h in lake Thingvallavatn (after flight permission was obtained from
National Park Thingvellir), and on 3-Nov-2022, between 11:30h and 11:45h in lake Ellidavatn.
The timing of the survey was chosen in consideration with the spawning season of the Arctic
charr and optimal weather conditions. Recorded wind speed in the lake Thingvallavatn survey
area was 2 m/s wind SSE direction and at lake Ellidavatn wind speed was 3 m/s from SW direc-
tion during the survey. The total duration of the lake Thingvallavatn survey was one full hour
(three full batteries), narrowing the aerial time but obtaining sufficient coverage of the study
area. Over the flight course multiple images were taken but in this study only a single image
per site was selected and used for data processing. For lake Ellidavatn a fourth of the time was
needed due to a smaller area covered by the sampling site, here too multiple images were taken
but only a single image was used for the analysis. In both cases the selected images covered the
ground truth reference sites through which the presence of the spawning areas could be con-
firmed. The flight direction of the surveys was controlled manually by an experienced drone
pilot. It followed the shallow shoreline (0-10 m) where the spawning redds were more concen-
trated. The flight path at lake Thingvallavatn was taken over the same areal extent at 10 m, 50
m, and 100 m with the intention of capturing different resolution images for comparison (Fig
1A-1C). The challenges of this methodology lie in the heterogeneous structure of the spawning
redds and the similar reflectance with water vegetation and deep water that can interfere with
the classification of the features.

Data processing

The software ENVI version 5.1 (Exelis Visual Information Solutions, Boulder, Colorado) was
used for processing and classification analysis. For data processing, only images with the least
sunlight reflection and wind ripples were selected. Endmember classes were selected by an
experienced biologist while taking the ground truth information into account after the images
of the spawning ground were taken. For lake Thingvallavatn and lake Ellidavatn six endmem-
ber classes were selected based on the ecological and the geographical features at the sites. For
lake Thingvallavatn the classes selected included “spawning redds”, a dark colour where this
feature dominates; “vegetation”, a green coloured area located on land; “underwater rocks”,
visible as a lighter colouring than the spawning redds; “deep water”, a deeper, darker blue col-
oured area with few ripples caused by wind on the water surface; “shoreline”, characterised by
the lightest colouring; and “surface rocks”, occurring over the shoreline and some parts of the
shallow water recognisable as yellow colouring (Fig 2A). The endmember classes selected from
the lake Ellidavatn image were slightly different due to the presence of anthropogenic features
and the ecology of the water bottom. The following selection was made: “spawning redds”, a
darker colour compared to the lighter background; “vegetation”, recognisable by its light
brown colouring; “underwater rocks”, characterised by brown colour; “aquatic vegetation”, a
darker colour compared to the spawning redds; “anthropogenic feature”, located on land and
grey/brown in colour (a road); and “sediment”, a green and brown colouring covering most of
the lake bottom (Fig 3A).
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Fig 2. Endmember classes in lake Thingvallavatn. (a): RGB image from lake Thingvallavatn. (b): Overview of the
endmember classes obtained with the maximum likelihood classification. (c): Overview of the endmember classes
obtained with the neural net classification. Classified pixels as spawning redds are in red, vegetation in green,
underwater rocks in cyan, deep water in blue, shoreline in yellow, and surface rocks in purple.

https://doi.org/10.1371/journal.pone.0290736.9002

Fifteen training samples with an average of 65 pixels each, to not over- or undertrain the
classification method, of each spectral class were selected on the images of the spawning
grounds to allow for reasonable estimates to determine the mean vector and the covariance
matrix [36]. Followed by, a supervised classification method to classify the pixels.

Three post-classification methods (i.e. majority-minority analysis, sieve classes method,
clump classes method) were applied in order to improve the accuracy by correcting isolated or
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Fig 3. Endmember classes in lake Ellidavatn. (a): RGB image from lake Ellidavatn. (b): Overview of the endmember
classes obtained with the maximum likelihood classification. (c): Overview of the endmember classes obtained with the
neural net classification. Classified pixels as spawning redds are in red, underwater rocks in cyan, vegetation in green,
aquatic vegetation in yellow, anthropogenic feature in white, and sediment in blue.

https://doi.org/10.1371/journal.pone.0290736.g003

misclassified pixels. First, the classified output was filtered by removing spurious pixels with a
majority-minority analysis [37]. This analysis changes spurious or “false” pixels to the class
value that the majority of the pixels in the manually indicated kernel belong to. The following
parameters were selected: majority for the analysis method, a kernel size of 3, and a centre
pixel weight of 1. In addition, isolated pixels were corrected using the sieve classes method [38,
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39]. This method looks at neighbouring pixels to determine if a pixel is grouped with the same
endmember classes surrounding the pixel. For this study pixel connectivity was set to four and
the minimum size to two. Lastly, the clump classes method was applied to clump similarly clas-
sified areas together adjacent from each other [38]. Following a visual examination of the ini-
tial classification results, the size parameter for this method was set to three.

