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Abstract

Climate change and climate variability are affecting marine mammal species and these

impacts are projected to continue in the coming decades. Vulnerability assessments provide

a framework for evaluating climate impacts over a broad range of species using currently

available information. We conducted a trait-based climate vulnerability assessment using

expert elicitation for 108 marine mammal stocks and stock groups in the western North

Atlantic, Gulf of Mexico, and Caribbean Sea. Our approach combined the exposure (pro-

jected change in environmental conditions) and sensitivity (ability to tolerate and adapt to

changing conditions) of marine mammal stocks to estimate vulnerability to climate change,

and categorize stocks with a vulnerability index. The climate vulnerability score was very

high for 44% (n = 47) of these stocks, high for 29% (n = 31), moderate for 20% (n = 22), and

low for 7% (n = 8). The majority of stocks (n = 78; 72%) scored very high exposure, whereas

24% (n = 26) scored high, and 4% (n = 4) scored moderate. The sensitivity score was very

high for 33% (n = 36) of these stocks, high for 18% (n = 19), moderate for 34% (n = 37), and

low for 15% (n = 16). Vulnerability results were summarized for stocks in five taxonomic

groups: pinnipeds (n = 4; 25% high, 75% moderate), mysticetes (n = 7; 29% very high, 57%

high, 14% moderate), ziphiids (n = 8; 13% very high, 50% high, 38% moderate), delphinids

(n = 84; 52% very high, 23% high, 15% moderate, 10% low), and other odontocetes (n = 5;

60% high, 40% moderate). Factors including temperature, ocean pH, and dissolved oxygen

were the primary drivers of high climate exposure, with effects mediated through prey and

habitat parameters. We quantified sources of uncertainty by bootstrapping vulnerability

scores, conducting leave-one-out analyses of individual attributes and individual scorers,

and through scoring data quality for each attribute. These results provide information for

researchers, managers, and the public on marine mammal responses to climate change to

enhance the development of more effective marine mammal management, restoration, and

conservation activities that address current and future environmental variation and biologi-

cal responses due to climate change.

Introduction

Global climate change is altering the physical conditions that support inshore, coastal, and oce-

anic ecosystems [1–4]. The increasing levels of heat and carbon dioxide in the atmosphere

translate to increasing ocean temperatures, rising sea levels, decreasing dissolved oxygen,

declining sea ice coverage, and ocean acidification [5–9]. The additional heat also drives shift-

ing patterns in precipitation [10, 11], salinity [12], and ocean circulation [13–16]. Some of

these changes in environmental and habitat conditions are similarly impacting different

regions. For example, relative sea level rise in waters of the southeastern United States, Gulf of

Mexico (GOMx), and Caribbean Sea has been accelerating [6, 17–20]. However, for other

parameters, the observed and predicted rates and magnitudes of these changes vary regionally.

In another example, sea surface temperature (SST) [21] and ocean acidity [22–24] have
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increased rapidly in the western North Atlantic (WNA), while dissolved oxygen levels

throughout the northern GOMx have decreased [25]. Overall, these trends are projected to

continue at least through the end of the 21st century [26–28].

Both direct and indirect impacts of climate change can dramatically affect the distribution,

behavior, and movements of marine communities, including large vertebrates such as marine

mammals [29–36]. Marine mammal species with restricted geographical distributions and habi-

tat tolerances will have limited opportunities to adapt to the changing conditions of their envi-

ronment [30]. Furthermore, marine mammals rely on stable environments where prey

availability is relatively predictable [37, 38]. Consequently, both direct and indirect impacts of

climate change are imminent for marine mammals and are expected to continue [30, 39–41].

Indeed, some marine mammal populations (e.g., ice-associated seals, subarctic cetaceans) have

already shown climate-related shifts in distribution [42–45]. Although predicting climate-

driven changes in marine mammal distribution, phenology, and abundance is challenging [46–

48], new modeling tools and approaches have improved our predictive capabilities [47, 49–52].

A variety of approaches have been used to characterize climate impacts on living marine

resources. These include habitat suitability models (e.g., [53]), scenario planning [54, 55], and

climate vulnerability assessments (CVAs) [56, 57]. CVAs identify the factors contributing to

species’ vulnerability to climate change and rank or categorize species that may be most vul-

nerable using a rapid but generalized approach that typically combines exposure, sensitivity,

and adaptive capacity [57–60]. There have been numerous CVA studies of terrestrial species

dating back to the 1990s (e.g., [61, 62]). However, CVAs are less common for marine ecosys-

tems [56, 63–65], with marine fisheries and marine and coastal habitat receiving the most

attention to date (e.g., [66–71]). In recent years, CVAs, and elements thereof, have been

applied to marine mammals [72–76].

Trait-based CVAs often rely on qualitative assessments of species’ biological or ecological

traits that have been linked with climate responses [57, 77] and may suffer where those link-

ages are not well established [57, 78]. For ecosystems where linkages are well established [79],

trait-based CVAs can effectively incorporate expert elicitation to address areas with data defi-

ciencies [69, 70]. Although trait-based CVAs provide less resolution than some quantitative

methods, they can play an important role in identifying and planning for climate change

impacts to species due to their rapid and adaptable approach [59, 80].

Given the challenges presented by changing climate conditions, conservation and protec-

tion of species and populations can no longer be viewed through traditional lenses, and climate

change must be considered to adequately manage species [81, 82]. To aid management and

conservation strategies, an improved understanding of marine mammal responses to altered

climate states is needed at the management unit, or “stock” level. In the United States, the

National Oceanic and Atmospheric Administration’s (NOAA) National Marine Fisheries Ser-

vice (NOAA Fisheries) and the United States Fish and Wildlife Service (USFWS) have a man-

date to protect and recover marine mammal species under the Endangered Species Act (ESA)

and Marine Mammal Protection Act (MMPA). The MMPA defines a stock as “a group of

marine mammals of the same species in a common spatial arrangement that interbreed when

mature” (MMPA, 16 USC, 1361 et seq.). Stocks of marine mammals are defined for the pur-

pose of stock assessments, which can be used to identify and potentially mitigate the effects of

anthropogenic and natural stressors. Here, we conducted a trait-based CVA of United States

marine mammal stocks in WNA, GOMx, and Caribbean waters, to provide the first assess-

ment of potential, climate-associated threats to marine mammals in these waters. We present a

ranked list of stocks by climate vulnerability score, an assessment of the confidence of those

scores, and the primary ecological and environmental drivers of climate vulnerability.
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Methods

Overview

We followed the approach outlined by the NOAA Fisheries Marine Mammal Climate Vulnera-

bility Assessment (MMCVA) [83], based on the NOAA Fisheries Marine Fish and Invertebrate

Climate Vulnerability Assessment (FCVA) [70, 84]. The MMCVA is a modified Delphi

approach [85–87] that uses expert elicitation through iterative rounds of scoring and discus-

sion. Experts scored two separate components for each marine mammal stock: (1) degree of

exposure to climate change; and (2) sensitivity and capacity to adapt to climate change. These

two component scores were then combined to calculate a relative climate vulnerability score.

We convened an expert workshop in July 2015, with representatives from NOAA, other

governmental agencies, non-governmental organizations (NGOs), and academia to inform

the selection of relevant climate exposure factors and climate sensitivity attributes [83]. We

used existing CVA frameworks and approaches as models (e.g., [69, 70, 73, 88]) and used prior

syntheses of climate impacts on marine mammals (e.g., [31, 89, 90]) to establish elements of

the two components of the assessment.

Exposure component

Climate exposure was defined as the magnitude of environmental change a marine mammal

stock is expected to experience within its current geographic distribution. Climate exposure

was scored using 16 abiotic exposure factors that are likely to affect marine mammals, their

prey, and/or their habitat (Table 1) [83]. Seven of these factors (SST, air temperature, precipita-

tion, salinity, ocean pH, sea ice cover, and dissolved oxygen) were modeled in the NOAA Cli-

mate Change Web Portal [91] using the ensemble of models from the Coupled Model

Intercomparison Project phase 5 (CMIP5) [92] with representative concentration pathway

(RCP) 8.5 [93, 94], using the historical period of 1956–2005 and future period of 2006–2055.

