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Abstract

Background

PRAME (PReferentially expressed Antigen in MElanoma) is a biomarker studied in various

human cancers. Little is known about the biological implications of PRAME in glioma. We

aimed to perform a comprehensive analysis to explore PRAME gene expression and its bio-

logical and clinicopathological significance in gliomas.

Methods and materials

We accessed the human cancer atlas (TCGA) database to collect glioma patients (n = 668)

with primary tumors and gene expression data. Single nucleotide variants, copy number var-

iation, DNA methylation data, and other clinicopathological factors were also extracted for

the analysis.

Results

Overall, 170, 484, and 14 tumors showed no expression, low expression (FPKM�1), and

overexpression (FPKM>1) of the PRAME gene, respectively. The principal component anal-

ysis and pathway analyses showed that PRAME-positive gliomas (n = 498), which consisted

of tumors with PRAME low expression and overexpression, expressed different oncogenic

profiles, possessing higher activity of Hedgehog, P3IK-AKT-mTOR, and Wnt/β-catenin

pathways (p<0.001). DNA methylation analysis also illustrated that PRAME-positive tumors

were distributed more densely within a grade 4-related cluster (p<0.001). PRAME positivity

was an independent prognostic factor for poor outcomes in a multivariate cox analysis

adjusted for clinical characteristics and genetic events. Kaplan-Meier analysis stratified by

revised classification showed that PRAME positivity was solely associated with IDH-wild-

type glioblastoma, grade 4. Finally, PRAME-overexpressing cases (n = 14) had the worst

clinical outcome compared to the PRAME-negative and PRAME-low cohorts (adjusted

p<0.001) in pairwise comparisons.
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Conclusion

PRAME expression statuses may dictate different biological and clinicopathological profiles

in IDH-wildtype glioblastoma.

Introduction

PRAME (PReferentially expressed Antigen in MElanoma) is a cancer-testis antigen that is

expressed by melanoma cells and was isolated by autologous T cells in a melanoma patient [1].

PRAME expression is used to support the diagnosis of melanoma over nevus in combination

with histopathological features and other findings. The expression of the PRAME gene and

PRAME protein can be practically evaluated by pigmented lesion assay (PLA) and immuno-

histochemistry (IHC), respectively [2, 3]. Although PRAME has its primary application in the

diagnosis of melanoma, PRAME was also found to be expressed by various epithelial and non-

epithelial cancers [4], including uterine carcinoma, uterine carcinosarcoma, ovarian carci-

noma, adenoid cystic carcinoma, seminoma, thymic carcinoma, basal cell carcinoma, synovial

sarcoma, myxoid liposarcoma, and neuroblastoma. The biological and clinicopathological

implications of PRAME expression have been unknown in adult gliomas.

Adult gliomas are a heterogeneous and common group of brain cancers with unclear cell-

of-origin [5]. The biological profile of gliomas has been studied with respect to histology, epi-

genetic, genetic characteristics, cell-of-origin, and tumor microenvironment [6, 7]. There are

highly diverse oncogenic mechanisms contributing to gliomagenesis and tumor progression,

including Wnt/β-catenin [8], PI3K/Akt/mTOR [9], TGF-β [10], and mesenchymal transition,

among many others [11]. Important genetic abnormalities affecting the prognosis of glioma

patients consist of IDH1/2 mutations, CDKN2A/B homozygous deletion, EGFR amplification,

TP53 mutations, ATRX mutations, TERT promoter mutations, and 7 gain 10 loss chromo-

somal abnormalities [12]. The recent World Health Organization (WHO) classification of

Tumours of the Central Nervous System (CNS) emphasizes that glioma can be divided by IDH
mutation and 1p/19q codeletion status. IDH-wildtype astrocytoma has more advanced clinico-

pathological progression and tumor with grade 4 is referred to as the “glioblastoma” category.

Glioblastoma is diagnosed by the absence of IDH mutation and one of the high-grade features,

including high-grade morphology, TERT promoter mutation, 7 gain/10 loss chromosomal

abnormality, or EGFR amplification. However, the prognostic factors of glioma are still under

investigation.

In the present study, we first examined how PRAME gene expression was related to biologi-

cal profiles. Secondly, we investigated whether PRAME expression patterns were related to the

DNA methylation landscape. Finally, clinicopathological characteristics and survivorship were

compared between PRAME-low and PRAME-high glioma patients.

