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Abstract

Hepatitis C virus (HCV) infection is a concerning health issue that causes chronic liver dis-

eases. Despite many successful therapeutic outcomes, no effective HCV vaccines are cur-

rently available. Focusing on T cell activity, the primary effector for HCV clearance, T cell

epitopes of HCV (TCE-HCV) are considered promising elements to accelerate HCV vaccine

efficacy. Thus, accurate and rapid identification of TCE-HCVs is recommended to obtain

more efficient therapy for chronic HCV infection. In this study, a novel sequence-based

stacked approach, termed TROLLOPE, is proposed to accurately identify TCE-HCVs from

sequence information. Specifically, we employed 12 different sequence-based feature

descriptors from heterogeneous perspectives, such as physicochemical properties, compo-

sition-transition-distribution information and composition information. These descriptors

were used in cooperation with 12 popular machine learning (ML) algorithms to create 144

base-classifiers. To maximize the utility of these base-classifiers, we used a feature selec-

tion strategy to determine a collection of potential base-classifiers and integrated them to

develop the meta-classifier. Comprehensive experiments based on both cross-validation

and independent tests demonstrated the superior predictive performance of TROLLOPE

compared with conventional ML classifiers, with cross-validation and independent test accu-

racies of 0.745 and 0.747, respectively. Finally, a user-friendly online web server of TROL-

LOPE (http://pmlabqsar.pythonanywhere.com/TROLLOPE) has been developed to serve

research efforts in the large-scale identification of potential TCE-HCVs for follow-up experi-

mental verification.

1. Introduction

Hepatitis C Virus (HCV) is an RNA virus that is associated with progressive liver damage.

This virus usually transmits through the contact of blood from an infected person, including

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0290538 August 25, 2023 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Charoenkwan P, Waramit S,

Chumnanpuen P, Schaduangrat N, Shoombuatong

W (2023) TROLLOPE: A novel sequence-based

stacked approach for the accelerated discovery of

linear T-cell epitopes of hepatitis C virus. PLoS ONE

18(8): e0290538. https://doi.org/10.1371/journal.

pone.0290538

Editor: Nagarajan Raju, Emory University, UNITED

STATES

Received: June 7, 2023

Accepted: August 10, 2023

Published: August 25, 2023

Copyright: © 2023 Charoenkwan et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All the data used in

this study are available at http://pmlabqsar.

pythonanywhere.com/TROLLOPE.

Funding: This project is funded by National

Research Council of Thailand (NRCT) and Mahidol

University (N42A660380), and the Specific League

Funds from Mahidol University.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-3394-8709
http://pmlabqsar.pythonanywhere.com/TROLLOPE
https://doi.org/10.1371/journal.pone.0290538
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290538&domain=pdf&date_stamp=2023-08-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290538&domain=pdf&date_stamp=2023-08-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290538&domain=pdf&date_stamp=2023-08-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290538&domain=pdf&date_stamp=2023-08-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290538&domain=pdf&date_stamp=2023-08-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290538&domain=pdf&date_stamp=2023-08-25
https://doi.org/10.1371/journal.pone.0290538
https://doi.org/10.1371/journal.pone.0290538
http://creativecommons.org/licenses/by/4.0/
http://pmlabqsar.pythonanywhere.com/TROLLOPE
http://pmlabqsar.pythonanywhere.com/TROLLOPE


the reuse of substandard medical equipment in healthcare settings and the sharing of contami-

nated needles and syringes in injection drug users (IDU). HCV infection often leads to curable

acute hepatitis C; however, it can also result in an asymptomatic chronic condition that can

lead to serious illnesses, including liver fibrosis, cirrhosis, and even fatal hepatocellular carci-

noma [1, 2]. By combining translational and clinical research efforts, treatments for HCV have

evolved from recombinant interferon α (IFNα) and nucleoside analogue ribavirin (RBV) to

direct-acting antiviral agents (DAAs). These treatment options can be administered as mono-

therapy or in combination to achieve superior outcomes [3, 4]. Currently, treatment

approaches primarily focus on pan-genotypic regimens designed to target multiple viral non-

structural (NS) complexes that aim to achieve high efficiency in treating most HCV genotypes

[5, 6]. Despite the success of HCV therapeutic schemes, access to diagnosis and treatment

remains limited in certain populations. According to the World Health Organization (WHO),

approximately 58 million people worldwide are affected by chronic HCV infection, yet only

21% of them have been clinically diagnosed. Additionally, the disease is also responsible for

approximately 400,000 deaths each year due to cirrhosis and hepatocellular carcinoma [7, 8].

This is considered inconsistent with the announcement to reduce new HCV infections by 90%

by 2030 and achieve complete HCV elimination as the ultimate goal. According to WHO, the

number of diagnosed HCV patients is underestimated, and access to the tests is still limited in

some populations. Therefore, HCV vaccine development is essentially required to prevent

transmission. An effective HCV vaccine will greatly impact the control of the disease, espe-

cially among IDUs. It is worth noting that the process of vaccine production should be cost-

effective to ensure worldwide fair access. Despite substantial positive outcomes in treating

HCV patients, the lack of available preventative vaccines hinders significant progress toward

the goal of HCV elimination [9].

