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Abstract

Objective

To reveal the relationship between Body Mass Index(BMI), type 2 diabetes, and bone min-

eral density(BMD) using a mendelian randomization (MR) approach.

Methods

GWAS data on BMI, type 2 diabetes, and BMD were selected from the IEU GWAS database

at the University of Bristol.Univariable, multivariable, and mediated MR analyses were used

to explore the relationship between BMI, type 2 diabetes, and BMD. beta(β) values were

given, and three methods, including inverse variance weighting, MR-Egger regression, and

weighted median, were used in this analysis.

Results

Univariable mendelian randomization (UVMR) results showed that BMI and type 2 diabetes

were positively associated with BMD. However, the association between BMI and BMD was

insignificant in the multivariable Mendelian randomization (MVMR) analysis, while that

between type 2 diabetes and BMD remained significant. Mediated MR analysis indicated

that type 2 diabetes mediated the regulation of BMD by BMI.

Conclusion

This study provides evidence supporting a positive causal association between BMI, type 2

diabetes, and BMD. Type 2 diabetes acts as a mediator in the regulation of BMD by BMI,

indicating that both BMI and type 2 diabetes exert a protective influence on BMD.
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1 Introduction

Osteoporosis (OP) is a systemic bone metabolic disorder characterized by reduced bone mass,

gradual loss of bone trabeculae, and decreased bone mineral density (BMD) [1]. With the pro-

gression of society and changes in human lifestyles and dietary patterns, the prevalence of

overweight and obesity has risen. The World Health Organization (WHO) defines overweight

and obesity as the excessive accumulation of fat that has detrimental effects on human health

and recommends the utilization of body mass index (BMI) as a diagnostic tool [2]. Some stud-

ies [3] have proposed a protective effect of higher BMI against OP, with positive correlations

observed between BMI values and BMD. However, the development of type 2 diabetes is

closely associated with BMI, and research has demonstrated that an increase in BMI raises the

risk of type 2 diabetes onset [4–9]. Moreover, the correlation between BMD and BMI can be

bidirectional [10], being positive in cases of relative obesity (BMI 18. 0–31. 2 kg/m2) and nega-

tive in severe obesity scenarios (BMI 31. 3–40. 6 kg/m2). These findings indicate that conven-

tional observational studies investigating the association between type 2 diabetes, BMI, and

BMD may be influenced by potential confounding factors and reverse causality, potentially

leading to biases and inaccurate conclusions.

Mendelian randomization (MR) employs genetic variation as an instrumental variable to

establish causal associations between risk factors and disease. This method effectively

addresses the issues of potential confounding and reverse causality, making it a valuable com-

plement to traditional epidemiological methods [11]. multivariable Mendelian randomization

(MVMR) is an extension of Univariable mendelian randomization (UVMR) that takes into

account polymorphism of multiple traits [12]. The assumptions of MVMR are more inclusive,

as genetic variation may impact several measured exposures, and the exclusion restrictions

and exchangeability assumptions are accordingly expanded. MVMR gives consistent results in

estimating the direct effect of primary exposure on the outcome, without the confounding

effects of secondary exposures acting as mediators.

The study utilized UVMR and MVMR to investigate the effects of type 2 diabetes and BMI

on BMD. Sensitivity analyses were conducted to assess the impact of various hypotheses on

the study results and to ensure the robustness. A mediated MR analysis was performed to

assess whether the effect of BMI on BMD was mediated by type 2 diabetes.

2 Materials and methods

All included studies were permitted by their academic ethics review committees, and each par-

ticipant signed written informed consent. Ethical approval and consent to participate in the

original GWASs were obtained from relevant review boards. This study was a re-analysis

based on publicly available GWAS data; hence, no additional ethical approval was required.

2.1 Sources of information

The data used in this study were obtained from the IEU GWAS database at the University of

Bristol (https://gwasmrcieu.ac.uk). Summary-level data for BMI were obtained from a 2018

meta-analysis of GWASs of height [13]. This meta-analysis uses a fixed-effects model that

combined results from a GWAS of BMI conducted on 456,426 participants from the UK Bio-

bank (adjusted for age, sex, recruitment center, genotyping batch, and 10 genetic principal

components), with results from a 2014 GWAS published by the Genetic Investigation of

ANthropometric Traits (GIANT) consortium. The GIANT GWAS had 253,288 participants

from 79 studies (adjusted for age, height, sex, and study-specific covariates) [13]. Summary

data on the associations of genetic variants with clinician-diagnosed type 2 diabetes were

obtained from a recent GWAS meta-analysis of 62,892 type 2 diabetes patients and 596,424
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controls of European ancestry, with 16 million gene variations [14]. The study included three

contributing studies, namely the UK Biobank (UKB) full cohort release, Genetic Epidemiology

Research on Aging (GERA), and Diabetes Genetics Replication and Meta-analysis (DIA-

GRAM) [14]. The BMD GWAS summary dataset included 56,284 individuals of European

ancestry, and more information is available in the original study [15]. Using linear regression

models, the SNPs associated with BMD were adjusted for covariates such as age, weight,

height, etc. [15]. Detailed information is given in Table 1.