Materials and methods

Data processing

The Human Cancer Atlas (TCGA) database consists of many datasets. We extracted cases

from the TCGA-GBM and TCGA-LGG projects. Only cases with available gene expression

profiles (GEP) and primary tumors (no recurrent or metastatic tumors) were included in the

study. To adapt to the new WHO classification, cases with grades 2/3 in the previous studies

[13, 14] were reclassified into grade 4 as follows: (1) the presence of both IDH1/2 mutation and
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CDKN2A/B homozygous deletion, or (2) the absence of IDH1/2 mutations and the presence of

at least one of the following abnormalities: TERT promoter mutation, EGFR amplification,

and 7 gain 10 loss chromosomal abnormality. Other histopathological grading features such as

microvascular proliferation and pseudopalisading necrosis were assumed to be included in

previously evaluated grade IV gliomas of the original studies [13, 14]. Tumors with the absence

of IDH1/2 mutations and no other high-grade morphological and genetic features mentioned

above were reclassified as Astrocytoma, Not Otherwise Specified (NOS). Tumors with the

presence of both IDH1/2 mutations and 1p/19q codeletion were categorized as Oligodendro-

glioma. Mixed glioma was re-distributed into new categories based on IDH1/2 mutation and

1p/19q codeletion status. This reclassification was published in our previous paper [15]. The

difference in data processing between this study and our previous one was that we used cbio-

portal for cancer genomics (https://www.cbioportal.org) datasets that are related to

TCGA-GBM and TCGA-LGG projects, including (1) Brain Lower Grade Glioma (TCGA,

Firehose Legacy), (2) Glioblastoma Multiforme (TCGA, Firehose Legacy), and (3) Merged

Cohort of LGG and GBM (TCGA, Cell 2016). This difference led to a slight inconsistency in

the total number of glioma patients.

Gene set variation analysis (GSVA)

GSVA is a type of single-sample gene set enrichment analysis (ssGSEA) [16], which is a variant

of conventional GSEA [17]. The rank of genes was based on an expression-level statistic,

which is a Gaussian or Poisson kernel estimation of the cumulative density function of each

gene across the samples. Each value of kernel estimation was calculated, given each gene

expression of each sample. As a result, the enrichment score (ES) of a gene set can be calculated

for each sample. Therefore, we can investigate the activity of signaling pathways, using GSVA.

In this study, we employed the gene sets of the hallmark pathways (“H” category) in the

MSigDB database (https://www.gsea-msigdb.org) and excluded cancer-irrelevant pathways.

Data analysis

Continuous and categorical variables were described by median (range) and the number of

cases (percentage), respectively. Chi-square tests and Wilcoxon’s test were performed to com-

pare categorical and continuous variables by default. Pathway activity was calculated by

GSVA. For survival analysis, we performed Kaplan-Meier analysis and univariate and multi-

variate Cox analysis. Heatmap was created, using the Biokit package, run on Python 3.9. Other

data analyses were conducted, using R version 4.2.1 (The R Foundation, Austria).

Results

Investigating PRAME expression and pathway activities

A total of 668 primary tumors in 668 glioma patients, were included in our study. We explored

the normalized read count value of these 668 gliomas and found that the PRAME gene was not

expressed in 170 gliomas (PRAME-negative; FPKM = 0). Fig 1A shows the normalized read

counts of the PRAME expression. Therefore, the entire cohort was divided into two groups,

PRAME-negative and PRAME-positive, based on the PRAME expression status. Mean PRAME
gene expression in the PRAME-positive cohort was 0.98 FPKM, which was relatively low.