RCP 8.5 represents a “business-as-usual” emissions scenario that assumes the fewest green-

house gas mitigation measures will be implemented [94] and is used by NOAA Fisheries when

considering the treatment of climate change in ESA decisions [95]. Through a series of scoping

conversations during the method development, a mid-century future time frame was deter-

mined to be near-term enough to be useful to managers for statutory and management activi-

ties (e.g., recovery planning, critical habitat designation, biological opinions) [83]. We scored

the seven factors from the NOAA Climate Change Web Portal using two metrics: projected

change in mean and variability of the climate factor. The change in mean condition of a factor

was represented by a projected future standard anomaly, which compares projected future

conditions to historical conditions by subtracting the historical mean from the projected

future mean and then dividing the difference by the historical standard deviation. The change

in variability of a factor was represented by an F-ratio, calculated as future variance divided by

historical variance. We scored circulation qualitatively by evaluating the types of circulation

(e.g., wind-driven, tidal) with which each stock interacts and how those types of circulation

may change. Interaction with large boundary currents or astronomically driven circulation

represented less exposure to climate change while interaction with wind- or weather-driven

circulation (e.g., upwelling) represented greater exposure to climate change (Table 1) [70, 84].

Sea level rise was scored using projected relative sea level change at 2060 [96], which was the

nearest time frame to the 2006–2055 time frame used for the other exposure factors. Scoring

the sea level rise exposure factor also included a qualitative element such that stocks in deep

water scored as low exposure (Table 1). Circulation and sea level rise did not include a variabil-

ity metric.
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Sensitivity component

Sensitivity was defined as the ability of a stock to tolerate climate-driven changes in environ-

mental conditions. We included elements of adaptive capacity within the sensitivity component.

Adaptive capacity was defined as the ability to modify intrinsic characteristics through behav-

ioral or evolutionary processes to cope with climate-driven changes in environmental condi-

tions [59]. Tolerance of a condition and adaptation to a condition exist along a spectrum of

possible responses to that condition, resulting in attributes that could be categorized as relating

to sensitivity or relating to adaptive capacity with simple changes in wording [70, 97]. For exam-

ple, a stock with a generalist diet could be considered to have low sensitivity and be highly adap-

tive to climate-driven changes in its prey. Therefore, we combined sensitivity and adaptive

capacity into a single component, hereafter referred to as the “sensitivity component” and the

attributes within it referred to as “sensitivity attributes.” The sensitivity component was scored

using 11 life history traits and ecological variables related to climate change (Table 2) [83].

Table 1. Exposure factors and scoring criteria used in assessing climate vulnerabilities of 108 marine mammal stocks in the western North Atlantic, Gulf of Mexico,

and Caribbean Sea.

Exposure

Factor

Metric Low Moderate High Very High

Sea Surface

Temperature

Air

Temperature

Precipitation

Salinity

Ocean

Acidification

Sea Ice Cover

Dissolved

Oxygen

Change in

mean

|x| < 0.5 std dev 0.5 std dev

� |x| <

1.5 std dev

1.5 std dev

� |x| <

2.0 std dev

|x|� 2.0 std dev

Sea Surface

Temperature

Air

Temperature

Precipitation

Salinity

Ocean

Acidification

Sea Ice Cover

Dissolved

Oxygen

Change in

variability

F ratio <1.15 1.15

� F ratio <

1.54

1.54

� F ratio <

1.78

F ratio � 1.78

Circulation Qualitative Stock distribution

overlaps almost

exclusively with large

boundary currents or

tidal currents

Majority of stock distribution

overlaps with large boundary

currents or tidal currents. Stock

may also interact with mesoscale

features such as fronts or eddies

Majority of stock distribution

overlaps with currents that are

expected to have a high magnitude

of change such as estuarine

circulation, nearshore density

currents, and/or wind driven

currents. Stock may also interact

with mesoscale features such as

fronts or eddies

Stock distribution overlaps almost

exclusively with currents that are

expected to have a high magnitude

of change such as estuarine

circulation, nearshore density

currents, and/or wind driven

currents

Sea Level Rise Semi-

qualitative

Stock is found generally

in deeper water beyond

the continental shelf

Stock is generally coastal or found

in continental shelf waters

Stock relies on wetland, seagrass,

beach, or estuary habitat for one or

more life stage and the change in

regional sea level within their

range is expected to increase less

than 7 mm yr-1 by 2050

Stock relies on wetland, seagrass,

beach, or estuary habitat for one or

more life stage and regional sea

level within their range is expected

to increase greater than or equal to

7 mm yr-1 by 2050

https://doi.org/10.1371/journal.pone.0290643.t001
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Data quality

We scored the quality of available data for each factor and attribute by asking each expert to

assign a data quality score as described in Table 3 [70, 84]. For exposure factors, data from the

NOAA Climate Change Web Portal were considered to be high quality and data quality scores

referred to the certainty of distribution for each stock relative to that exposure factor. For sen-

sitivity attributes, these data quality scores referred to the data provided to and by the experts

in the stock narratives.

Table 2. Sensitivity attributes and scoring criteria used to assess climate vulnerabilities of 108 marine mammal stocks in the western North Atlantic, Gulf of Mexico,

and Caribbean Sea.

Sensitivity

Attribute

Sensitivity Score

Low Moderate High Very High

Prey/Diet
Specificity

Generalist; feeds on a wide range

of prey types and sizes

Generalist; feeds on a limited number

of prey types or sizes, but a wide

variety of species within those types

Specialist; exhibits strong

preference for one prey type

for the majority of its caloric

intake, but is capable of

switching prey types

Specialist; reliant on one prey type,

often a single genus or family, for the

majority of its caloric intake, and is

unable to switch to other prey types

Habitat
Specificity

Stock exclusively utilizes physical

features resilient to climate

conditions

Stock utilizes a variety of features, but

is not reliant on physical features

vulnerable to climate conditions and/

or biogenic habitat for specific life

stages

Stock relies on biogenic

habitat or physical features

vulnerable to climate

conditions for one life stage or

event

Stock relies on biogenic habitat or

physical features vulnerable to climate

conditions for multiple life stages or

events, or for any one particularly

critical life stage or event

Site Fidelity Individuals display no site fidelity Individuals display a low degree of

site fidelity (i.e., archipelagos or

coastlines of a general region)

Individuals display a high

degree of site fidelity (i.e.,

specific islands or bays) for

either foraging or breeding

Individuals display a high degree of site

fidelity (i.e., specific islands or bays) for

both foraging and breeding

Lifetime
Reproductive
Potential

High reproductive output based

on reproductive lifespan and

reproductive interval

High-moderate reproductive output

based on reproductive lifespan and

reproductive interval

Low-moderate reproductive

output based on reproductive

lifespan and reproductive

interval

Low reproductive output based on

reproductive lifespan and reproductive

interval

Generation
Time

< 10 years 10 years� x < 20 years 20 years� x <30 years � 30 years

Reproductive
Plasticity

High reproductive plasticity (e.g.,

long breeding season, broad

breeding range, few breeding

habitat requirements)

High-moderate reproductive

plasticity

Low-moderate reproductive

plasticity

Low reproductive plasticity (e.g., short

breeding season, narrow breeding

range, strict breeding habitat

requirements)

Migration Annual migration; multiple

migratory pathways

Annual migration; single migratory

pathway

Seasonal migration No migration; local movement only

Home Range Individuals’ home ranges are

broad (e.g., include much of an

ocean basin)

Individuals’ home ranges are

moderate to large (e.g., spend the

majority of time along coasts, within

continental shelf waters, or along the

continental slope, but may utilize

deeper waters)