One major challenge in vaccine development is the genetic diversity of HCV, which con-

sists of 8 genotypes and 86 subtypes. These variants exhibit approximately 30 percent variabil-

ity in amino acids compared to each other [10]. To achieve the greatest benefit, an ideal

vaccine should focus on targeting the genetically conserved regions of the HCV genome. This

approach would broaden the immune response across multiple genotypes and involve both

humoral and cellular immunity, thereby maximizing the chance of success. Many studies have

demonstrated the feasibility of neutralizing HCV infection through the transfer of polyclonal

antibodies obtained from chronic HCV patients to chimeric mice and chimpanzees [11–13].

Nonetheless, the envelope genes (E1 and E2) of HCV exhibit significant diversity, resulting in

a wide range of evolved epitopes that are resistant to antibody binding. This evolutionary adap-

tation benefits the viral escape from immune responses [14–16]. Additionally, the specific

roles of antibodies in combating HCV infection have not been clearly defined yet, which fur-

ther complicates the development of antibody-based vaccines [16]. In contrast, several vaccine

studies have concentrated on enhancing HCV-specific T-cell activity [17]. Specifically, CD4+

T cells play a crucial role in maintaining T-cell populations, while CD8+ T cells serve as the pri-

mary effectors responsible for eliminating viral-infected cells [18–21]. To date, various non-

structural proteins (NS) of HCV have been found to possess prominent targeting features for

CD8+ T cells, indicating the feasibility of vaccine development. However, this strategy essen-

tially relies on the presence of HCV antigenic peptides in an HLA-restricted manner [22, 23].

Until now, several HCV vaccine platforms, such as DNA-based immunization, virus-like

particles (VLPs), and short peptide- or epitope-encapsulating lysosomes [24–26], have demon-

strated promising outcomes in terms of HCV protection. However, some of these still need

particular improvements to enhance their effectiveness [27, 28]. One of the challenges lies in

the rational design of immunogenic epitopes [29], as the traditional vaccine design approaches

are considered less effective for HCV due to high genome heterogeneity and mutagenicity
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[30]. Thus, an alternative approach is required, and in silico studies have shown great benefits

by predicting immunogenic epitopes to be incorporated into the vaccine platform and

enhance its efficacy. Many in silico predictions of TCE-HCV have demonstrated promising

outcomes in terms of cytotoxic T cell responses in BALB/c and transgenic mice. These findings

suggest the potential of HCV-polytope vaccine candidates. However, some of the predicted

epitopes have achieved only marginal success and require additional support [31–33]. There-

fore, it is desirable to accurately identify TCE-HCV using sequence information alone, without

relying on structural information, before embarking on costly in vitro and in vivo
investigations.

To date, several computational approaches have been developed to complement experi-

mental studies in the identification of TCEs. For example, Dhanda et al. [34] developed a sup-

port vector machine (SVM)-based predictor, named IL4pred, to predict IL4 inducing

peptides. They constructed a benchmark dataset consisting of 904 IL4 inducing and 742 non-

IL4 inducing peptides. Using this dataset, various sequence-based feature descriptors were

employed, such as amino acid composition (AAC), amino acids pair (AAP), dipeptide compo-

sition (DPC), and motif information, to train IL4pred. Among the feature descriptors, AAP

and motif information were selected for the development of IL4pred. IL4pred achieved cross-

validation and independent test accuracies of 0.758 and 0.690, respectively. Further informa-

tion regarding related computational approaches developed for the identification of TCEs can

be found in references [35–37]. However, at present, there is no sequence-based predictor spe-

cifically designed for identifying and characterizing TCE-HCVs. Keeping this issue in mind,

we present a novel sequence-based stacked approach, termed TROLLOPE (predicToR Of Lin-

ear t-ceLl epitOPEs of hepatitis C virus), to specifically identify TCE-HCVs using primary

sequence information. To the best of our knowledge, TROLLOPE is the first computational

approach developed for specifically identifying TCE-HCVs. To develop TROLLOPE, we first

constructed a benchmark dataset consisting of 446 TCE-HCVs and 525 non-TCE-HCVs.

Based on this dataset, we extracted 12 different types of sequence-based feature encoding

schemes from several perspectives, such as physicochemical properties, composition-transi-

tion-distribution information and composition information. These feature descriptors were

then used to create 144 base-classifiers by using 12 powerful ML algorithms. To maximize the

performance of TROLLOPE, we employed a customized genetic algorithm to determine a col-

lection of potential base-classifiers and integrated them to develop the meta-classifier using the

stacking strategy. Experimental results demonstrate that TROLLOPE outperforms conven-

tional ML classifiers, achieving superior performance.

2. Materials and methods

2.1 Overall framework of TROLLOPE

As seen in Fig 1, the development and performance assessment of TROLLOPE involve five

main steps: dataset preparation, feature representation, stacked model development, perfor-

mance evaluation, and online web server deployment. In the first step, we collected the positive

and negative datasets from the IEDB database [38]. In the second step, we employed well-

known feature encoding schemes to represent TCE-HCVs and non-TCE-HCVs. After that, in

the development of stacked model, it consists of two levels of learning stages. The classifiers

developed in the first and second stages are known as the base-classifier and meta-classifier,

respectively. In the fourth step, we assessed the performance of base-classifiers and meta-classi-

fiers to conduct a comparative analysis and select the final stacked model. Finally, the best

stacked model was employed to develop an online web server, providing convenient identifica-

tion of TCE-HCVs.