Most cases (n = 654) had PRAME gene expression < 1 FPKM, while only 14 cases had high

PRAME expression (Fig 1A, inset). Next, we conducted principal component analysis (PCA)

over 730 genes within the nCounter PanCancer Pathways panel, published by Nanostring

Technology (https://nanostring.com/, excluding 40 internal reference genes). This panel
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Fig 1. (A) Histogram shows the distribution of the PRAME expression read counts (FPKM). The inset only shows the distribution of tumors with

FPKM>1. (B) Principal component analysis (PCA) plot created by PC1 and PC2 of the nCounter Nanostring PanCancer Pathways gene panel. (C) The

activity heatmap of cancer-related pathways illustrates the activity of each pathway in each sample. The p-values in the left column are calculated by the

two-sample independent t-tests to compare the enrichment score (ES) of each pathway between PRAME-negative and PRAME-positive tumors. (D) The

summary plot of upregulated and downregulated pathways in PRAME-positive gliomas. (E) The boxplot compares PRAME expression between different

revised categories of the new WHO classification.

https://doi.org/10.1371/journal.pone.0290542.g001
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included genes within 13 cancer-associated canonical pathways, which supports the under-

standing of basic cancer biology. S1 Table shows the symbol and ID of the genes within the

panel. A dimension reduction plot (Fig 1B) was created, using PC1 and PC2 components,

which explained the highest variance in the data. We found that PRAME-negative tumors clus-

tered together with some PRAME-positive counterparts. However, there was a higher percent-

age of PRAME-positive gliomas outside of this cluster. Therefore, there were differences in the

distributions of PRAME-negative and PRAME-positive gliomas in the 730-gene cancer-related

space. Finally, we created a heatmap to show the pathway-level comparisons between the two

groups, using two-sample independent t-tests (Fig 1C). The PRAME-positive tumors

expressed higher activity of Hedgehog (p<0.001), P3IK-AKT-mTOR (p<0.001), P53

(p<0.001), apoptosis (p<0.001), IL2-STAT5 (p<0.001), and Wnt/β-catenin (p<0.001) signal-

ing pathways while these tumors reduced other biological signals, including E2F targets

(p<0.001), G2M mitotic checkpoint (p = 0.005), reactive oxidative oxygen species (p<0.001),

TNF-α (p<0.001), IL6-JAK-STAT6 (p<0.001), inflammatory response (p<0.001), angiogene-

sis (p<0.001), epithelial-mesenchymal transition (p<0.001), mTORC1 (p<0.001), glycolysis

(p<0.001), and hypoxia (p<0.001). Fig 1D summarizes the results of pathway analysis. In

addition, Fig 1E illustrates the PRAME expression in each revised category. In general, gliomas

grade 4 had higher PRAME expression compared to other categories.

PRAME positivity was densely distributed within a distinct DNA

methylation cluster

In the study cohort, there were a total of 476 tumors with available data about 450K DNA

methylation. We performed t-SNE dimension reduction to explore the differences in the dis-

tribution of PRAME-negative and PRAME-positive glioma in DNA methylation hyperspace.

This DNA methylation space can be interpreted as the reduced representation of the CpG

methylation landscape. We also included the Glioma CpG Island Methylator Phenotype

(G-CIMP), which was published in a previous paper [33941250]. In this study, 476 tumors in

DNA methylation space can be relatively divided into two unsupervised tSNE clusters, small

(right, lower corner) and large clusters (left and upper part) (Fig 2A–2D). The small cluster

densely consisted of PRAME-low and PRAME-overexpressing samples while the larger cluster

had a significant portion of PRAME-negative samples (Fig 2A). The revised subtype (Fig 2B),

CIMP clusters (Fig 2C), and IDH status (Fig 2D) were strongly associated with these 2 clusters.

Fig 2E shows a heatmap of distribution of PRAME expression status within CIMP clusters.

There were significant difference in the distribution of PRAME expression status (chi-square

test, p<0.001). This discrimination can be seen in LGm6-GBM (6/12 vs. 7/484 vs. 0/170), clas-

sic-like (1/12 vs. 63/484 vs. 4/170), and mesenchymal-like (2/12 vs. 87/484 vs. 9/170).

PRAME positivity was associated with IDH-wildtype glioblastoma and

adverse outcomes

Table 1 summarizes the clinicopathological characteristics of PRAME-negative and PRAME-

positive gliomas. Clinically, patients with PRAME-positive gliomas were older (p<0.001).