Individuals typically remain in

bays or archipelagos and

seldom travel farther but could

if needed

Individuals’ home ranges are relatively

small (e.g., confined to bays or

archipelagos) and are limited from

traveling farther by a combination of

geographic features, physical

capabilities, and behaviors

Stock
Abundance

Stock comprises > 10,000

individuals

Stock comprises 1,001–10,000

individuals

Stock comprises 101–1,000

individuals

Stock comprises < 100 individuals

Stock
Abundance
Trend

Increasing abundance trend over

past 10-year period

Stable abundance trend over past

10-year period

Declining abundance trend

over past 10-year period

Rapidly declining abundance trend

over past 10-year period

Cumulative
Stressors

Stock currently experiences 1 or

fewer additional stressors

Stock currently experiences 2 or 3

additional stressors

Stock currently experiences 4

or 5 additional stressors

Stock currently experiences greater

than 5 additional stressors or has one

additional stressor that accounts for

more than half of annual mortality

https://doi.org/10.1371/journal.pone.0290643.t002
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Scope

We conducted this assessment using 108 cetacean and pinniped stocks managed by NOAA

Fisheries in the WNA, GOMx, and Caribbean Sea (S1) [98]. In some instances, stocks or spe-

cies within the same genus were combined into a single stock group (see S1). For example, the

pygmy sperm whale (Kogia breviceps) and dwarf sperm whale (Kogia sima) were combined

into a single Kogia sp. group due to the difficulty in visually differentiating these species and

the frequency in which they are discussed together in the literature (e.g., [99]). In addition,

each stock or stock group (hereafter referred to as a “stock”) was classified into a taxonomic

group (delphinid, mysticete, other odontocete, pinniped, ziphiid) to allow for generalized

assessment. For stocks whose individual ranges extended beyond the United States Exclusive

Economic Zone (EEZ), we included the full ranges within the scope of the assessment. For

example, North Atlantic right whales (Eubalaena glacialis) travel into Canadian waters and

their occurrence in those waters was included here. West Indian manatees (Trichechus mana-
tus), which are managed by the USFWS, were not included in this assessment.

Participants

In total, 41 marine mammal experts scored stocks in this assessment. These subject matter

experts were broadly familiar with their assigned stocks and species through field or other

research experience. While expertise in any given stock was valuable, the ability of experts to

score multiple stocks allowed for comparisons across stocks. Expert scorers included staff

from NOAA and other federal government agencies, NGOs, and academia. All expert scorers

are included here as co-authors.

Assessment resources

Background documents. Prior to the assessment, we assembled information about each

stock’s ecology and life history related to the sensitivity attributes (Table 2), the stock’s geo-

graphic distribution, and any peer-reviewed publications about the stock relating to climate

change. We organized this information into stock narratives, similar to other CVAs (e.g., [66,

69, 70]) and continued to update the narratives as new publications became available during

the assessment (see S2). For understudied stocks, we included ecology and life history informa-

tion from related stocks or species. For example, if reproductive information about the com-

mon bottlenose dolphin (Tursiops truncatus) Caloosahatchee River Stock was missing,

information from the nearby common bottlenose dolphin Sarasota Bay/Little Sarasota Bay

Stock was included as a reference point.

Exposure maps. To facilitate scoring exposure factors, we created a set of exposure maps

for each stock. Climate projection datasets were queried and downloaded using the settings

described in Table 4. We used ArcGIS 10.5.1 (Esri, Redlands, CA, USA) to create maps for

Table 3. Data quality score definitions used in the climate vulnerability assessment of 108 marine mammal stocks

in the western North Atlantic, Gulf of Mexico, and Caribbean Sea.

Data Quality

Score

Criteria

3 Observed, modeled, or measured data support tally placement.

2 Observed, modeled, or measured data from similar stocks or species support the tally placement.

Dated or conflicting information complicates the ability to place tallies.

1 Expert’s knowledge of and experience with the stock is the sole basis for tally placement.

0 No information is available to support tally placement and the expert’s familiarity with the stock

is insufficient to provide expert judgment.

https://doi.org/10.1371/journal.pone.0290643.t003
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each exposure factor by reclassifying projected values according to the bin scoring criteria

(Table 1). Sea level rise exposure maps were generated using the nearest geographic tide gauge

point estimate of regional sea level rise in 2060 under the Intermediate-Low (0.5m global sea

level rise by 2100) scenario [96], which falls within the likely range of global sea level rise of

0.45–0.82 m by 2100 relative to 1986–2005 projected under RCP 8.5 [100].

Sightings data obtained from the Ocean Biodiversity Information System Spatial Ecological

Analysis of Megavertebrate Populations (OBIS-SEAMAP) [101] were superimposed onto cli-

mate exposure maps to provide a range context for each stock. Stock boundaries were also

superimposed where available. Experts were supplemented with NOAA marine mammal stock

assessment reports (e.g., [98]) and density plots from other published studies (e.g., [102, 103]).

Scoring approach

Following the model of the FCVA [70, 84], each exposure factor and sensitivity attribute was

scored individually by a set of experts for a given stock. For each exposure factor and sensitivity

attribute, experts were allotted five points that could be applied across four scoring bins (Bin

1 = low, Bin 2 = moderate, Bin 3 = high, Bin 4 = very high). Scoring bins were delineated by

criteria specific to that factor or attribute (Tables 1 and 2).

Experts first individually scored exposure factors, sensitivity attributes, and the data quality

of assigned stocks during a preliminary scoring round (December 2017 –February 2018). In

March 2018, we held a full group debrief webinar to discuss major trends in scoring. We clari-

fied questions about the scoring criteria and provided guidance to ensure a consistent scoring

process. For stocks that had major scoring differences between scorers, we held stock-specific

conference calls to allow experts to discuss scores. Experts individually revised and updated

their scores during the final scoring round (April 2018 –September 2018). We aimed for each

stock to be scored by at least three experts, and accomplished this for all but one stock (the

Northern North Carolina Estuarine System Stock of common bottlenose dolphins had only

two scorers). Of the 108 marine mammal stocks and stock groups, 56% (n = 60) of stocks had

three scorers, 34% (n = 37) of stocks had four scorers, 8% (n = 9) of stocks had five scorers,

and 1% (n = 1) had six scorers. The number of scorers varied by stock as a result of variations

in the number of researchers available with expertise for a given stock.

Experts compared the geographic distribution of each stock (based on range maps, sighting

data, and density plots from the published literature) to the projected exposure level for each

individual factor and scored each exposure factor by placing five tallies across the four bins

according to the magnitude of exposure projected across the entirety of the stock’s current dis-

tribution. For example, if the entire stock distribution had a magnitude of exposure that

matched the criteria for “Bin 4,” all five tallies were placed in “Bin 4.” If part of the stock distri-

bution had a magnitude of exposure that matched the criteria for “Bin 4” and part that

Table 4. Values used in the NOAA climate change web portal to generate climate exposure maps for 108 marine

mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean Sea.

Field Value

Experiment RCP 8.5

Model Average of All Models

Variable [based on climate exposure factor]

Statistic Standard Anomaly (average historical)

Season Entire year OR specific season for highly migratory stocks

21st Century Period 2006–2055

Region Scaled to fit entire stock distribution

https://doi.org/10.1371/journal.pone.0290643.t004
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matched the criteria for “Bin 3,” experts placed tallies according to the proportion of the distri-

bution that matched each bin. Circulation was scored using expert judgement based on the

interaction of the stock with various types of currents. Sea level rise was scored using a combi-

nation of expert judgement based on the literature about projected impacts and overlap of the

stock’s distribution with projected sea level rise.

Similarly, experts used their knowledge and experience with the stock or species combined

with the stock narratives to place their five tallies into the four sensitivity bins. For example, if

all supporting evidence matched the criteria in “Bin 4,” the experts placed all five tallies in “Bin

4.” If evidence for a stock ranged across several bins, experts could spread their tallies across

multiple bins based on the supporting evidence and their expert judgment.