PLOS ONE TROLLOPE

PLOS ONE | https://doi.org/10.1371/journal.pone.0290538 August 25, 2023 3 / 22

https://doi.org/10.1371/journal.pone.0290538


2.2 Data collection and curation

According to the previously established B-cell response of the HCV dataset [39], the positive

and negative samples were collected from Immune Epitope Database (IEDB) version 2.26.

Specifically, the dataset used in this study was created by selecting “Hepatitis C virus” (ID

11103) as the source organism. The main criteria for the inclusion of experimental outcomes

were related to T cell assays in human, mouse and non-human primates. Among these, peptide

sequences annotated as ‘positive’ were considered as the positive samples (referred to as

TCE-HCVs) whereas those annotated as ‘negative’ were included as the negative samples

(referred to as non-TCE-HCVs). The length of peptide sequences was filtered to 8–10 amino

acid residues to select compatible epitopes capable of being accommodated through HLA I

Fig 1. System flowchart of the proposed TROLLOPE. The development and performance assessment of TROLLOPE involves five main steps:

dataset preparation, feature representation, stacked model development, performance evaluation, and online web server deployment.

https://doi.org/10.1371/journal.pone.0290538.g001
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molecules and recognizing by CD8+ T cells [40, 41]. As a result, we obtained 711 TCE-HCVs

and 790 non-TCE-HCVs. Among these sequences, redundant samples were excluded using

Venny (https://bioinfogp.cnb.csic.es/tools/venny/index.html). Therefore, 446 TCE-HCVs

and 525 non-TCE-HCVs were considered as the benchmark dataset and used for constructing

the proposed model. Finally, the benchmark dataset was randomly divided to generate

the training and independent test datasets, comprising 80% (i.e., 357 TCE-HCVs and 420

non-TCE-HCVs) and 20% (i.e., 89 TCE-HCVs and 105 non-TCE-HCVs) of the data,

respectively.

2.3 Informative feature selection

In this study, our customized genetic algorithm, called GA-SAR [42], was employed to deter-

mine informative features while securing high prediction performance [42–45]. In general,

GA-SAR is categorized as one of commonly-used non-deterministic methods that utilize the

biological evolution of a population [46, 47]. The GA-SAR’s chromosome used herein com-

prises binary for feature selection and parametric genes for ML parameter optimization. The

feature importance selection based on the GA-SAR method can be described as follows. First,

we randomly constructed an initial population of Pop individuals and assess the performance

of all Pop individuals based on the 10-fold cross-validation test. Second, we utilize a com-

monly-used tournament selection to obtain the best Pop for constructing a mating pool.

Third, the self-assessment-report operation (SAR) between the best Pop and each other indi-

vidual Pop was used to create the new children. Finally, the maximum number of generations

is used as the stopping condition. Herein, the parameters and their values for the GA-SAR

contain rbegin = 5, mstop = 20, Pm = 0.05, and Pop = 20 [44, 48, 49]. Detailed information

about this algorithm is reported in our previous studies [42, 44, 48].

2.4 Stacked model development

Ensemble learning strategies integrate heterogeneous outputs from different prediction mod-

els to create a single prediction. These strategies include average scoring, majority voting, and

the stacking strategy [50, 51]. Among these strategies, stacking is known as the most powerful

one [49–53]. This approach was first presented by Wolpert [54] to improve prediction perfor-

mance. Therefore, we employed the stacking strategy to develop TROLLOPE. In general, the

stacking ensemble framework consists of two main levels of learning stages, where the predic-

tion models developed from the first and second learning stages are referred to as the base-

classifier and meta-classifier, respectively. The design and development process of TROLLOPE

is illustrated in Fig 1.

In the first learning stage, we employ 12 different ML algorithms (ADA, DT, ET, KNN,

LGBM, LR, MLP, NB, PLS, RF, SVM, and XGB) to obtain the crucial pattern of TCE-HCV

[51, 55, 56]. Then, each ML algorithm was train with 12 well-known feature descriptors (AAC,

AAI, APAAC, CTD, CTDC, CTDD, CTDT, DDE, DPC, PAAC, PCP and TPC [57–60]) to

construct 12 base-classifiers. The details of all the feature encodings and ML methods used

herein are recorded in Table 1 and S1 Table in S1 File, respectively. As a result, 144 base-clas-

sifiers were obtained by using the Scikit-learn package in Python programming language [61].

Specifically, a grid search based on the 10-fold cross-validation procedure was used to deter-

mine the optimal parameters of all the 144 base-classifiers and avoid overfitting. Here, the

base-classifiers having the highest area under the receiver operating characteristics (ROC)

curve (AUC) were deemed as the powerful classifiers.

In the second step, we utilized each base-classifier to generate a probabilistic feature (PF)

exhibiting the probabilistic score of being TCE-HCV. To be specific, we randomly divided the
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training dataset into 10 subsets (i.e., DTRN ¼ fD1;D2;D3; . . . ;Dig;where i ¼ 1; 2; 3; . . . ; 10)

based on the 10-fold cross-validation procedure. In the stacking strategy, each Di was treated

as the validation set, while the remaining nine subsets was treated as the training set, which

was used for training a subset-based prediction model. Then, 10 subset-based prediction mod-

els were obtained and used to calculate 10 different probabilistic scores for each peptide

sequence on the independent test dataset. Thus, the 10 different probabilistic scores were aver-

aged to create the PF. As a result, 144 PFs derived from all the 144 base-classifiers were

obtained and used to construct a new probabilistic feature vector (referred to as APF). For a

given sequence P, its probabilistic feature vector can be represented as follows:

APFðPÞ ¼ fPF1;1;PF1;2;PF1;3; . . . ;PFi;j; . . . ;PFi;jg;where i; j ¼ 1; 2; 3; . . . ; 12 ð1Þ

where PFi,j is the probabilistic feature generated by the base-classifier trained with the ith ML

algorithm in conjunction with the jth feature encoding. Finally, the APF is represented with a

144-D probabilistic feature vector.