There were no differences in gender (p = 0.419) and race (p = 0.382). Comparisons of revised

classification between PRAME-negative and PRAME-positive cohorts showed that IDH-

mutant astrocytoma, grade 2 (26.5% vs. 13.1%) and oligodendroglioma (35.9% vs. 21.7%)

dominated PRAME-negative glioma while the incidence of IDH-wildtype glioblastoma, grade

4 (32.9% vs. 4.1%) was much higher in PRAME-positive glioma. These differences were signifi-

cant (p<0.001). Regarding genetic abnormalities, PRAME-positive tumors more frequently

acquired EGFR amplification (20.4% vs. 4.7%; p<0.001), CDKN2A/B homozygous deletion
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Fig 2. t-SNE dimension reduction plots show the distribution of DNA methylation landscapes of 474 tumors, characterized by PRAME
expression status (A), re-classified WHO grades (B), and IDH mutation status (C).

https://doi.org/10.1371/journal.pone.0290542.g002
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(25.5% vs. 6.0%; p<0.001), and 7 gain 10 loss chromosomal aberrations (28.4% vs. 7.1%;

p<0.001) than PRAME-negative tumors. Conversely, IDH1/2 mutations (87.6% vs. 56.7%;

p<0.001) and ATRX mutations (40.0% vs. 27.4%; p = 0.005) were significantly more common

in PRAME-negative cases.

In survival analysis, PRAME was a general marker of prognosis in the entire studied cohort

(p<0.001, Fig 3A). Stratified by the new WHO classification, there were no significant results

in IDH-mutant astrocytoma grade 2 (p = 0.891, Fig 3B), grade 3 (p = 0.502, Fig 3C), and grade

4 (p = 0.160, Fig 3D). However, PRAME positivity was of prognostic significance in IDH-wild-

type glioblastoma grade 4 (p = 0.018, Fig 3E). There was no obvious survival difference

between PRAME-positive and PRAME-negative oligodendrogliomas. We also compared the

survival outcomes of IDH-mutant/1p19q codeletion and IDH-mutant/non-1p19q codeletion

(S1 Fig) but PRAME positivity was not related to the prognosis. Table 2 shows multivariate

analyses adjusted for clinical characteristics, whole genome sequencing (WGS) (IDH1/2 muta-

tion, ATRX mutation, and TP53 mutation), whole exome sequencing (WES) (TERT promoter

Table 1. Comparison of clinicopathological characteristics of PRAME-negative and PRAME-positive cohorts.

Variable PRAME-negative (n = 170) PRAME-positive (n = 498) p-value

Age 39 (17–74) 4 (14–89) <0.001

Gender 0.419

Female 68 (44.7%) 185 (40.6%)

Male 84 (55.3%) 271 (59.4%)

Race 0.382

White 155 (91.2%) 455 (91.4%)

Asian 2 (1.2%) 11 (2.2%)

Black 7 (4.1%) 24 (4.8%)

Not reported 6 (3.5%) 8 (1.6%)

Revised classification <0.001

Astrocytoma NOS, grade 2 8 (4.7%) 12 (2.4%)

Astrocytoma NOS, grade 3 7 (4.1%) 28 (5.6%)

Astrocytoma NOS, grade 4 0 (0.0%) 8 (1.6%)

IDH-mutant astrocytoma, grade 2 45 (26.5%) 65 (13.1%)

IDH-mutant astrocytoma, grade 3 26 (15.3%) 69 (13.9%)

IDH-mutant astrocytoma, grade 4 3 (1.8%) 18 (3.6%)

IDH-wildtype glioblastoma, grade 4 7 (4.1%) 164 (32.9%)

Oligodendroglioma 61 (35.9%) 108 (21.7%)

Unknown 13 (7.6%) 26 (5.2%)

IDH1/2 mutation 148/169 (87.6%) 279/492 (56.7%) <0.001

TP53 mutation 76/170 (44.7%) 207/497 (41.6%) 0.545

ATRX mutation 68/170 (40.0%) 136/497 (27.4%) 0.005

TERT promoter mutation 37/91 (40.7%) 117/227 (51.5%) 0.103

EGFR amplification 8/169 (4.7%) 100/490 (20.4%) <0.001

CDKN2A/B homozygous deletion 11/169 (6.0%) 125/490 (25.5%) <0.001

7 gain 10 loss 12/169 (7.1%) 139/490 (28.4%) <0.001

Vital status <0.001

Alive 129 (84.9%) 298 (65.4%)

Dead 23 (15.1%) 158 (34.6%)

Overall survival time (months) 15.2 (0.0–134.0) 11.5 (0.0–211.0) 0.087

NOS: Not otherwise specified.

https://doi.org/10.1371/journal.pone.0290542.t001
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mutaton), and copy number variation information (CDKN2A/B homozygous deletion, EGFR
amplification, and 7 gain/10 loss). The prognostic effect of PRAME positivity was significant

and independent to clinical characteristics (HR = 2.73; 95%CI = 1.66–4.15; p<0.001), WGS

(HR = 2.03; 95%CI = 1.28–3.22; p = 0.003), and CNV (HR = 2.11; 95%CI = 1.35–3.29;

p = 0.001) features.