Analyses

To calculate the overall climate vulnerability scores, we followed a process similar to the FCVA

[70, 84]. First, we calculated weighted mean scores for each exposure factor and sensitivity

attribute using the tallies from all experts for each stock/factor/attribute combination and the

following equation:

Factor or Attribute Weighted Mean Score ¼
B1 ∗ 1ð Þ þ B2 ∗ 2ð Þ þ B3 ∗ 3ð Þ þ B4 ∗ 4ð Þ

B1 þ B2 þ B3 þ B4

;

where B1–B4 are the number of tallies within each bin and the multipliers in the numerator are

the weighting value for each bin. Exposure and sensitivity component scores for a stock were

determined from the factor and attribute weighted mean scores using the logic model from the

FCVA (Table 5) [70, 84].

The overall vulnerability of a stock was determined by combining exposure component

scores and sensitivity component scores to generate a vulnerability rank and place the stock

into a vulnerability category. The higher scores correlate to greater stock vulnerability. Stocks

were placed into vulnerability categories using the exposure component score and sensitivity

component score cross-referenced with a vulnerability matrix derived from the FCVA [70,

84]. We combined exposure and sensitivity component scores to calculate relative overall cli-

mate vulnerability scores. Scores were combined into relative vulnerability categories of low,

moderate, high, and very high.

We conducted a bootstrap analysis using R (version 3.6.2) [104] to estimate the certainty of

the climate vulnerability scores. In this context, certainty is a measure of the consistency of the

original score with the bootstrap score. The bootstrap score provides an estimate of the vulner-

ability score sensitivity given the variance in the scoring distribution. For each stock, we sam-

pled with replacement the tallies of all experts for each exposure factor and sensitivity

attribute. We recalculated the sensitivity score, exposure score, and vulnerability score for each

of 10,000 iterations. We reported score certainty as the proportion of those 10,000 iterations

that scored in each bin.

Table 5. Logic model used to convert attribute and factor scores to component scores.

Component

Score

Criteria

Very High (4) 3 or more attribute or factor mean scores� 3.5

High (3) 2 or more attribute or factor mean scores� 3.0, but does not meet threshold for “Very High”

Moderate (2) 2 or more attribute or factor mean scores� 2.5, but does not meet threshold for “High” or

“Very High”

Low (1) Less than 2 attribute or factor mean scores� 2.5

https://doi.org/10.1371/journal.pone.0290643.t005
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Distribution, abundance, and phenology responses. A stock’s response to climate

change may manifest in a variety of ways including: 1) shifts in distribution resulting in cli-

mate-driven changes in geographic ranges, including range expansion, contraction, or alter-

ation; 2) fluctuations in abundance resulting in declines or increases; and/or 3) variations in

phenology resulting in seasonal shifts (either earlier and/or later in the year) or temporal

changes (prolonged and/or shortened) of life history events such as breeding or migration. We

considered whether each sensitivity attribute could be expected to drive potential responses in

a stock’s abundance, geographic distribution, and/or phenology (Table 6). Some attributes

influenced all three response categories, while other attributes only influenced one or two

response categories.

Mean sensitivity attribute scores were placed with the response categories (abundance, dis-

tribution, phenology) identified as relevant to that attribute (see Appendix A in Lettrich et al.

[83]). For example, if a given attribute was determined to have influence over all three response

categories, then the mean attribute score applied to each response category. If a given attribute

was determined to have influence over only abundance, the mean attribute score was applied

to abundance, but not to the distribution or phenology for that attribute. The three response

categories remained independent of one another and were supplemental to the mean sensitiv-

ity attribute score.

To estimate the potential for shifts in distribution, declines in abundance, and variations in

phenology, we calculated response scores based on a subset of sensitivity attributes for each

response type. We characterized each response type as directly or inversely related to the attri-

bute score (Table 6). Some attributes were viewed as inversely related due to the nature of the

response category. Full descriptions are found in Appendix A of Lettrich et al. [83].

Determining attribute importance and expert effect: Leave-one-out analysis. We recal-

culated sensitivity and vulnerability scores for each stock by sequentially omitting each sensi-

tivity attribute. We reported the influence of each sensitivity attribute as the change in

sensitivity score and vulnerability score by omitting that sensitivity attribute. We conducted a

similar analysis for the effect each expert had on vulnerability scores by sequentially omitting

the scores of each expert and recalculating each stocks’ vulnerability score.

Results

Overall vulnerability

Of the 108 marine mammal stocks and stock groups, 44% (n = 47) scored as having very high

vulnerability to climate change, 29% (n = 31) scored high, 20% (n = 22) scored moderate, and

7% (n = 8) scored low (Fig 1 and S2 Table). The majority of stocks (72%, n = 78) scored as hav-

ing very high exposure (Fig 1 and S2 Table) while sensitivity scores showed a more even

spread: 33% (n = 36) of stocks scored as having very high sensitivity, 18% (n = 19) scored high,

34% (n = 37) scored moderate, and 15% (n = 16) scored low (Fig 1 and S2 Table).

The bootstrap analysis showed that 43% (n = 46) of stocks scored� 90% certainty, 27%

(n = 29) had certainty scores 66–89%, and 31% (n = 33) had certainty scores� 66%. The origi-

nal vulnerability score matched the score with the greatest proportion of iterations in 90.7%

(n = 98) of stocks, while 4.6% (n = 5) of stocks increased in score and 4.6% (n = 5) decreased

in score in the bootstrap analysis. Sensitivity scores changed more than exposure scores in the

bootstrap analysis

Distribution, abundance and phenology

We used nine of the eleven sensitivity attributes to estimate the possibility that a stock would

experience a shift in distribution (Table 6), and these results identified 12% (n = 13) of stocks
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as having a very high possibility of experiencing shifts in distribution, 69% (n = 75) as high,

18% (n = 19) as moderate, and 1% (n = 1) as low (S3). We used ten sensitivity attributes to esti-

mate the potential for a stock to experience a decline in abundance (Table 6). These results

identified 15% (n = 16) of stocks as having a very high possibility of experiencing declines in

abundance, 31% (n = 33) as high, 30% (n = 32) as moderate, and 25% (n = 27) as low (S3). We

used seven of the eleven sensitivity attributes to estimate the possibility of a stock to experience

a shift in phenology (Table 6). These results identified 9% (n = 10) of stocks as having a very

high possibility of experiencing shifts in phenology, 43% (n = 46) as high, 34% (n = 37) as

moderate, and 14% (n = 15) as low (S3).

Regional differences

Sensitivity, exposure, and vulnerability scores varied spatially across the WNA, GOMx, and

Caribbean regions. For exposure, stocks in the WNA (n = 48) scored very high (52%, n = 25),

high (40%, n = 19), and moderate (8%, n = 4); for sensitivity, stocks in the WNA spanned the

range of sensitivity, with the most stocks (42%, n = 20) scoring as moderate; and they spanned

the range of vulnerability, with a relatively even spread across very high (25%, n = 12), high

(27%, n = 13), moderate (31%, n = 15), and low (17%, n = 8) vulnerability. Stocks in the

GOMx (n = 54) scored high or very high for exposure, with the vast majority (89%, n = 48)

very high; for sensitivity, stocks spanned the range of sensitivity, with nearly half (46%, n = 25)

scoring very high; and for vulnerability, stocks scored very high (65%, n = 35), high (22%,

n = 12), and moderate (13%, n = 7). Within the Caribbean Sea, stocks (n = 6) scored very high

(83%, n = 5) and high (17%, n = 1) for exposure; high (17%, n = 1) and moderate (83%, n = 5)

for sensitivity; and all scored high for vulnerability.

Taxonomic group differences

Taxonomic groupings showed differences in exposure, sensitivity, and vulnerability (Fig 2).