In the third learning stage, we utilized the APF to train the PLS-based meta-classifier. In the

meanwhile, to enhance the performance of the meta-classifier, we used the GA-SAR method

to determine m informative PFs, where m<< 144. The GA-SAR’s chromosome used herein

comprises 144 genes and 10-bit gene for encoding #Components of PLS-based meta-classifier,

where #Components 2 {10, 20, 30, 40, . . ., 1000} (S1 Table in S1 File). By doing this, we

obtained a m-D probabilistic feature vector (referred to as OPF) generated from the selected

base-classifiers. Finally, we obtained two PLS-based meta-classifiers and selected the best-per-

forming one for TROLLOPE construction based on the cross-validation AUC.

2.5 Statistical metrics

The performance of the proposed model and related conventional ML classifiers was deter-

mined using five standard evaluation metrics, including AUC, sensitivity (Sn), specificity (Sp),

accuracy (ACC), and Matthew’s correlation coefficient (MCC) [62–64]. These evaluation

Table 1. Summary of 12 different feature descriptors along with their corresponding description and dimension.

Descriptorsa Description Dimension Reference

AAC Frequency of 20 amino acids 20 [90]

AAI All biochemical and biophysical properties extracted from the AAindex database 531 [48]

APAAC Amphiphilic pseudo-amino acid composition 22 [91, 92]

CTD Composition, transition and distribution 273 [90]

CTDC Percentage of particular amino acid property groups 21 [90, 93, 94]

CTDD Percentage of mutual conversion in amino acid properties 21 [90, 93, 94]

CTDT Distribution of amino acid properties in sequences 105 [90, 93, 94]

DDE Dipeptide deviation from expected mean 400 [95]

DPC Frequency of 400 dipeptides 400 [95]

PAAC Pseudo amino acid composition 21 [91, 92]

PCP Selected important physical and chemical properties 11 [48]

TPC Frequency of 8000 tripeptides 8000 [50, 95]

aAAC: amino acid composition, AAI: amino acid composition and physicochemical properties, APAAC: pseudo amino acid composition, CTD: composition

translation and distribution, CTDC: CTD composition, CTDT: CTD distribution (CTDT), CTDT: CTD transition (CTDT), DDE: dipeptide deviation from expected

mean, DPC: dipeptide composition, PAAC: pseudo amino acid composition, PCP: physicochemical properties, TPC: tripeptide composition.

https://doi.org/10.1371/journal.pone.0290538.t001
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metrics are computed as follows:

Sn ¼
TP

ðTPþ FNÞ
ð2Þ

Sp ¼
TN

ðTNþ FPÞ
ð3Þ

ACC ¼
TPþ TN

ðTPþ TNþ FPþ FNÞ
ð4Þ

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ð5Þ

where TN represents true negatives (e.g., the number of correctly predicted non-TCE-HCV)

and TP represents true positives (e.g., the number of correctly predicted TCE-HCVs). On the

other hand, FN represents false negatives (e.g., the number of TCE-HCVs predicted as non-

TCE-HCVs), while FP represents false positives (e.g., the number of non-TCE-HCVs pre-

dicted as TCE-HCVs).

3. Results and discussion

3.1 Performance evaluation of different feature encodings and ML methods

In this section, we investigated the prediction capability of various base-classifiers trained with

different feature encodings and ML methods in TCE-HCV prediction. For each base-classifier,

we evaluated its performance using both the 10-fold cross-validation and independent tests.

As mentioned earlier, we determined the best-performing base-classifiers in terms of cross-

validation AUC. The detailed results of the10-fold cross-validation and independent tests for

all the 144 BCs are recorded in Figs 2 and 3 and S2, S3 Tables in S1 File. From Fig 2, we

notice that 8 out of the 10 top-ranked powerful base-classifiers were developed based on DDE,

DPC, and TPC, i.e., SVM-TPC, LR-TPC, SVM-DDE, RF-TPC, RF-DDE, SVM-DPC,

RF-DPC, NB-TPC, and ET-DPC with corresponding AUC values of 0.791, 0.786, 0.780, 0.772,

0.771, 0.769, 0.769, 0.768, 0.762, respectively. This indicates that these three feature descriptors

are beneficial in TCE-HCV prediction. Interestingly, the AUC values of SVM-TPC and

LR-TPC were over 0.780 in terms of the 10-fold cross-validation test. It could be stated that

SVM-TPC is deemed as the best-performing classifier in TCE-HCV prediction. As seen in S2

Table in S1 File, the ACC, Sn, Sp, and MCC of SVM-TPC were 0.696, 0.440, 0.914, and 0.407,

respectively. On the other hand, this base-classifier achieved the eighth highest AUC of 0.798

in the independent test results, while the highest AUC of 0.833 was achieved by ET-CTDT (S3

Table in S1 File). These results demonstrate that the single feature-based models provide a

less stable performance for TCE-HCV prediction. Thus, we were motived to develop a stacked

model by integrating heterogonous ML classifiers in order to yield a more accurate and stable

TCE-HCV prediction.