Fig 3. Kaplan-Meier curves illustrate the different survival patterns of PRAME-negative and PRAME-positive tumors in the entire cohort (A), IDH-mutant

astrocytoma, grade 2 (B), IDH-mutant astrocytoma, grade 3 (C), and IDH-mutant astrocytoma, grade 4 (D), IDH-wildtype glioblastoma (E), astrocytoma,

NOS, grade 2 (F), astrocytoma, NOS, grade 3 (G), astrocytoma, NOS, grade 4 (H), and oligodendroglioma (I).

https://doi.org/10.1371/journal.pone.0290542.g003
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PRAME overexpression was associated with a worse prognosis than

PRAME positivity

First, we defined PRAME overexpression when FPKM > 1, which was observed in only 14 gli-

omas within the entire studied cohort. Table 3 shows the clinicopathological characteristics of

these 14 patients. Notably, only 1 case (7.1%) of this cohort was IDH-mutant. Next, we per-

formed KM analysis to compare the overall survival of PRAME-negative (n = 170), PRAME-

low (n = 481), and PRAME-overexpressing (n = 14) cases (PRAME-low and PRAME-overex-

pressing comprise PRAME-positive cohort) (Fig 4). To avoid false-positive results, pairwise

log-rank test comparisons were conducted, using Benjamini-Hochberg correction to calculate

the adjusted p-values. Even with a small sample (n = 14), PRAME-overexpressing glioma

showed a significantly worse outcome than PRAME-low (adjusted p<0.001), and PRAME-

negative (adjusted p<0.001). 2-year overall survival rates of PRAME-negative, PRAME-low,

and PRAME-overexpressing cohorts were 92.8% (95%CI = 88.1% - 97.8%), 64.0% (95%

CI = 59.2% - 69.1%), and 13.8% (95%CI = 2.6% - 73.3%), respectively.

Analysis of the association between tumor microenvironment (TME) and

PRAME expression

Given that PRAME is associated with cytotoxic T-cell activation and killing in glioblastoma

[18], we compared the immunologic cell population between PRAME-negative and PRAME-

positive gliomas. GSVA of cell type-specific gene sets [19] was performed to calculate the

Table 2. Multivariate Cox survival analyses with overall survival and vital status as the outcome, adjusted for clin-

ical characteristics, WGS, WES, and CNV information.

Variable HR 95%CI p-value

Clinical characteristics

PRAME positive 2.73 1.66–4.50 <0.001

Age (years) 1.08 1.06–1.09 <0.001

Men 1.05 0.76–1.45 0.761

Race

Asian 1

Black 0.79 0.16–3.93 0.769

White 0.73 0.18–2.98 0.662

WGS-available data

PRAME positive 2.03 1.28–3.22 0.003

IDH1/2 mutation 0.07 0.05–0.12 <0.001

ATRX mutation 1.56 0.85–2.87 0.151

TP53 mutation 1.09 0.75–1.59 0.657

WES-available data

PRAME positive 1.61 0.94–2.77 0.083

TERT promoter mutation 2.02 1.28–3.20 0.003

CNV-available data

PRAME positive 2.11 1.35–3.29 0.001

EGFR amplification 1.36 0.90–2.06 0.143

CDKN2A/B homozygous deletion 2.55 1.70–3.81 <0.001

7 gain/10 loss 3.61 2.35–5.55 <0.001

HR: hazard ratio; 95%CI: 95% confidence interval; WGS: whole genome sequencing; WES: whole exome sequencing;

CNV: copy number variation.

https://doi.org/10.1371/journal.pone.0290542.t002
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activity (ES) of 17 cell types, including B cells, T cells, T helper, Th1, Th2, TFH, Th17, Treg,

CD8 T cells, T gamma delta, cytotoxic cells, NK cells, dendritic cells, eosinophils, macro-

phages, mast cells, and neutrophils (Fig 5). There were increased activities of T cells

(p<0.001), Th2 (p<0.001), Th17 (p<0.001), cytotoxic cells (p = 0.028), macrophages

(p<0.001), and neutrophils (p<0.001) in PRAME-positive gliomas while there was reduced

activities of TFH (p<0.001) and CD8 T cell (p<0.001).