2.2 Univariate Mendelian randomization

We conducted separate MR studies to investigate the causal relationship between BMI with

type 2 diabetes (the exposure) and BMD (the outcome) utilizing GWAS data. Fig 1 provides

an overview of the study design and assumptions of the MR study. The instrumental variables

(IVs) for the exposure traits were selected according to several criteria in the univariable MR

analyses [16]. Specifically, the IVs should be strongly associated with exposure traits

(P< 5×10−8), independent of each other as quantified by linkage disequilibrium (LD) of R2<

0.001, which was achieved by clumping with a 10 Mb window. Moreover, the IVs should have

at least 10 variants, and the single nucleotide polymorphisms (SNPs) should be biallelic.

The main two-sample MR method used in this study was inverse variance weighting (IVW)

[17], followed by MR-Egger [18] and weighted median [19]. Compared with IVW, the stan-

dard error of the causal estimate from the MR-Egger method is typically large, resulting in low

causal estimates [20]. The MR-Egger method was used to investigate the potential bias intro-

duced by pleiotropy and also provides an intercept test to determine whether an unbiased esti-

mate of the causal effect exists [21]. The weighted median analysis calculates the median of an

empirical distribution of MR association estimates, weighted for their precision. It provides

consistent estimates when more than half of the instruments are valid [22]. If all included

SNPs satisfy the assumption of being a valid tool variable, IVW could provide accurate esti-

mates [23]. Hence, IVW is considered the main result when no weak IVs exist. When no more

than 50% of the weight in the analysis is accounted for by the effective IVs, the weighted

median method could offer a plausible estimate of the causal relationship [24]. To assess hori-

zontal multiplicity in the MR analysis, the study conducted the MR-Egger intercept test. If the

intercept term in this analysis was significant, it indicated the presence of horizontal multiplic-

ity [25]. Additionally, Cochran’s Q statistic was used to detect heterogeneity, and a significant

result indicated significant heterogeneity in the analysis [26].

2.3 Multivariable Mendelian randomization

To account for potential confounding or mediating effects, we conducted an MVMR analysis,

which allows for identifying causal effects of multiple risk factors, so that the direct effects of

BMI and type 2 diabetes on BMD [27] can be revealed. The MVMR experimental design is

shown in Fig 2. The MVMR technique accounts for the interrelationship between BMI and

type 2 diabetes, and the IVs employed in the mvMR analysis are frequently linked to all expo-

sures. Combinations of IVs from each exposure made up the SNPs utilized to conduct

Table 1. Summary information on the data from the genome-wide association studies used in the MR analysis.

Variables Trait Sample size Number of SNPs Population Year

BMI body mass index 681,275 2,336,260 European 2018

Type 2 diabetes Type 2 diabetes 655,666 5,030,727 European 2018

BMD Total body bone mineral density 56284 16,162,733 European 2018

https://doi.org/10.1371/journal.pone.0290530.t001
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multivariable MR. SNPs associated with any BMI or type 2 diabetes were merged by removing

duplicates with higher p-values. Relevant data from the original exposure datasets were

extracted for these SNPs, which were then used as IVs in the MVMR analysis. The SNPs that

were significantly (P threshold< 5 × 10−8) associated with BMI and type 2 diabetes were

selected as instrumental variables, respectively. Independent variants (r2< 0.001, window size

= 10,000 kb) were retained according to European ancestry reference data from the 1000

Genomes Project [16].

For multivariable MR analysis, we utilized IVW [17] with multiplicative random effects as

the main analysis and MR-Egger [18] with multiplicative random effects methods as the com-

plementary analysis to appraise the causal effects of BMI and type 2 diabetes on BMD. To eval-

uate the strength of the instruments used, we calculated F-statistics, where an F value greater

than 10 indicates that the SNPs can effectively predict the exposures. When the F-statistic is

less than 10, the genetic variation used is considered a weak instrumental variable, which may

introduce bias into the results, and caution is required when interpreting the results [28,29]. In

order to ensure the robustness of the instrumental variables, we initially computed the R2

value, which elucidates the extent of phenotypic variation expounded by all SNPs in the

Fig 1. Overview of the study design and assumptions of the UVMR design. The UVMR analysis in this study satisfies

the following three hypotheses: (1)there is a strong association between instrumental variables and exposure factors; (2) no

confounding factors exist in the association between exposure and outcome, in other words, there is no genetic pleiotropy;

and (3) the instrumental variables do not have a direct effect on the outcome and only influence the outcome through the

exposure factor.

https://doi.org/10.1371/journal.pone.0290530.g001
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analysis. Subsequently, the instrumental strength of the SNPs for each socioeconomic trait was

evaluated through the utilization of the F-statistic. An F-statistic exceeding 10 signifies that the

composite SNP serves as a highly potent instrument for elucidating phenotypic variation,

while an F-statistic equal to or less than 10 indicates a weak instrument.