3.2 Construction and optimization of stacked models

As mentioned above, we developed RF-based meta-classifiers that cooperate with two new

probabilistic feature vectors, namely APF and OPF. The APF and OPF are represented with

144-D and m-D probabilistic feature vectors, respectively. The optimal number of m out of

144 probabilistic features was determined using the GA-SAR method. After optimizing the
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144-D probabilistic feature vector, the optimal number of m was found to be 6. Specifically,

the top-six informative probabilistic features were generated based on six different base-classi-

fiers, inducing SVM-TPC, RF-CTDD, SVM-DDE, XGB-AAI, XGB-PCP, and ET-APAAC.

The performance of the APF and OPF was evaluated based on both the 10-fold cross-valida-

tion and independent tests (Table 2). As can be seen from Table 2, the OPF outperforms APF

in terms of the 10-fold cross-validation results, with a 4.90% increase in ACC, a 4.21% increase

in Sn, a 5.48% increase in Sp, a 9.75% increase in MCC, and a 1.65% increase in AUC. In

terms of the performance on the independent test dataset, the OPF achieved the best AUC,

ACC, and MCC with an increase of 1.11, 1.03 and 2.42%, respectively. Altogether, the OPF in

conjunction with the RF-based meta-classifier was selected for the construction of

TROLLOPE.

3.3 Performance comparison between TROLLOPE and related ML

methods

To reveal the effectiveness of our proposed model TROLLOPE, we compared its performance

with related ML methods. However, there is no existing computational model designed for

Fig 2. Performance evaluations of top-30 base-classifiers. (A-B) Cross-validation AUC and ACC of top-30 base-classifiers. (C-D) Independent

AUC and ACC of top-30 base-classifiers.

https://doi.org/10.1371/journal.pone.0290538.g002
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TCE-HCV identification. Thus, the performance of TROLLOPE is compared with related ML

methods, involving BLAST-based predictor, two well-known ensemble strategies (i.e., the

average scoring and majority voting), and its base-classifiers, in terms of both 10-fold cross-

validation and independent tests. Firstly, we compared the performance of TROLLOPE with

the BLAST-based predictor. The BLAST-based predictor is a well-known similarity-based

approach for identifying proteins [65]. S4 Table in S1 File summarizes the independent test

results of the BLAST-based predictor based on different E-values. As can be seen from S4

Table in S1 File, TROLLOPE clearly outperforms the BLAST-based predictor in terms of

ACC, Sn, Sp, and MCC. Secondly, we conducted a comparative experiment between TROL-

LOPE and the selected ensemble strategies. Table 3 provides the comparative results of the

three ensemble strategies. We noticed that both cross-validation and independent test results

of TROLLOPE were better than that of the two compared ensemble strategies in terms of all

Fig 3. Performance comparison of TROLLOPE and top-five base-classifiers on the training (A–B) and independent (C–D) datasets.

https://doi.org/10.1371/journal.pone.0290538.g003

Table 2. Cross-validation and independent test results of stacked models trained with APF and OPF feature vectors.

Evaluation strategy Feature Dimension ACC Sn SP MCC AUC

Cross-validation APF 144 0.696 0.644 0.740 0.389 0.792

OPF 15 0.745 0.686 0.795 0.487 0.808

Independent test APF 144 0.737 0.652 0.810 0.469 0.816

OPF 15 0.747 0.742 0.752 0.493 0.827

https://doi.org/10.1371/journal.pone.0290538.t002
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five measures, with the exception of Sp on the independent test dataset. To be specific, the

AUC of TROLLOPE were 2.93–2.97% and 2.56–3.33% better than that of the two related

ensemble strategies in terms of cross-validation and independent tests, respectively, highlight-

ing the effectiveness of the stacking strategy over other ensemble strategies. Finally, the perfor-

mance of TROLLOPE was compared against its constituent base-classifiers. For convenience

of discussion, we selected the top-five base-classifiers (i.e., SVM-TPC, LR-TPC, SVM-DDE,

RF-TPC, and RF-DDE) for conducting our comparative results. From Figs 3 and 4 and

Table 4 along with S1 Fig in S1 File, several observations can be summarized as follows: (i)

TROLLOPE attains the overall best cross-validation results in terms of ACC, Sn, MCC, and

AUC; (ii) The ACC, MCC, and AUC of TROLLOPE are higher than most top-five base-classi-

fiers in terms of the independent test dataset, with the exception of SVM-DDE; (iii)

Table 3. Performance comparison of different models trained based on different ensemble strategies.

Evaluation strategy Ensemble strategy ACC Sn Sp MCC AUC

Cross-validation Average score 0.690 0.647 0.726 0.374 0.779

Majority voting 0.689 0.613 0.752 0.370 0.779

Stacking 0.745 0.686 0.795 0.487 0.808

Independent test Average score 0.727 0.674 0.771 0.448 0.801

Majority voting 0.706 0.607 0.790 0.405 0.794

Stacking 0.747 0.742 0.752 0.493 0.827

https://doi.org/10.1371/journal.pone.0290538.t003

Fig 4. t-distributed stochastic neighbor embedding (t-SNE) distribution of positive and negative samples on the training dataset, where

TCE-HCV and non-TCE-HCV are represented with red and blue dots, respectively. TROLLOPE (A) and top-five base-classifiers (B-F).

https://doi.org/10.1371/journal.pone.0290538.g004
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TROLLOPE demonstrates a significant improvement, achieving a 2.06% increase in ACC, a

7.87% increase in Sn, a 4.52% increase in MCC, and a 2.92% increase in AUC compared to the

best-performing base-classifier (i.e., SVM-TPC); and (iv) Based on the distributed stochastic

neighbor embedding (t-SNE) method [66, 67], TROLLOPE demonstrates greater discrimina-

tive power in making accurate predictions (Fig 4). Overall, our comparative analysis revealed

that the stacking strategy used in TROLLOPE proved beneficial in terms of providing more

accurate and reliable identification of TCE-HCV.