Discussion

In the present study, we showed that PRAME expression status was significantly correlated

with biological and clinicopathological characteristics of adult glioma grade 4, IDH-wildtype

(IDH-wildtype glioblastoma). In gene expression analysis, there was a large number of gliomas

showing no PRAME expression while a few numbers of tumors possessed high levels of

PRAME expression. The remaining tumors generally showed low PRAME expression. There-

fore, the included gliomas were divided into PRAME-negative and PRAME-positive sub-

groups. We then compare biological profiles and clinicopathological characteristics between

PRAME-negative and PRAME-positive cases. The PCA of the PanCancer Pathways panel

showed that different PRAME expression status was relatively different in their distributions,

Table 3. Clinicopathological data of 14 patients with PRAME-overexpressing gliomas.

Mutations

Patient ID Age

(yo)

Gender Race Revised

classification

PRAME

expression

(FPKM)

IDH1/
2

TP53 ATRX TERT CHD EGFRamp 7

+/10-

OS time

(months)

Vital

Status

TCGA-02-0047 79 M White IDH-wt

Glioblastoma, G4

37.9 No No No No Yes No No 14.9 Dead

TCGA-06-0168 60 F White IDH-wt

Glioblastoma, G4

1.3 No No No No No Yes No 19.9 Dead

TCGA-06-0646 61 M White IDH-wt

Glioblastoma, G4

2.6 No No No No Yes Yes No 5.8 Dead

TCGA-06-2569 24 F Black IDH-wt

Glioblastoma, G4

211.7 No Yes No No No Yes No 0.4 Alive

TCGA-06-5411 52 M White IDH-wt

Glioblastoma, G4

1.1 No No No No Yes Yes No 8.5 Dead

TCGA-12-0821 63 M White IDH-wt

Glioblastoma, G4

41.9 No No No No Yes Yes No 10.8 Dead

TCGA-14-0871 75 F White IDH-wt

Glioblastoma, G4

32.2 No Yes No No n/a n/a n/a 29.3 Dead

TCGA-26-5133 59 M White IDH-wt

Glioblastoma, G4

1.5 No Yes No No No No Yes 15.1 Alive

TCGA-28-5218 63 M White Astrocytoma NOS,

G3

17.3 No No No No Yes Yes No 5.2 Dead

TCGA-DH-5140 38 F White IDH-wt

Glioblastoma, G4

6.5 No Yes No No No Yes No 20.2 Dead

TCGA-DU-6403 60 F White IDH-wt

Glioblastoma, G4

6.9 No No No No No Yes Yes 11.8 Dead

TCGA-E1-A7YD 58 M White IDH-wt

Glioblastoma, G4

3.9 No Yes No No No Yes No 14.5 Dead

TCGA-FG-5963 23 M White IDH-wt

Glioblastoma, G4

79.5 No Yes Yes No Yes No No 25.8 Dead

TCGA-S9-A7IY 40 M White Oligodendroglioma 1.3 Yes No No No No No No 23.8 Alive

CHD: CDKN2A/B homozygous deletion; EGFRamp: EGFR gene amplification; 7+/10-: 7 gain 10 loss chromosomal abnormalities; OS: overall survival.

https://doi.org/10.1371/journal.pone.0290542.t003
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indicating that PRAME positivity may be related to oncogenic mechanisms in adult glioma. In

pathway analysis, we illustrated that PRAME-positive gliomas possessed higher activity of