Accuracy assessment

To determine the accuracy of our method a confusion matrix using ground truth regions of
interest was performed. A ground truth ROI (ROI: regions of interest) dataset was generated
by selecting pixels for each spectral endmember class once again (different from the pixels
selected as training data). The training dataset was then paired with the ground truth ROIs to
determine what percentage of the ROI pixels were or were not contained in one of the end-
member classes. The confusion matrix reported overall accuracy of the applied supervised
algorithm by expressing the percentage of correctly classified pixels of all endmember classes.
Producer’s accuracy (PA) is defined as the probability that each endmember class is classified
correctly. User’s accuracy (UA) is defined as the probability that the classification map repre-
sents the ground truth data. Furthermore, the kappa coefficient was used to evaluate the classi-
fication accuracy and can be interpreted as a value ranging from 0 to 1 that explains the
difference between the observed classification of the endmember classes and the reference data
[40].

Results

The method encompasses three main stages: data acquisition, data processing, and the accu-
racy assessment (Fig 4).

To compare different image resolutions the flight path at lake Thingvallavatn was taken
over the same areal extent at 10 m, 50 m, and 100 m (Fig 1A-1C). Following endmember col-
lection and subsequent analyses, the 10 m and 100 m imagery were discarded. The 10 m imag-
ery was discarded due to the high level of detail the picture provided which made overall

Data acquisition

1. Select study area
+  Locate spawning redds ‘

2. Drone mission planning
dependent on weather conditions
+ Avoid sun’s reflection on
water surface
* Minimal wind to avoid
ripples in water

1. Select endmember classes
» Select spectral classes to
distinguish spawning redds
1. Select ground truth data
2. Select training data « Similar amount of pixels as
+ Training samples with training data

3. Camera seftings similar amount of pixels

«  Default settings 2. Apply confusion matrix based on

- Optional polarising filter 3. Apply supenvised classification ground truth ROIs
algorithms
oot 7 *  Maximum likelihood
¢ Ima? 3 gcqwsdmto Sﬂl:s |ngfa dro:e + Neural net Confusion matrix presents:
. Fl;oglr‘on; atlgg nzov:f?thstr?ée » Producer’s accuracy: the probability
o 4. Improve the accuracy that each endmember class is
camera at a 90° angle to S e . assified i
take images from straight * Majority-minority analysis classified correctly .
aboe .+ Sieve classes method * User’s accuracy: the probability that
+ Clump classes method the classification map represents

the ground truth data

Fig 4. Main steps of the method to detect spawning grounds.
https://doi.org/10.1371/journal.pone.0290736.g004
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patterns of spawning grounds difficult to see, increased the level of processing time, and gave
an insufficient number of classes. The 100 m imagery was discarded due to reflectance and low
accuracy results. The 50 m imagery was deemed suitable for the classification methods as it
provided the optimal contrast and lowest environmental reflectance in relation to the spawn-
ing grounds. On the 50 m imagery from lake Thingvallavatn seven common supervised image
classification methods were tested for their accuracy at classifying spawning redds (S2 Table,
all data files are available from https://github.com/Worldmapper/ecoUAV-iceland). Both the
neural net classification (PA: 91.09%, UA: 79.62%) and the maximum likelihood classification
(PA: 89.70%, UA: 90.51%) showed promising results at classifying the spawning redds as well
as overall accuracy (neural net 83.15%, maximum likelihood 87.44%).