3.4 Analysis of the contribution of new probabilistic features

In this section, we investigated the discriminative power of the new probabilistic features

(OPF) for identifying TCE-HCVs. Firstly, we compared the performance of OPF with well-

known sequence-based feature descriptors, involving AAC, AAI, APAAC, CTD, CTDC,

CTDD, CTDT, DDE, DPC, PAAC, PCP and TPC. By doing this, each feature was used to

develop a PLS-based model and its performance was evaluated based on the 10-fold cross-vali-

dation and independent tests. Tables 5 and 6 record their detailed 10-fold cross-validation

and independent test results. As seen from Table 5, among the 12 well-known feature

Table 4. Performance comparison of TROLLOPE and top-five ML classifiers.

Evaluation strategy Method ACC Sn Sp MCC AUC

Cross-validation RF-DDE 0.682 0.669 0.693 0.363 0.771

RF-TPC 0.700 0.538 0.838 0.399 0.772

SVM-DDE 0.699 0.639 0.750 0.394 0.780

LR-TPC 0.705 0.552 0.836 0.409 0.786

SVM-TPC 0.696 0.440 0.914 0.407 0.791

TROLLOPE 0.745 0.686 0.795 0.487 0.808

Independent test RF-DDE 0.722 0.753 0.695 0.447 0.799

RF-TPC 0.711 0.517 0.876 0.426 0.786

SVM-DDE 0.758 0.697 0.810 0.511 0.822

LR-TPC 0.716 0.539 0.867 0.434 0.796

SVM-TPC 0.727 0.663 0.781 0.448 0.798

TROLLOPE 0.747 0.742 0.752 0.493 0.827

https://doi.org/10.1371/journal.pone.0290538.t004

Table 5. Cross-validation results of our new feature and conventional feature descriptor.

Feature ACC Sn Sp MCC AUC

CTDC 0.538 0.401 0.655 0.056 0.558

PCP 0.538 0.325 0.719 0.045 0.569

AAI 0.548 0.446 0.636 0.084 0.601

CTDT 0.595 0.496 0.679 0.180 0.616

CTDD 0.593 0.554 0.626 0.182 0.630

AAC 0.584 0.516 0.643 0.160 0.632

PAAC 0.602 0.538 0.657 0.198 0.638

CTD 0.600 0.566 0.629 0.196 0.644

APAAC 0.615 0.533 0.686 0.222 0.645

DPC 0.664 0.616 0.705 0.324 0.697

DDE 0.685 0.602 0.755 0.363 0.726

TPC 0.694 0.670 0.714 0.385 0.758

OPF (This study) 0.745 0.686 0.795 0.487 0.808

https://doi.org/10.1371/journal.pone.0290538.t005

PLOS ONE TROLLOPE

PLOS ONE | https://doi.org/10.1371/journal.pone.0290538 August 25, 2023 11 / 22

https://doi.org/10.1371/journal.pone.0290538.t004
https://doi.org/10.1371/journal.pone.0290538.t005
https://doi.org/10.1371/journal.pone.0290538


descriptors, the highest AUC of 0.772 is achieved using TPC. This indicates that TPC exhibits

greater discriminative power compared to other feature descriptors. Furthermore, Tables 5 and

6 show that the OPF achieves higher ACC, Sn, MCC, and AUC values compared to 12 well-

known feature descriptors in terms of both the 10-fold cross-validation and independent tests.

Impressively, on the independent test dataset, the OPF outperforms TPC in terms of MCC, Sn,

ACC, and AUC, with an increase of 13.84, 11.24, 6.70, and 6.00%, respectively. Secondly, we

employed the t-SNE method to analyze the feature space of OPF and top-three informative

sequence-based feature descriptors (i.e., DDE, DPC, and TPC) to visualize their distributions.

As can be seen from Fig 5, the feature space derived from OPF exhibits clearer and more dis-

tinct clusters as compared to DDE, DPC, and TPC. Our comparative analysis revealed that our

new probabilistic features exhibited more discriminative power in identifying TCE-HCV com-

pared to well-known sequence-based feature descriptors, resulting in improved performance.