Hedgehog, P3IK-AKT-mTOR, P53, apoptosis, IL2-STAT5, and Wnt/β-catenin signaling path-

ways and lower expression of E2F targets, G2M mitotic checkpoint, reactive oxidative oxygen

species, TNF-α, IL6-JAK-STAT6, inflammatory response, angiogenesis, epithelial-

Fig 4. The Kaplan-Meier curve shows the pairwise comparisons of survivorship between PRAME-negative, PRAME low-expressing, and PRAME-

overexpressing tumors. (***), (**), and (*) indicate adjusted p< 0.001, adjusted p =< 0.01, and adjusted p< 0.05, respectively. The risk table illustrates the

number of cases that survived across the timeline in each cohort of PRAME expression status.

https://doi.org/10.1371/journal.pone.0290542.g004
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mesenchymal transition, mTORC1, glycolysis, and hypoxia. In DNA methylation analysis,

PRAME-positive gliomas were distributed more densely in a distinct, grade 4-related cluster,

which implied that PRAME expression can be an indicator of the CpG methylation landscape.

Clinicopathologically, PRAME positivity was associated with older age, higher grades, EGFR
amplification, CDKN2A/B homozygous deletion, and 7 gain 10 loss. This association was also

related to IDH-wildtype glioblastoma in the present study. Finally, PRAME expression status

was identified as an independent prognostic factor of IDH-wildtype glioblastoma.

The significance of PRAME expression has been mentioned previously. Wu et al. [20]

developed a PRAME-containing formula for risk score, which was inferred from the regression

model. This score quantified the risk of Karnofsky performance score, but not the prognosis

itself. Therefore, the inference of PRAME prognostic value is plausible but weak. The other

study by Zhang et al. [21] mainly compared the PRAME expression between different types of

brain tumors, including subtypes of astrocytic and non-astrocytic tumors. However, it can be

difficult to conclude that PRAME expression is an independent prognostic factor by the cur-

rent evidence. On the other hand, the goal of our study is to focus on the biological and clini-

copathological characteristics of PRAME. Multiple analyses were performed to provide more

concrete proof of the significance of this gene in glioma.

PRAME has been recently introduced as a prognostic and/or oncogenic biomarker of vari-

ous cancer types, including melanocytic neoplasms [22], invasive breast carcinoma [23], lung

Fig 5. The boxplots comparing activity of different immunologic cell populations between PRAME-negative and PRAME-positive gliomas.

https://doi.org/10.1371/journal.pone.0290542.g005
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adenocarcinoma [24], lung squamous cell carcinoma [25], and hematological malignancies

[26]. PRAME has also been found to be expressed by various types of neoplasms as mentioned

earlier [4]. Regarding CNS tumors, the significance of PRAME expression has been investi-

gated in medulloblastoma [27, 28] as a biomarker for immunotherapy. However, little is

known about the biological and clinical significance of the PRAME protein and its corre-

sponding gene in glioma. To the best of our knowledge, the intensity and pattern of PRAME

and its gene expression in glioma are still under investigation. In the present study, we found

that most of these tumors still expressed PRAME at a low level and a minority of them, how-

ever, showed gene overexpression. Even with low expression, the PRAME-expressing glioma

still had distinct biological characteristics, which was shown in subsequent analyses. Further

studies to validate PRAME protein expression in glioma, using western blot analysis, immuno-

histochemistry, immunofluorescence, or other techniques, are needed because it is not clear

whether PRAME gene expression can be an indicator of its protein status.

The nCounter Nanostring PanCancer Pathways panel was used to evaluate the biological

profiles of human cancers in previous studies [29, 30]. Although the experimental pipeline of

Nanostring technology was not performed in the present study, the biological value of the

genes should be similar in principle. Using this panel, our PCA analysis illustrated that

PRAME expression status can be a biomarker of glioma biology although further interpreta-

tions are not available in such general results. Pathway analysis showed more details in the bio-

logical difference among PRAME expression statuses. In glioma, the Wnt/β-catenin signal

promotes neurogenesis and cell proliferation while the PI3K/AKT/mTOR pathway is associ-

ated with growth, metabolism, autophagy, survival, and chemotherapy resistance of glioblas-

toma [31]. The hedgehog signaling pathway is also required for glioma-initiating cell

proliferation and tumorigenesis [32]. These pathways were increased in PRAME-positive glio-

mas. However, various oncogenic processes or signals in PRAME-positive gliomas such as E2F

targets, G2M mitotic checkpoint, reactive oxidative oxygen species, IL6-JAK-STAT6, angio-

genesis, epithelial-mesenchymal transition, and mTORC1 were activated at the lower levels

compared to PRAME-negative tumors. These results were controversial, suggesting biological

heterogeneity in PRAME-positive tumors.