After applying the maximum likelihood and the neural net classification on the training
samples of the lake Thingvallavatn area the endmember classes were classified and presented
as following (Fig 2B and 2C): Class 1 (spawning redds; in red) is a dominant class covering
parts of the shallow area, close to the shore. This class can be described as a number of small,
irregular groups of pixels connected by few pixels surrounding the groups. Class 2 (vegetation;
in green) covers the entire top part of the image in one group of pixels. Class 3 (underwater
rocks; in cyan) is distributed covering the pixels adjacent to class 1 and completes the shallow
area. The major difference between these two classes is the lack of irregular groups of pixels in
class 3. Class 4 (deep water; in blue) can be described as a very defined and mostly smooth
class. Class 5 (shoreline; in yellow) is defined by little groups of pixels adjacent to class 2. This
class is very heterogeneous and has few pixels per group that do not cover a large area. Lastly,
class 6 (surface rocks; in purple) can be found adjacent to class 2 and is defined by little group
of pixels. The endmember classes selected for the lake Ellidavatn study area are presented as
following (Fig 3B and 3C): Class 1 (spawning redds; in red) appears in the shallow water and
occurs as irregular groups of pixels with connected by few pixels surrounding the groups.
Additionally, few irregular groups are located on land. Class 2 (vegetation; in green) is a domi-
nant cover class in the land area and has a high density of groups of pixels connected to each
other. Class 3 (underwater rocks; in cyan) is a dominant class covering the shallow area. This
class is adjacent to class 1 and 4. Class 4 (aquatic vegetation; in yellow) covers areas towards
deeper water. The groups of pixels are of irregular shape. Class 5 (anthropogenic feature; in
white) covers a long strip in the bottom of the image. Lastly, class 6 (sediment; in blue) consists
out of a high-density main group of pixels covering most of the image.

After applying the maximum likelihood classification for the lake Thingvallavatn study area
the accuracy assessment reported a PA of 89.70% and a UA of 90.51% for classifying spawning
redds before any post-classification improvements were applied (S3 Table). After applying the
post-classification methods these values reported 90.99% for PA and 96.33% for the UA
(Table 1). Spawning redds were mostly correctly classified, however, 15 pixels were classified
as underwater rocks, 74 pixels as deep water, and 2 pixels as shoreline. The other endmember
classes reported >80% accuracy for PA after post-classification methods and >78% for UA
(S3 Table). Furthermore, looking at the overall accuracy and kappa coefficient applying post-
classification methods improved the accuracy from 87.44% to 90.78% and the kappa coeffi-
cient from 0.85 to 0.89 (S3 Table).

The error matrix of the neural net classification reported 92.18% PA and 88.92% UA for the
spawning redds (Table 2) which were improved from 91.09% PA and 79.65% UA (54 Table)
after applying post-classification methods. Seventeen pixels were incorrectly classified as
underwater rocks and 62 pixels as deep water (Table 2). The PA for the other endmember clas-
ses reported >80% except for the vegetation endmember class which only reported 70.31%
accuracy. The lowest UA reported 69.13% accuracy for the underwater rocks class while the
other endmember classes reported above 88%. Lastly, overall accuracy reported 83.15% before
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Table 1. Error matrix of the maximum likelihood classification in pixels for lake Thingvallavatn. Producer’s accuracy (PA) and user’s accuracy (UA) are reported
after applying post-classification methods. The columns represent the true classes and the rows represent the classifier’s predictions. A single pixel was unclassified due to

the post-classification improvement methods.

Class Spawning redds Vegetation Underwater rocks Deep water Shoreline Surface rocks Total UA (%)
Unclassified 0 1 0 0 0 0 1

Spawning redds 919 0 26 9 0 0 954 96.33
Vegetation 0 867 39 0 0 70 976 88.83
Underwater rocks 15 92 924 26 0 116 1173 78.77
Deep water 74 0 24 966 0 0 1064 90.79
Shoreline 2 20 0 0 1011 21 1054 95.92
Surface rocks 0 27 0 0 6 907 940 96.49
Total 1010 1007 1013 1001 1017 1114

PA (%) 90.99 86.10 91.21 96.50 99.41 81.42

https://doi.org/10.1371/journal.pone.0290736.t001

post-classification methods were applied and improved to 86.95% after, and kappa coefficient
improved from 0.80 to 0.84 (S4 Table).

For the lake Ellidavatn study area the accuracy assessment of the maximum likelihood clas-
sification reported a PA of 91.79% and a UA of 84.67% for classifying spawning redds before
post-classification methods were applied (S5 Table) which after applying the post-classification
improvements reached an accuracy of 95.15% and 87.06%, respectively. Misclassified pixels
were assigned to the aquatic vegetation class (49 pixels) (Table 3). The other endmember clas-
ses reported high PA and UA (>75%). Overall accuracy reported 86.88% before post-classifi-
cation methods and was improved to 88.89% after applying the methods (S5 Table).
Additionally, the kappa coefficient reported 0.84 (before post-classification) and 0.87 (after
post-classification) (S5 Table).