3.5 Characterization of linear T-cell epitopes of hepatitis C virus

The analysis and characterization of feature importance for each type of features are crucial for

providing a better understanding of TCE-HCVs. Therefore, we employed an interpretable

approach, named the Shapley Additive exPlanations (SHAP), to rank and evaluate the feature

importance for TROLLOPE and its constituent base-classifiers. Until now, the SHAP method

has been successfully used in various bioinformatics tasks [68–71]. Firstly, the top-six informa-

tive probabilistic features of TROLLOPE were assessed for their importance in TCE-HCV

identification. Fig 6 shows the SHAP values of the top-six informative probabilistic features,

where positive and negative SHAP values indicate a high probability that the predictions are

TCE-HCVs and non-TCE-HCVs, respectively. Fig 6A illustrates that most of the top-six infor-

mative probabilistic features (with the exception of XGB-AAI) significantly contribute to

TCE-HCV prediction, as indicated by their high SHAP values. Secondly, to gain deeper

insights into TCE-HCVs, we applied the SHAP method to analyze two of the six base-classifi-

ers (i.e., XGB-AAI and XGB-PCP). Previously, AAI and PCP have been recognized as crucial

features for analyzing and charactering various protein functions [72–76]. As seen in Fig 7, the

important physicochemical properties, such as helical structure conformation (TANS770102,

ISOY800106, AURR980118, and WERD780103), beta-sheet structure (CHOP780211) and

other conformational characteristics of epitopes (MAXF760103 and VASM830101) play a sig-

nificant role in TCE-HCV prediction.

Table 6. Independent test results of our new feature and conventional feature descriptor.

Feature ACC Sn Sp MCC AUC

CTDC 0.562 0.371 0.724 0.101 0.598

PCP 0.552 0.348 0.724 0.078 0.574

AAI 0.598 0.528 0.657 0.187 0.620

CTDT 0.552 0.393 0.686 0.082 0.600

CTDD 0.582 0.472 0.676 0.151 0.618

AAC 0.572 0.528 0.610 0.138 0.593

PAAC 0.577 0.562 0.590 0.152 0.594

CTD 0.582 0.483 0.667 0.152 0.628

APAAC 0.603 0.573 0.629 0.201 0.599

DPC 0.639 0.584 0.686 0.271 0.731

DDE 0.680 0.562 0.781 0.353 0.741

TPC 0.680 0.629 0.724 0.355 0.767

OPF (This study) 0.747 0.742 0.752 0.493 0.827

https://doi.org/10.1371/journal.pone.0290538.t006
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Certain amino acid residues in the position preceding a given residue may have specific

structural preferences, such as helical propensity or beta-sheet propensity. These important

physicochemical properties can provide insights into the preferred amino acids or structural

motifs in that position, which can impact the overall conformation and stability of the epitope.

Moreover, the hydrophobicity of amino acids within HCV epitopes can significantly influence

their structural stability and conformation. In the feature lists of XGB-PCP and XGB-AAI, the

presence of "hydrophobic" and "CIDH920104" or Normalized hydrophobicity scales for alpha/

beta-proteins (Cid et al., 1992), respectively, indicates that hydrophobic tend to be buried

within the protein core, while hydrophilic residues preferentially reside on the protein surface.

A balance of hydrophobic and hydrophilic residues within the epitope can contribute to its

structural integrity and proper folding, which can potentially influence its antigenicity and

immunogenicity [77].

Since aromatic residues have hydrophobic properties, they can participate in hydrophobic

interactions with other hydrophobic regions on antibodies or immune receptors. Therefore,

the “aromatic” feature from XGB-PCP was also listed in the top ranked feature (Fig 7C and

7D). These interactions contribute to the stability and specificity of the antigen-antibody or

Fig 5. t-SNE plots of our new feature OPF (A) and top-three feature descriptors (B-D) (i.e. DDE, DPC, and TPC) on the training dataset.

https://doi.org/10.1371/journal.pone.0290538.g005
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antigen-receptor binding. In addition, the mean area buried on transfer (ROSG850101) could

also be indicative of the hydrophobicity scale of the desired epitopes. Notably, the “aliphatic”

feature could also be grouped together with the hydrophobic and aromatic features. The ali-

phatic residues, such as alanine (Ala), valine (Val), leucine (Leu), and isoleucine (Ile), are non-

polar and play important roles in the hydrophobic region of epitopes. These residues have vari-

ous effects on antigen recognition and immune response [77]. These important features can

also influence the exposure and presentation of epitopes on antigens. In some cases, hydropho-

bic regions within the antigen may be buried within the protein structure, making the epitope

less accessible for recognition by immune receptors. Alternatively, hydrophobic patches on the

surface of an antigen may be more exposed and accessible, facilitating the binding and recog-

nition of the epitope by immune cells or antibodies.

On the other hand, the charged amino acids, including positively charged (basic) residues

such as lysine (Lys) and arginine (Arg), as well as negatively charged (acidic) residues such as

aspartic acid (Asp) and glutamic acid (Glu), can also play important roles in epitopes. Interest-

ingly, the “charged”, “polar”, “positively-charged” and “negatively-charged” features from

XGB-PCP were also found as the key physicochemical properties in Fig 7C and 7D. This evi-

dence was well supported by the FAUJ880111 or Positive charge [78] feature from XGB-AAI

prediction (Fig 7A and 7B). The presence of charged residues within an epitope can have sev-

eral effects on antigen recognition and immune response, via electrostatic interactions, to

Fig 6. Feature importance analysis for TROLLOPE prediction. (A) Scatter plot of top-15 informative probabilistic

features. (B) The average absolute SHAP values of top-15 informative probabilistic features.

https://doi.org/10.1371/journal.pone.0290538.g006
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enhance the strength of the binding and play a crucial role in determining the binding affinity

and specificity of the epitope [79]. Moreover, charged residues can influence the processing

and presentation of epitopes by antigen-presenting cells (APCs) affecting their proteolytic

cleavage, degradation, and subsequent presentation on the cell surface via major histocompati-

bility complex (MHC) molecules [77]. For example, the E2 protein and domain 1 of the HCV-

core protein contain frequent positively charged amino acids (Lys and Arg) that are involved

in RNA binding, promotes dimerization of the viral RNA, and play a significant role in nucleo-

capsid (NC) formation and core envelopment by endosomal membranes [80].