The pinniped group (n = 4) was the only group that did not include very high exposure. The

mysticete group (n = 7) included stocks with only high (29%, n = 2) and very high (71%, n = 5)

exposure but spanned the full range of sensitivity. No mysticete stocks scored as low vulnera-

bility and the majority (57%, n = 4) scored as high vulnerability. The ziphiid group (n = 8)

scored only as high (13%, n = 1) and moderate (88%, n = 7) sensitivity. Stocks in the “other

Table 6. Response variable ordination used in climate vulnerability assessment of 108 stocks of marine mammals from the western North Atlantic, Gulf of Mexico,

and Caribbean Sea.

Sensitivity Attribute Distribution Abundance Phenology

Prey/Diet Specificity Direct* Direct Direct

Habitat Specificity Direct Direct Direct

Site Fidelity Inverse Direct N/A

Lifetime Reproductive Potential N/A Direct N/A

Generation Time N/A Direct N/A

Reproductive Plasticity Inverse Direct Inverse

Migration Inverse N/A Inverse

Home Range Direct Direct N/A

Stock Abundance Direct Direct Direct

Stock Abundance Trend Direct Direct Direct

Cumulative Stressors Direct Direct Direct

*“Direct” and “inverse” refer to the ordination relative to the scoring criteria in Table 2.

https://doi.org/10.1371/journal.pone.0290643.t006
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odontocete” group (Physeter macrocephalus and Kogia sp., n = 5) scored only as high (60%,

n = 3) and moderate (40%, n = 2) vulnerability. Delphinid stocks (n = 84) spanned the full

range of vulnerability and sensitivity, and scored moderate to very high exposure.

Common bottlenose dolphin stocks represented 47% (n = 51) of the stocks scored. We split

those stocks into two groups: inshore (i.e., bay, sound, and estuary stocks; n = 42) and coastal/

offshore (n = 9). The bay, sound, and estuary common bottlenose dolphin stocks scored as

very high (81%, n = 34) and high (19%, n = 8) vulnerability, while coastal/offshore common

Fig 1. Climate vulnerability matrix showing the number of marine mammal stocks for each sensitivity-exposure score combination. Climate

vulnerability is represented by cell color (green = low vulnerability, yellow = moderate vulnerability, orange = high vulnerability, red = very high

vulnerability). Numbers indicate the number of stocks that scored in each sensitivity/exposure combination.

https://doi.org/10.1371/journal.pone.0290643.g001
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bottlenose dolphin stocks scored as high (22%, n = 2), moderate (67%, n = 6), and low (11%,

n = 1) vulnerability (S3).

Protected status differences

Of the eight stocks of species classified as “endangered” under the ESA (see S1), six scored as

high vulnerability and two scored as very high vulnerability (S3). No species in the WNA,

GOMx, or Caribbean Sea were listed as “threatened” under the ESA at the time of our assess-

ment. Of the 54 stocks in this region designated as “depleted” or “strategic” under the MMPA

(see S1), 7% (n = 38) scored as very high vulnerability, 26% (n = 14) scored as high vulnerabil-

ity, and 4% (n = 2) scored as moderate vulnerability (S2 Table).

Fig 2. Climate vulnerability, exposure, and sensitivity by taxonomic group. Climate vulnerability, exposure, and sensitivity of U.S.

marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean Sea by taxonomic group. Note the different

scales on the horizontal axis between taxonomic groups.

https://doi.org/10.1371/journal.pone.0290643.g002
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Exposure factors

Air temperature, dissolved oxygen, ocean pH, and SST were the exposure factors with the

highest median factor scores across all stocks. Generally, change in mean climate conditions

had greater influence on exposure component scores than change in variability of climate con-

ditions. Sea level rise showed a bi-modal distribution of scores, with few stocks scoring in Bin

3, which represented stocks that require intertidal or shallow subtidal habitat but were

expected to experience a lower degree of sea level rise (Fig 3). A leave-one-out sensitivity analy-

sis showed that ocean pH (change in mean) had the greatest ability to shift vulnerability scores

(Fig 4). Without ocean pH (change in mean), 13 stocks would have shifted to a lower vulnera-

bility score. Without dissolved oxygen (change in mean), 11 stocks would have shifted to a

lower vulnerability score. No other factors changed vulnerability scores when omitted during

the leave-one-out analysis.

Sensitivity attributes

Among all stocks, migration had the highest median attribute score while reproductive plastic-

ity and lifetime reproductive potential had the lowest median weighted average (Fig 5). Migra-

tion was the attribute with the highest median score for three of the taxonomic groups

(delphinid, ziphiid, and other odontocete) while the prey and diet specificity attribute had the

highest median score for the mysticete group and habitat specificity had the highest median

Fig 3. Exposure factor mean scores for all scored stocks. Exposure factor mean scores for 108 U.S. marine mammal stocks in the western North Atlantic,

Gulf of Mexico, and Caribbean Sea. The vertical bar represents the median; the box is bounded by the first and third quartiles; whiskers represent 1.5 times

the inter-quartile range; points represent all outlying values.

https://doi.org/10.1371/journal.pone.0290643.g003
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score for the pinniped group (see S2 File). A leave-one-out sensitivity analysis showed that

migration had the greatest ability to shift vulnerability scores (Fig 6). Without the migration

attribute, 16 stocks would have shifted to a lower vulnerability score (11 stocks in the delphinid

group, three in the other odontocete group, and two in the ziphiid group). Without the genera-

tion length attribute (the age at which an individual has achieved half of its reproductive

potential or the average age of parents of the current cohort [105, 106]), ten stocks would have

shifted to a lower vulnerability score (seven stocks in the delphinid group, three in the other

odontocete group).

Expert effect

The combination of expert scoring assignments set up 383 scenarios for expert leave-one-out

analysis. The effect of removing an individual expert’s scores resulted in no change in vulnera-

bility score in 77% (n = 295) of scenarios, a change in vulnerability score of one category (i.e.,

moving to an adjacent category) in 21% (n = 80) of cases, and a change in score of two catego-

ries (e.g., moving from low to high) in 2% (n = 8) of scenarios (see S3 File).

Data quality

In total, 47% (n = 51) of stocks had high data quality as indicated by 80% or more of sensitivity

attributes with a data quality score of two or higher, 29% (n = 31) of stocks had moderate data

Fig 4. Leave-one-out sensitivity analysis for exposure factors. Leave-one-out sensitivity analysis showing how many marine mammal stocks changed

climate vulnerability score when a given exposure factor was omitted. Only ocean pH (change in mean), dissolved oxygen (change in mean), air

temperature (change in mean), and sea surface temperature (change in mean) changed vulnerability scores when omitted.

https://doi.org/10.1371/journal.pone.0290643.g004
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quality as indicated by 50%-80% of sensitivity attributes with a score of two or higher, and 14%

(n = 26) of stocks had poor data quality as indicated by fewer than 50% of sensitivity attributes

with a score of two or higher. Across all stocks, circulation had the lowest median exposure

data quality score (Fig 7), and stock abundance trend had the lowest median sensitivity attri-

bute data quality score (Fig 8).

Discussion

This assessment identified that the majority (72%) of United States cetacean and pinniped

stocks in the WNA, GOMx, and Caribbean Sea are considered to be highly or very highly vul-

nerable to climate change and variability. These regions are expected to experience a high

degree of climate and environmental change by 2055 [91], which resulted in similar drivers of

climate exposure and exposure scores among stocks within the region. Sensitivity attributes

and the associated sensitivity scores often drove the differences in vulnerability scores between

stocks.