The assessment of the neural network classification in lake Ellidavatn reported 99.80% PA
and 85.58% UA for classifying spawning redds after applying post-classification methods
(Table 4). These accuracies were improved from 96.64% PA and 82.03% UA (S6 Table). Mis-
classified pixels were classified as aquatic vegetation (2 pixels) (Table 4). The vegetation,
underwater rocks, and anthropogenic features endmember classes reported high PA (>77%)
and UA (>69%) accuracies, however, the aquatic vegetation and sediment endmember classes
scored low for PA (<66%) and UA (<70%) (Table 4). Overall accuracy was improved from
79.08% to 80.66% accuracy after applying post-classification methods and the kappa coefficient
from 0.75 to 0.77 (S6 Table).

Table 2. Error matrix of the neural network classification in pixels for lake Thingvallavatn. Producer’s accuracy (PA) and user’s accuracy (UA) are reported after
applying post-classification methods. The columns represent the true classes and the rows represent the classifier’s predictions.

Class Spawning redds Vegetation Underwater rocks Deep water Shoreline Surface rocks Total UA (%)
Unclassified 0 0 0 0 0 0 0

Spawning redds 931 2 23 82 9 0 1047 88.92
Vegetation 0 708 29 7 0 25 769 92.07
Underwater rocks 17 213 909 2 0 174 1315 69.13
Deep water 62 0 16 910 0 0 988 92.11
Shoreline 0 32 0 0 1006 21 1059 95.00
Surface rocks 0 52 36 0 2 894 984 90.85
Total 1010 1007 1013 1001 1017 1114

PA (%) 92.18 70.31 89.73 90.91 98.92 80.25

https://doi.org/10.1371/journal.pone.0290736.t002
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Table 3. Error matrix of the maximum likelihood classification in pixels for lake Ellidavatn. Producer’s accuracy (PA) and user’s accuracy (UA) are reported after
applying post-classification methods. The columns represent the true classes and the rows represent the classifier’s predictions. A single pixel was unclassified due to the

post-classification improvement methods.

Class Spawning redds
Unclassified 0

Spawning redds 962

Vegetation 0

Underwater rocks 0

Aquatic vegetation 49
Anthropogenic feature | 0

Sediment 0

Total 1011

PA (%) 95.15

https://doi.org/10.1371/journal.pone.0290736.t003

Vegetation | Underwater rocks | Aquatic vegetation | Anthropogenic feature |Sediment |Total |UA (%)

1 0 0 0 0 1
0 0 100 43 0 1105 87.06
925 30 0 0 132 1087 85.10
5 920 0 0 0 925 99.46
0 0 973 0 0 1022 95.21
78 0 0 1001 0 1079 92.77
4 273 0 0 937 1214 77.18
1013 1223 1073 1044 1069 6433
91.31 75.22 90.68 95.88 87.65

Discussion

The aim of this study was to develop a standardised approach allowing for mapping salmonid
spawning grounds that is easy to use and low-cost. The analysis of UAV-derived imagery in
the contrasting case study areas situated in the subarctic region showed a successful applica-
tion of a pixel-based classification methods that were able to identify the spawning area from
RGB imagery with high accuracy. The study area in lake Thingvallavatn was selected based on
a two-step selection process where we (i) located spawning redds from the shore, and (ii) veri-
fied that the observed redds are used for spawning through in-situ observations and video
recordings of spawning activity, and noted the presence eggs to confirm successful spawning.
Imagery of the confirmed spawning grounds taken from a height of 50 m was deemed suitable
for classifying spawning redds after which fifteen training areas with a similar number of pixels
were selected for each spectral class. Of all methods tested (S2 Table) the maximum likelihood
and neural net classification methods showed highest producer’s and user’s accuracy. The two
algorithms differed slightly in their performance: the neural net classification showed more
noise in the deeper waters of lake Thingvallavatn (Fig 2C), and misclassified aquatic vegetation
as spawning redds and sediment as vegetation in lake Ellidavatn (Fig 3C). Even though in our
case the maximum likelihood classification method performed better, both methods should be
considered when applying to other study systems. Another factor to consider is computational
power: the run time on a basic, off-the-shelf laptop is about 20 seconds and 23 minutes per
image for maximum likelihood and neural net, respectively. The application of the three post-
classification methods improved the accuracy for most endmember classes in both study areas

Table 4. Error matrix of the neural network classification in pixels for lake Ellidavatn. Producer’s accuracy (PA) and user’s accuracy (UA) are reported after applying
post-classification methods. The columns represent the true classes and the rows represent the classifier’s predictions.