Recent studies showed dozens of clinicopathological risk factors with prognostic signifi-

cance in adult gliomas. Clinically, age, tumor size, and tumor location within CNS are predic-

tive factors of glioma patient outcomes [33, 34]. Pathologically, histological glioma subtypes

and WHO grade are also related to glioma prognosis. Regarding genetic abnormalities,

CDKN2A/B homozygous deletion, EGFR amplification, TP53 mutations, ATRX mutations,

TERT promoter mutations, and 7 gain 10 loss chromosomal abnormalities are associated with

poor prognosis while IDH1/2 mutations are closely related to superior outcomes [12]. Regard-

ing gene expression, a previous study developed a stemness index from the regularized cox

model to predict the prognosis of glioma patients [35]. Therefore, it is important to show the

prognostic significance of a biomarker by adjusting such confounders in a multivariate analy-

sis. In the present study, we found that PRAME positivity was an independent prognostic fac-

tor to other clinicopathological factors. Interestingly, we found that PRAME gene

overexpression, which is more likely visualized by the protein expression detection methods,

was related to a subgroup with a significantly worse prognosis than PRAME-low gliomas

despite its small sample size.

DNA methylation profile was proven to be pathologically associated with CNS tumors. A

methylation-based random forest classifier was developed to provide a novel biological finger-

print of CNS tumors in addition to other identifiers such as histopathology and genetic abnor-

malities [36]. Another study also argued that methylation profiling can be a reliable biomarker

for further low-grade glioma subtyping [37]. Therefore, examining whether there is a
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relationship between PRAME expression status and DNA methylation characteristics can fur-

ther consolidate PRAME value in glioma biology. Our study showed that PRAME-positive gli-

omas were distributed more densely in the IDH-wildtype-related methylation cluster

compared to the other cluster. Although this specific distribution of PRAME-positive tumors

can be attributed to the dense clustering of grade 4 tumors, we believe that PRAME positivity

and negativity can still be an indicator of DNA methylation profile, regardless of the causal

relationships.

PRAME can also be associated with glioma TME. A previous study showed that Decitabine

can increase PRAME expression and, thus, enhance the T-cell-mediated cytotoxicity, which

makes PRAME an interesting target for immunotherapy [18]. However, TME of cell line can

be difficult to interpret because the stromal or microenvironment context of cancer in vivo is

different from that of cell line condition. Our study showed that PRAME higher expression

was related to increased cytotoxic cell, macrophage, and neutrophil activity but it was also

associated with many immune modulating cells such as Th2, Th17, and TFH. Therefore,

PRAME expression is in a complicated relationship with many immunologic cell populations,

not only cytotoxic T cells.

However, there were limitations in the present study. First, selection bias was a potential

problem because this study used a public database. Second, our findings of PRAME positivity

in IDH-mutant glioma were not significant potentially due to small samples, and, thus, sam-

pling error. Therefore, a larger study of PRAME expression on IDH-mutant glioma can be

helpful to examine the biological and clinicopathological relevance of PRAME positivity in

these brain tumors. Third, protein expression data was not fully available and, therefore, can-

not be analyzed. PRAME gene expression may be different from PRAME protein expression,

which can be practically evaluated by immunohistochemistry. Hence, immunohistochemical

studies are required to validate PRAME prognostic significance at the protein level. Addition-

ally, data about histone modification is not available in TCGA-LGG and TCGA-GBM projects.

Therefore, we were not able to analyze the relationship between PRAME expression and this

epigenetic regulation. Finally, to our knowledge, there was no available information of chemo-

therapy and radiotherapy resistance in TCGA datasets. Hence, we were not able to investigate

the relationship between PRAME expression and treatment response.

Conclusion

Our study illustrated that a proportion of glioma did not express PRAME while the majority of

glioma expressed PRAME, among which a few tumors possessed high PRAME expression.

PRAME-positive tumors had different biological (gene expression, DNA methylation, and

pathway) and clinicopathological characteristics, which were related to IDH-wildtype glioblas-

toma. In survival analysis, PRAME positivity, especially PRAME overexpression, was related to

poor prognosis.
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