Exposure

Assessing exposure to climate change allows researchers and managers to better understand the

extrinsic factors contributing to climate vulnerability in marine mammal stocks. Exposure

scores consider the magnitude of change a stock is expected to experience within its current

Fig 5. Sensitivity attribute mean scores for all scored stocks. Sensitivity attribute mean scores for 108 U.S. marine mammal stocks in the western North

Atlantic, Gulf of Mexico, and Caribbean Sea. The vertical bar represents the median; the box is bounded by the first and third quartiles; whiskers represent

1.5 times the inter-quartile range; points represent all outlying values.

https://doi.org/10.1371/journal.pone.0290643.g005
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range relative to the recent historical variability. The most influential exposure factors included

temperature, ocean pH, and dissolved oxygen (Fig 3). Temperature, both sea surface and air,

was an influential factor in the exposure scores of many stocks, and past studies have shown

that marine mammal distributions have been correlated with SST (e.g., [39, 107]). For example,

along the New Zealand coast, some delphinid species’ distributions are highly related to SST,

with short-beaked common dolphins (Delphinus delphis) inhabiting warmer waters (>14˚C)

while other species such as southern right whale dolphins (Lissodelphis peronii) are found

inhabiting colder waters (9–16˚C) [108]. SST can also affect reproductive capacity. Elevated SST

off South Georgia Island has been found to affect conception and subsequent calving rates in

the eastern South American population of southern right whales (Eubalaena australis) [109].

SST has also been documented to affect marine mammal prey distribution, abundance, and

quality (e.g., [110–115]). In terms of air temperature, its most direct effect is likely on pinnipeds

while they are hauled out [116–119]. Another factor affecting pinniped species in the northeast

United States is sea level rise, which can reduce or impair available habitat, particularly in the

intertidal zone [71]. Air temperature has not been shown to affect cetacean thermoregulation

[120, 121] and its direct effect is likely negligible on open ocean species, though precipitation

and air temperature have been correlated with mortality in inshore delphinids [122]. Air tem-

perature serves as a proxy for water temperature in estuaries, inshore waters, and shallow coastal

areas that are poorly resolved by models of projected sea surface temperature [110, 111, 123,

124]. There is little evidence that ocean acidification has a direct physiological effect on marine

mammals [125], but it is likely to have impacts on the distribution, abundance, phenology, and

Fig 6. Leave-one-out sensitivity analysis for sensitivity attributes. Leave-one-out sensitivity analysis showing how many marine mammal stocks

changed climate vulnerability score when a given sensitivity attribute was omitted. Home range did not change any vulnerability scores when omitted.

https://doi.org/10.1371/journal.pone.0290643.g006
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quality of prey species [30, 109, 126–128]. Changes in pH and temperature may have some

direct impacts on marine mammals via changes in sound absorption and transmission, which

could affect communication and foraging [129–132]. Although no impacts have been docu-

mented in marine mammals, changes in pH also may result in complex parasite-host relation-

ship responses throughout the trophic web [133]. Similarly, dissolved oxygen is unlikely to have

a direct effect on marine mammals, but reduced dissolved oxygen may directly impact the dis-

tribution, abundance, diversity, and richness of prey species (e.g., [134–140]).

Temperature, ocean pH, and dissolved oxygen each scored�3.5 in more than two-thirds of

stocks. This heavy influence of a small number of exposure factors is similar to the findings of

other CVAs for marine species (e.g., [70, 74, 75]). Some exposure factors were not applicable

to all stocks. For instance, sea ice was not applicable to lower latitude stocks. Sea level rise and

air temperature were more applicable to pinnipeds and inshore stocks than offshore stocks.

Exposure scores for these ‘not applicable’ factors were treated as low and the use of the logic

model to combine factor scores into the exposure component scores allowed these ‘not appli-

cable’ factors to not affect the final scores.

Our assessment scored projected future climate change relative to recent historical variabil-

ity to account for the stocks’ historical experience with variable conditions. However, we

acknowledge doing so may miss critical thresholds that may be crossed within the future vari-

ability. For example, a species that has historically experienced a wide range of temperatures

may nonetheless be near an upper thermal threshold, which could be crossed with even a

Fig 7. Mean exposure factor data quality scores. Mean data quality scores of climate exposure factors for 108 marine mammal stocks in the western North

Atlantic, Gulf of Mexico, and Caribbean Sea. The vertical bar represents the median; the box is bounded by the first and third quartiles; whiskers represent

1.5 times the inter-quartile range; points represent all outlying values.

https://doi.org/10.1371/journal.pone.0290643.g007
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small amount of warming SST. Furthermore, stock distributions limited by historical or cur-

rent human activity may affect the exposure scoring by mischaracterizing the stock extent, par-

ticularly for stocks that are recovering and repopulating areas that had been previously

abandoned [141]. The stocks evaluated in this assessment covered a wide range of geographic

regions where climate impacts are not spatially homogeneous. Thus, exposure factors scored

differently based on the geographic location of a given stock. The impacts of climate change

were similar for stocks that overlap spatially and any differences in exposure factor scores

between stocks were primarily the result of stocks having different geographic distributions.

Sensitivity

Assessing sensitivity to climate change allows us to understand the intrinsic stock attributes

contributing to vulnerability. These sensitivity scores consider what is currently known about

the stock and do not project potential changes in life history or ecology in response to climate

change. The most influential attributes varied by taxonomic group and, although stocks within

this region were dominated by delphinid stocks, some attributes were important across multi-

ple taxonomic groups. Based on the leave-one-out analysis and scores aggregated across all

stocks, the most influential sensitivity attributes included migration, site fidelity, home range,

and stock abundance. Migration was the most difficult sensitivity attribute for which to estab-

lish scoring criteria. Migratory species are often considered to be vulnerable to climate change

Fig 8. Mean sensitivity attribute data quality scores. Mean data quality scores of climate sensitivity attributes for 108 marine mammal stocks in the

western North Atlantic, Gulf of Mexico, and Caribbean Sea. The vertical bar represents the median; the box is bounded by the first and third quartiles;

whiskers represent 1.5 times the inter-quartile range; points represent all outlying values.

https://doi.org/10.1371/journal.pone.0290643.g008
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due to a reliance on habitat that may be seasonal or ephemeral in nature, such as sea ice or con-

ditions that drive plankton blooms [73, 142, 143]. In this assessment, habitat specificity and

site fidelity were considered separately as independent attributes, but the potential for tempo-

ral mismatches between migratory stocks and specific environmental conditions remains an

important element of migration [66, 69, 73, 75, 144]. The relationship between migratory cues

and changing climate conditions may determine whether a migratory species is more or less

sensitive to climate-driven shifts in phenology [145]. Cascading impacts of climate change

may affect predators, prey, and habitat throughout the migratory cycle and impacts to an area

while the stock is not present (e.g., impacts to breeding grounds while the stock is on the forag-

ing grounds) may have downstream effects on the stock once it arrives. Other CVA frame-

works have used migration as a proxy for exposure (e.g., impacts in regions outside of the

study area [66, 146]) or adaptive capacity (e.g., dispersal ability [143, 144]), which was not nec-

essary with our approach because those elements were explicitly considered within the

method. While we also considered the home range of individuals of a stock, the fact that a

stock undergoes a long-distance migration and the diversity of the pathways the stock uses

within and between years may suggest a relatively inflexible seasonal routine or, alternatively,

confer a degree of adaptive capacity [147, 148].

The influence of site fidelity, home range, and stock abundance was more straightforward. If

individuals return to a site that is impacted by climate change, those individuals would also be

expected to be impacted [73]. Other CVA frameworks have estimated geographic extent using

metrics such as discrete area [69, 149], latitudinal range [66, 150] or longitudinal range [73].

With a strong imbalance in available geographic range information between stocks, our

approach used generalized terms to define home range, with an emphasis on habitat connectiv-

ity. Species with individuals that have a broad home range may be able to avoid patches of unfa-

vorable conditions within their home range and find other suitable habitat more easily than

species with individuals with a narrow home range. This was particularly evident in the differ-

ences observed between the bay, sound, and estuary common bottlenose dolphin stocks that

scored very high vulnerability and the coastal/offshore common bottlenose dolphin stocks that

generally scored low, moderate, and high vulnerability. Stocks with low abundance generally

have less diversity (e.g., genetic, behavioral, cultural) and are at greater risk of disturbance and

extinction [151–153] while stocks with high abundance generally have greater diversity and

may be better suited to expand their range or re-establish in in formerly occupied areas[73, 84].