Class Spawning redds
Unclassified 0

Spawning redds 1009
Vegetation 0

Underwater rocks 0

Aquatic vegetation 2
Anthropogenic feature | 0

Sediment 0

Total 1011

PA (%) 99.80

https://doi.org/10.1371/journal.pone.0290736.1004

Vegetation | Underwater rocks |Aquatic vegetation | Anthropogenic feature |Sediment |Total |UA (%)

0 0 0 0 0 0

0 0 114 506 0 1179 85.58
929 160 0 0 241 1330 69.85
0 943 0 0 42 985 95.74
0 0 619 0 85 706 87.68
84 3 0 988 0 1075 91.91
0 117 340 0 701 1158 60.54
1013 1223 1073 1044 1069 6433

91.71 77.11 57.69 94.64 65.58
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(S3-S6 Tables). Most notably, in the lake Ellidavatn study area (S5 and S6 Tables) the PA of
the spawning redds was improved by almost 3% showing the importance of post-classification
improvement methods. However, the exact specifications of these methods will depend on its
study area. For example, the irregular nature of the Arctic charr spawning grounds in lakes
Thingvallavatn and Ellidavatn prompted the use of specific values (see methods). In the case of
more regularly shaped spawning grounds a revaluation of these parameters would be
recommended.

To map the area of entire spawning habitats using UAV and semi-automated processing
has several benefits: (i) it takes less time when large quantities of images need to be analysed in
case of frequent monitoring, (ii) improves accuracy in case of observer bias [24], and (iii) the
combination of a single RGB image and supervised classification methods makes our approach
accessible to a wide range of users. Rather than estimating the number of spawning redds, the
method we are proposing here maps the spawning redds visible on a RGB image which will
address some of the major shortcomings of the redd count method. For example, manual
count is highly inaccurate in areas with superimposed and/or interconnected redds [24, 41].
The method presented here offers a new way of dealing with these shortcomings where instead
of counting the number of redds the pixels comprising the spawning redds are quantified,
allowing for comparable results between observers and over spatial and temporal scales. Spatial
distribution, connectivity, and size of spawning habitat are important indicators of spawning
habitat quality and have shown correlation with redd occupancy [42, 43]. Furthermore, our
approach allows for studying of the dynamics of spawning habitats through semi-automated
and therefore cost-effective remote sensing-supported monitoring procedures, i.e. spatially
analysing the spawning habitats with regards to whether they are getting bigger, smaller or are
relocating elsewhere. Assessing such dynamics is of utmost importance in times of rapid envi-
ronmental change. For example, shrinking spawning areas have been associated with increased
temperature and salinity [44] and shifts in spawning habitats are associated with temperature
fluctuations [45, 46]. Although it has been previously shown that predicted usable habitat cor-
relates with salmonid redd count [47], further research into the direct correlation between
redd numbers and overall spawning habitat size would be recommended to be able to make
use of existing redd count data.