In terms of the receptor-epitope binding and specificity on T-cell, NAKH920103 and

NAKH920102 represent the role of specific regions on transmembrane proteins (single-span-

ning proteins). The CYT2 region in NAKH920102 property, which refers to the C-terminal

region of a single-spanning protein, may contribute to the amino acid composition within this

region, affecting their recognition by antibodies or T-cells [79]. More importantly, the impor-

tance of epitope diversity is crucial for vaccine design. The role of potential mutability on

Fig 7. Feature importance analysis for XGB-AAI (A-B) and XGB-PCP (C-D) predictions. (A, C) Scatter plot of top 20 informative

features. (B, D) The average absolute SHAP values of top 20 informative features.

https://doi.org/10.1371/journal.pone.0290538.g007
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HCV epitope function refers to how the mutability, or the propensity to undergo genetic varia-

tions, of epitopes can impact their function and interactions with the immune system [81].

The presence of both relative mutability (JOND920102) and relative stability scale extracted

from mutation experiments (ZHOH040102) features from XGB-AAI prediction were reason-

able. Contributing to this epitope diversity issue, RADA880106, PRAM820103 and

SNEP660102 have been reported to capture the variation in amino acid properties that con-

tributes most significantly to the structural diversity of HCV epitopes [39]. Compared to previ-

ously reported B-cell epitopes of hepatitis C [39], the feature “Principal component I (PCI)

[82]” or SNEP660101 was found to be among the top-10 properties ranked by the accuracy dif-

ferences. This finding may reflect the different key features that are important for predicting

B-cell and T-cell epitopes. On the other hand, the principal component II (PCII) might capture

the variation in amino acid properties that contributes most significantly to the structural

diversity of HCV epitopes. PCII represents the orthogonal direction to PCI, which generally

captures the primary source of variation. PCII can capture additional variations in epitope

properties, such as side chain flexibility, polarity, or charge distribution, which can influence

the conformational flexibility and structural dynamics of epitopes [83]. Epitopes with different

PCII scores may exhibit distinct structural features or conformational preferences, potentially

impacting their function and interaction with immune receptors.

3.6 Case studies

In this study, we conducted case studies to evaluate the prediction capability of our stacked

model TROLLOPE in practical real-life situations and compared its performance with the top-

five base-classifiers. Specifically, we collected six experimentally verified TCE-HCVs from two

previous studies [84]. The criteria for HCV epitopes selection in this case study were as follows:

1) they have to be experimentally verified from published research papers, 2) only short pep-

tides (8–11 amino acid residues) that are CD8+ T-cell specific epitopes will be considered (not

B-cell specific or CD4+ T-cell epitopes), and 3) these TCE-HCVs should not be found in both

the training and independent test datasets. Detailed information about the six TCE-HCVs in

the case studies is provided in S5 Table in S1 File. In the meanwhile, the prediction results for

these TCE-HCVs based on TROLLOPE and the top-five base-classifiers are summarized in S6

Table in S1 File. As can be seen, TROLLOPE, along with SVM-TPC and SVM-DDE, can cor-

rectly predict all six TCE-HCVs.

Taken together, these findings suggest that TROLLOPE can serve as a useful computational

tool for accurately prioritizing high-potential TCE-HCVs from a large number of non-charac-

terized peptides, as evidenced by its performance in both the independent test and case

studies.

4. Conclusions

This study presents a novel computational approach, termed TROLLOPE, which aims to pro-

vide fast and accurate prediction of TCE-HCV. Specifically, we extracted 12 different types of

sequence-based feature encoding schemes from several perspectives, such as physicochemical

properties, composition-transition-distribution information and composition information,

and employed 12 powerful ML algorithms to develop a stacked model. The major contribu-

tions of this study are as follows: (i) TROLLOPE is the first computational tool developed spe-

cifically for identifying TCE-HCV using sequence information alone; (ii) The new

probabilistic features generated based on TROLLOPE offer more discriminative information

compared to commonly used feature encodings; (iii) The experimental results, in terms of

both cross-validation and independent test results, revealed that TROLLOPE significantly
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outperformed conventional ML classifiers; and (iv) A user-friendly online web server of

TROLLOPE is developed for serving experimental scientists to easily access and utilize the tool

for their desired prediction tasks (http://pmlabqsar.pythonanywhere.com/TROLLOPE). It is

anticipated that TROLLOPE could be utilized to accelerate the large-scale identification of

potential TCE-HCV from non-characterized peptides. However, there are some limitations

that can be addressed in future work. Firstly, although our probabilistic features have more dis-

criminative ability in TCE-HCV identification, there is still room for further improvement.

For future work, we plan to fuse our probabilistic features with fingerprint descriptors (i.e.,

Estate, MACCS, and PubChem [85–87]) and sequence-to-vector encodings (i.e., word2vec).

Secondly, the performance of TROLLOPE might be improved by combining it with powerful

deep learning (DL) approaches, such as deep neural network (DNN) and transfer learning [88,

89]. Thirdly, we are motivated to develop a new ML framework that are capable of identifying

multiple viral agents.
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