In some instances, sensitivity attribute scores could be artificially pushed towards less sensitive

bins due to human influence on the species. Most notably, this occurred for the North Atlantic

right whale with the generation time attribute. North Atlantic right whale abundance has

decreased due to human-induced mortality, particularly from vessel strikes and entanglements

[154–157]. Because these mortalities often occur prior to the individuals reaching the expected

age at final reproduction [158], the generation length of this stock is shortened and, therefore,

scores as lower sensitivity compared with what would otherwise be expected without that

human-induced mortality. Additionally, shifting prey distributions and phenology have been

shown to affect the North Atlantic right whale, which may affect this species’ survival [159–161].

Cumulative stressors were a major contributor to the vulnerability of many stocks. Among

the sensitivity attributes scored, non-climate stressors have the greatest potential to be

addressed and managed, and several species and stocks are currently at risk of extinction or

regional extirpation from non-climate stressors [162]. Stressors that threaten recovery, and

otherwise cause mortality or sub-lethal impacts, include bycatch and entanglement [163–165],

vessel strikes [166], habitat degradation [167–169], increasing anthropogenic sound in the

environment [170–172], chemical pollution [173–175], marine debris [176, 177], disease [178,

179], and harmful algal blooms [180–182]. While these other stressors were jointly considered
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as part of the “cumulative stressors” attributes, there could be important synergistic effects

between stressors or between stressors and climate that influence vulnerability and further

work should be done to incorporate these impacts as well.

Although all marine mammal stocks in the United States are protected under the MMPA,

those stocks that are afforded additional protection by being designated “endangered” under

the ESA or designated as “depleted” or “strategic” under the MMPA also appear to be among

the most vulnerable to climate change (e.g., Rice’s whale [Balaenoptera ricei], North Atlantic

right whale). Many of the same attributes that cause a stock to be afforded additional regulatory

protections are the same attributes that increase the stocks’ vulnerability to climate change.

Comparison to other assessments

Similar trait-based CVAs were used for a regional assessment of cetaceans in the Madeira

Archipelago off the coast of Portugal in the northeast Atlantic [74], and for a global assessment

of marine mammals conducted at the species level [76]; however, methodological differences

between those two studies and ours make direct comparisons difficult to interpret. A study of

cetacean climate vulnerability in Macaronesia adopted the same method used in our study [75].

All species in our study were included in Albouy et al. [76], although our study further

divided the assessment units to the stock level for some species, with multiple stocks for most

species. Our study and the Sousa et al. [74, 75] studies assessed sperm whales, fin whales

(Balaenoptera physalus), common bottlenose dolphins, short-finned pilot whales (Globice-
phala macrorhynchus), common dolphins, and Atlantic spotted dolphins (Stenella frontalis),
but the populations assessed in both studies are found in different regions of the North Atlan-

tic. Results at the species-level were in general agreement; however, there were noticeable dif-

ferences in vulnerability for some species. These differences in results between studies

highlight the importance of defining the assessment unit, as intraspecific variation may drive

more severe responses in smaller organizational units [183]. In the United States, marine

mammals are managed at the level of the stock, which are most typically finer-scale manage-

ment units than species [98]. Using stocks as an assessment unit provided a level of informa-

tion resolution that can be directly applicable to management agencies and restoration plans.

Common bottlenose dolphin is presented below as one example of a species with differing

results between assessments.

Albouy et al. [76] and Sousa et al. [74] both found common bottlenose dolphins to score

among the lower range of vulnerability and sensitivity to climate change, although Sousa et al.

[74] found the island-associated common bottlenose dolphin population to have slightly

higher sensitivity relative to the offshore common bottlenose dolphin population. Using the

same method as our study, Sousa et al. [75] found island-associated common bottlenose dol-

phins to be very high vulnerability and offshore common bottlenose dolphins to be high vul-

nerability. In our study, bay, sound, and estuary common bottlenose dolphin stocks along the

GOMx and WNA coasts scored high and very high vulnerability, respectively. This was pri-

marily in consideration of their small home ranges, non-migratory behavior, and small stock

abundances (e.g., [184–189]). The site fidelity and ranging patterns of some of these stocks

have contributed to their vulnerability to other environmental disturbances not related to cli-

mate change [190, 191]. Furthermore, some of these stocks have not shown range shifts to date

in the face of environmental catastrophes such as hurricanes and oil spills (e.g., [182, 192–

195]). Coastal and offshore common bottlenose dolphin stocks in the GOMx and WNA have

larger home ranges, more migratory behavior, and larger population abundances (e.g., [196–

201]), resulting in scores of moderate or high vulnerability instead of very high vulnerability

for these stocks.
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Assessment design and future improvements

To be truly useful for management purposes, trait-based CVAs require assessment of their sen-

sitivity and uncertainty [60]. In our study, sources of variability included inter-scorer interpre-

tation of information and variability of underlying experience and knowledge. To account for

this variability among scorers, we ran a bootstrap analysis [70, 75, 84]. We also conducted a

leave-one-out sensitivity analysis to assess the effect of each attribute on the overall vulnerabil-

ity scores [202]. We conducted a similar leave-one-out analysis by sequentially calculating the

vulnerability scores with a single expert’s scores removed to estimate the effect each expert had

on scores. We did not encourage experts to work toward consensus during the scoring discus-

sion portion of the process, and variability between experts was expected. One approach to

reduce the effect of individual scorers would be to increase the number of scorers per stock.

The number of scorers per stock is limited by expert availability, and there are tradeoffs

between increasing the number of scorers, increasing individual scorer load, and maintaining

a manageable number of scorers for group dynamics and logistical purposes. Another strategy

to account for variability among scorers would be to repeat the assessment with a separate set

of scorers; however, the effect of selecting a separate set of scorers in trait-based CVAs has not

yet been tested. Sources of uncertainty included availability and quality of underlying data,

scoring criteria thresholds, and logic model thresholds. We accounted for uncertainty in the

availability and quality of underlying data with a data quality score. Although the data quality

score did not have an influence on the final vulnerability score, it provided additional context

about which scores have the greatest confidence. There are species and stocks included in this

assessment that are understudied (e.g., beaked whale species, ziphiid group), particularly with

respect to sensitivity attributes. Although some of the stocks considered here are transbound-

ary (e.g., North Atlantic right whale, harbor porpoise, gray seal, most pelagic species in the

Gulf of Mexico), much of the data available for these stocks are from United States and Cana-

dian waters where survey effort may be spatially and/or temporally uneven, and data availabil-

ity beyond territorial waters is even sparser [101, 203–205]. Even with features that allow trait-

based approaches to function in cases where there is a lack of data, such as data quality criteria

and the ability of scorers to spread tallies [59], data gaps exist that need to be filled to minimize

uncertainty, and the assessment could certainly be improved with more underlying data. For

example, the ziphiid group had lower median data quality scores for all sensitivity attributes

than each of the other taxonomic groups. Until such time that those data gaps can be filled,

these CVA results should be interpreted with data quality scores and uncertainty metrics in

mind. Future analyses should be conducted when additional data become available.

Applications of expert elicitation can often leave questions about influence and bias [206,

207]. We used a Delphi approach to minimize biases such as groupthink (a form of consensus

seeking due to social pressure), deference to authority (social pressure to agree with more

senior or more experienced experts), and halo effect (considering scoring criteria beyond

those which were provided) that may be more prevalent with other types of expert elicitation

[85, 87, 207–209]. Using an approach in which experts first scored individually before later dis-

cussing as a group reduced groupthink and deference to authority by allowing each expert to

establish their own score independent of others. Any scoring adjustments occurred indepen-

dently following the group discussions and we reiterated that consensus was not a goal of the

discussions. The group discussions contributed to minimizing halo effect by allowing scorers

to identify reasoning that may fall outside the guidelines of the criteria.