While there are a lot of benefits to mapping spawning redds using semi-automated process-
ing, there are some limitations to keep in mind. For example, good weather is needed to obtain
the image quality necessary for data processing: high winds affect the stability of the drone and
cause water surface disturbance; water turbidity and reflection of the sun can also be a prob-
lem. Obtaining data using a UAV may require more planning than traditional redd counting,
but it is far more efficient. A limitation to the method is that suitable reference points are
needed on the collected images. This is usually not an issue when spawning redds are located
close to the shoreline, but can be more problematic when they are in open water. In such a
case, a reference point such as a buoy or other clearly identifiable geographic marker would be
needed. While the data for this study was collected by an experienced drone pilot, this is no
longer necessary as drones are becoming more user-friendly. And while some practice to fly a
UAV is recommended, current off-the-shelf drones are suitable as they often come with GPS,
VPS (visual positioning system), and collision avoidance technology, making them very easy
to use. Our results show that an off-the-shelf drone produces images that are suitable for map-
ping spawning redds. We used two different models (DJI Mavic Pro and DJI Mavic 2 Zoom)
with different sensors and while the reported accuracy from Ellidavatn (DJI Mavic 2 Zoom)
was slightly better, in both cases we report >90% accuracy (Tables 2-4). Finding the right cam-
era settings may also take some practice. To ensure optimal image quality when data is col-
lected by amateur drone pilots we recommend the use of automatic settings.
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Large-scale monitoring programs are needed to assess ecosystem changes caused by climate
change and other anthropogenic stressors. Our approach to detect spawning habitats has the
potential for future use in complementing fieldwork that aims at monitoring changes in sal-
monid spawning grounds in different environmental conditions. Scaling this method to other
freshwater ecosystems would allow to assess the full potential of this method in detecting
spawning redds from a range of different species. We show the successful application of this
method in two very contrasting lake environments which demonstrates its potential. Our
method would furthermore allow to include the public in data collection through crowdsourc-
ing as the ubiquitous existence of UAVSs gives the opportunity to make use of crowdsourcing
to gather images of salmonid spawning grounds. In principle an amateur drone pilot should
be able to accomplish data collection without complicated technical guidance. Adopting the
analysis to freely available open-source tools would help to even further advance this method
to a low-cost approach that is accessible for regular monitoring programmes. For example,
QGIS is a suitable open-source platform for which a Semi-Automatic Classification Plugin
[48] has been developed that can be used with this pipeline. For further monitoring purposes,
a framework building on the capabilities of Geographic Information Systems (GIS) will need
to be developed to create a spatial database from the remote sensing analyses [49]. To achieve
the objective of analysing regular observations in a consistent manner across space and time, it
is essential to carefully consider a robust photogrammetric processing approach and identify
suitable ground control points for reliable georectification of the data. This process lays the
foundation for establishing change detection procedures, which play a crucial role in assessing
spatial changes in spawning grounds over time. Additional geographical observations are also
derived from the remote sensing analyses as basic indicators of the different endmember clas-
ses (e.g. aquatic vegetation, vegetation, shoreline) providing useful information for a GIS data-
base. At the current stage of our case study presented here the additional endmember classes
are only used to distinguish the spawning redds from other features. However, with further
development of the analyses there is scope for the other endmember classes to be utilised for
further ecological analyses. Such information will be valuable e.g. for geomorphological map-
ping of the study sites to further understand the ecosystem and see how its geography is chang-
ing beyond the nature of the nesting sites.

Conclusions

The method we proposed here is a standardised method to map spawning redds that is easy in
use and low-cost. To apply the method to other environments the following three steps are to
be followed: (i) data acquisition, (ii) data processing, and (ii) accuracy assessment (Fig 4).

Data acquisition starts with selecting the study site and planning the drone mission based
on suitable weather conditions. It is important that images are taken with minimum water sur-
face reflection. This can be done by taking images when the sun is not at its highest point, and
by conducting the survey at calm wind conditions to minimise ripples in the water surface. To
acquire the images we recommend automatic camera settings and to further increase the con-
trast a polarising filter can be added. We also recommend taking RAW images which offer the
highest resolution possible and the opportunity to improve the images during the image pro-
cessing stage. Our results show that a UAV flight altitude of 50 m was best suited. It is impera-
tive that the camera is turned at a 90° angle to take the images from straight above.

Data processing starts with selecting the endmember classes. Following this, the regions of
interest (ROIs; training data) need to be selected for each endmember class, while keeping in
mind that the amount of pixels per class should be similar. The next step involves applying the
supervised classification algorithms (maximum likelihood, neural net). In our case, no
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probability threshold was set to classify all pixels in the image for the maximum likelihood
classification in ENVI. The parameters used to run the neural net classification in ENVI were
set to logistic activation, 0.9 training threshold contribution, 0.2 training rate, 0.9 training
momentum, 0.1 training RMS exit criteria, 1 hidden layer, and 1000 training iterations. Post-
classification methods can be applied to improve the accuracy (majority-minority, analysis,
sieve classes method, clump classes method).

The last step of the method covers the accuracy assessment for which ground truth data
needs to be selected after which the confusion matrix based on ground truth ROIs is applied.

Supporting information

S1 Table. Technical specifications UAV. Basic technical specifications of the RGB camera
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percentages and pixels before post-classification methods have been applied.
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racy assessment of the maximum likelihood classification algorithm in lake Thingvallavatn
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and User’s Accuracy (UA) by class.
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Accuracy (UA) by class.
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S5 Table. Accuracy assessment maximum likelihood lake Ellidavatn. Results of accuracy
assessment of the maximum likelihood classification algorithm in lake Ellidavatn before and
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Accuracy (UA) by class.
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