One criticism of trait-based CVAs is that scoring thresholds can seem arbitrary [57, 210].

The MMCVA scoring thresholds were designed to produce meaningful separation among

marine mammal stocks, and descriptive scoring criteria were used to improve transparency of
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the underlying scoring process. The inclusion or omission of specific life history traits affects

overall performance of a vulnerability assessment [70, 202]. For example, social structure is an

important aspect of certain marine mammal populations and the degree to which climate

change may affect species’ social structure or how social structure may impact sensitivity or

adaptive capacity is under continued study [211, 212]. We were unable to determine an appro-

priate scoring scheme for social structure in this assessment but encourage its inclusion in

future iterations. We also did not discuss potential human responses to climate change (e.g.,

shipping patterns, fishing effort, coastal development trends) or potential shifts in prey distri-

bution [213, 214]. Additionally, measures to mitigate rising sea levels (e.g., shoreline harden-

ing, river diversions, etc.) may adversely affect marine mammals and their prey, and these

human response factors are worth considering in future analyses.

We recognize that changes in the logic model criteria could result in changes in vulnerabil-

ity scores, but we chose to use the logic model established in the FCVA [70, 84] to maintain

consistency with other NOAA Fisheries CVAs. Due to the logic model, factors and attributes

with the highest scores also had the greatest impact when removed during the sensitivity

analysis.

Lower sensitivity component scores resulted from removing attributes from the model, sug-

gesting that adaptive capacity is not fully integrated into the scores, because removing an adap-

tive capacity attribute would have the expected result of increasing the sensitivity component

score. We combined sensitivity and adaptive capacity into a single component to avoid the

potential for considering a single life history attribute in two places. Future iterations of marine

mammal CVAs might include the explicit consideration of a separate adaptive capacity com-

ponent [215], as was done with Australian lizard species [216]. Those authors found adaptive

capacity alone had the potential to shift vulnerability scores lower. Also, incorporating the

results of prey and habitat vulnerability assessments to better show cascading effects should be

considered in future studies. Evidence of adaptive capacity is important to document, and

when combined with the results of prey and habitat vulnerability assessments, future iterations

may have the potential to signal cascading ecological effects.

Automating exposure scoring in a geographical information system (GIS) could improve

scoring accuracy and efficiency but was confounded by imprecise stock boundaries. Future

iterations are encouraged to explore using density models to score exposure.

We used climate projections from the NOAA Climate Change Web Portal that had a spatial

resolution of 1 degree by 1 degree, which is larger than the range of some stocks we scored,

namely the common bottlenose dolphin bay, sound, and estuary stocks. Some of those com-

mon bottlenose dolphin bay, sound, and estuary stocks (e.g., Sabine Lake, Sarasota Bay, Caloo-

sahatchee River) occupy an area less than 0.5 degree by 0.5 degree [217, 218]. Downscaled or

regional climate models have greater capability to resolve fine-scale features, which are poorly

resolved by the global climate models. Although the coarse-resolution models used in our

assessment poorly resolve changes in areas such as the Gulf of Maine [21] and inshore areas,

the ability to compare exposure across stocks and regions outweighed the improvements in

accuracy for specific locations [202, 219]. Downscaled models across the region would

improve the accuracy of the exposure scores and should be considered in future studies as

downscaled models become available for more areas.

Recommendations and conclusions

Marine mammal stocks are experiencing impacts from climate change and are expected to

respond with shifting distribution, changes in abundance, and/or changing phenology. These

changing climate conditions, and the potential responses of marine mammal stocks to these
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changing conditions, pose challenges to the management of these stocks. Our assessment was

designed to provide climate vulnerability information as an initial step to inform marine mam-

mal management under changing climate conditions. This assessment identified the stocks

most vulnerable to climate change, which can help to identify those that should be prioritized

for monitoring and advanced modeling to predict and detect changes in distribution, abun-

dance, and phenology [46]. The assessment should be repeated once new CVA input informa-

tion becomes available, such as climate projections with higher resolution and greater

confidence produced by next-generation climate models and/or new stock-specific biological

information, particularly for data-limited stocks. The results from this assessment can help

advance research into marine mammal responses to climate change and inform the manage-

ment and recovery of these stocks under changing climate conditions. This vulnerability

assessment provides a tool that can complement other marine mammal assessment techniques

and support the broader implementation of protected species and ecosystem management and

conservation as the climate changes.
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bility of cetaceans in Macaronesia: Insights from a trait-based assessment. Sci Total Environ. 2021;

795:148652. https://doi.org/10.1016/j.scitotenv.2021.148652 PMID: 34247086

PLOS ONE Marine mammal climate vulnerability assessment

PLOS ONE | https://doi.org/10.1371/journal.pone.0290643 September 20, 2023 29 / 37

https://doi.org/10.1002/wcc.551
https://doi.org/10.1002/wcc.551
http://necsc.umass.edu/projects/integrating-climate-change-state-wildlife-action-plans
https://doi.org/10.1111/j.1365-2486.2010.02192.x
https://doi.org/10.1016/j.gecco.2018.e00412
https://doi.org/10.1111/j.1365-2486.2009.02128.x
https://doi.org/10.1080/10641260903434557
https://doi.org/10.1371/journal.pone.0065427
http://www.ncbi.nlm.nih.gov/pubmed/23950785
https://doi.org/10.1007/s10584-014-1284-z
https://doi.org/10.1007/s10584-014-1284-z
https://doi.org/10.1371/journal.pone.0146756
http://www.ncbi.nlm.nih.gov/pubmed/26839967
https://doi.org/10.1371/journal.pone.0260654
http://www.ncbi.nlm.nih.gov/pubmed/34882701
https://doi.org/10.1890/06-0546.1
http://www.ncbi.nlm.nih.gov/pubmed/18494365
https://doi.org/10.1016/j.ecolind.2018.10.046
https://doi.org/10.1016/j.ecolind.2018.10.046
https://doi.org/10.1016/j.scitotenv.2021.148652
http://www.ncbi.nlm.nih.gov/pubmed/34247086
https://doi.org/10.1371/journal.pone.0290643


76. Albouy C, Delattre V, Donati G, Frolicher TL, Albouy-Boyer S, Rufino M, et al. Author Correction:

Global vulnerability of marine mammals to global warming. Sci Rep. 2020; 10(1):4257. https://doi.org/

10.1038/s41598-020-61227-4 PMID: 32123294
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132. Sehgal A, Tumar I, Schönwälder J. Effects of climate change and anthropogenic ocean acidification

on underwater acoustic communications. Proceedings, Oceans 2010, MTS/IEEE Conference; 24–27

May 2010; Sydney, Australia2010. p. 1–6.

133. MacLeod CD, Browman H. Parasitic infection: A missing piece of the ocean acidification puzzle. ICES

J Mar Sci. 2017; 74(4):929–33. https://doi.org/10.1093/icesjms/fsw156

134. Eby LA, Crowder LB. Effects of hypoxic disturbances on an estuarine nekton assemblage across multi-

ple scales. Estuaries. 2004; 27(2):342–51. https://doi.org/10.1007/bf02803390

135. Craig JK, Crowder LB. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker

and brown shrimp on the Gulf of Mexico shelf. Mar Ecol Prog Ser. 2005; 294:79–94. https://doi.org/10.

3354/meps294079

136. Eby LA, Crowder LB, McClellan CM, Peterson CH, Powers MJ. Habitat degradation from intermittent

hypoxia: Impacts on demersal fishes. Mar Ecol Prog Ser. 2005; 291:249–62. https://doi.org/10.3354/

meps291249
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