2.4 Mediated Mendelian randomization

To explore the potential mediating role of type 2 diabetes in the association between BMI and

BMD, we employed two-step MR and MVMR approaches, as illustrated in Fig 3. The two-step

approach is considered less prone to biases inherent in the common multivariable approach

Fig 2. MVMR experimental design.

https://doi.org/10.1371/journal.pone.0290530.g002

Fig 3. Graph of the proposed mediation by mediators for the association of BMI with BMD. β1 represents the

regression coefficients for the association between BMI and mediators, β2 represents the regression coefficients for the

association between mediators and BMD, and β3 represents the total effect between BMI and BMD without

adjustment for mediators. Additionally, β3’ represents the direct effect between BMI and BMD, considering

adjustment for mediators.

https://doi.org/10.1371/journal.pone.0290530.g003
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[30]. In MVMR, the total effect of each exposure is decomposed into direct and indirect effects.

A graphical representation of the analyses is depicted in Fig 2. Mediation was considered pres-

ent if the following conditions were met: 1) a correlation existed between BMI and mediators

(β1); 2) BMI was associated with BMD without adjusting for mediators (β3); 3) mediators

were associated with BMD (β2). The mediation ratio was calculated as (β1×β2)/(β3), with an

indirect effect of β1 ×β2 and a total effect of β3 +β1 ×β2.

2.5 Statistical analysis

Our study used the “TwoSampleMR” [31] and “Mendelian Randomisation” [32] packages in

the R Studio software for exposure and outcome analysis. MR results are expressed as beta(β),

interpreted as the effect of BMI and type 2 diabetes on BMD. We also report the corresponding

lower and upper 95% confidence intervals (CIs) for all causal estimates. P-values <0.05 were

used to define statistical significance.

3 Results

3.1 Univariate Mendelian randomization

When considering type 2 diabetes as the exposure and BMD as the outcome, both the IVW

and weighted median analyses indicated a protective effect of type 2 diabetes on BMD, with β
of 0.04 (95% CI 1.01–1.06; P = 0.0008) and 0.05 (95% CI 1.02–1.08; P = 0.0007), respectively.

However, the MR-Egger regression did not show a significant relationship between type 2 dia-

betes and BMD (β = 0.01, 95% CI 0.95–1.08; P = 0.59), as shown in Table 2. The direction of

the causal effect was the same for all three methods (Fig 4). Although the MR-Egger regression

results showed no horizontal pleiotropy between all genetic variants (intercept 0.0019; 0.37),

there was evidence of heterogeneity in either IVW analysis (Q = 329.7, P = 1.086296e-18) or

MR-Egger analysis (Q = 327.5, P = 1.248428e-18), which led us to adopt a random effects

model for our analysis. The absence of horizontal pleiotropy in the analysis suggests that the

IVW analysis results should be considered the primary criterion for causality. Thus, it can be

concluded that type 2 diabetes is a protective factor for BMD.

Similarly, when considering BMI as the exposure and BMD as the outcome, the IVW and

MR-Egger analyses also indicated a protective effect of BMI on BMD, with β of 0.05 (95% CI

1.01–1.09; P = 0.01) and 0.15 (95% CI 1.02–1.29; P = 0.01), respectively. However, the weighted

median analysis did not show a significant relationship between BMI and BMD (β = 0.04, 95%

CI 0.99–1.09; P = 0.08), as shown in Table 2. The direction of the causal effect was the same

for all three methods (Fig 5). Moreover, the MR-Egger regression results showed no horizontal

pleiotropy between all genetic variants (intercept -0.001; 0.09), but there was evidence of het-

erogeneity in either IVW analysis (Q = 1701, P = 1.758784e-45) or MR-Egger analysis

(Q = 1696, P = 4.014075e-45). Therefore, we also used the findings of the IVW analysis as the

primary criterion for causality, concluding that BMI is a protective factor for BMD.

Table 2. Association between BMI/type 2 diabetes and bone mineral density risk under different methods.

Exposure Outcome Method β 95% Cl P value F-statistics R2 (%)

BMI BMD

IVW(random effects) 0.01 1.01–1.09 0.01

Weighted median 0.04 0.99–1.09 0.08 46.74 0.375

MR-Egger 0.15 1.02–1.29 0.01

type 2 diabetes

BMD

IVW(random effects) 0.05 0.95–1.08 0.0008

Weighted median 0.04 1.02–1.08 0.0008 55.26 0.216

MR-Egger 0.01 0.95–1.08 0.59

https://doi.org/10.1371/journal.pone.0290530.t002
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3.2 Multivariable Mendelian Randomization

To control for pleiotropic pathways that could confound the association between BMI and

type 2 diabetes, we employed an MVMR model in which the combined effect of BMI and type

Fig 4. Scatter plot to visualize the causal effect of type 2 diabetes on BMD.

https://doi.org/10.1371/journal.pone.0290530.g004

Fig 5. Scatter plot to visualize the causal effect of BMI on BMD.

https://doi.org/10.1371/journal.pone.0290530.g005
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2 diabetes was treated as the exposure about BMD outcomes. The results from the IVW analy-

sis indicated that the previously observed significant association between genetically predicted

BMI and BMD by UNMR was attenuated in the MVMR model and was no longer statistically

significant (IVW: β = -0.01, 95% CI 0.94–1.05, P = 0.93). The MR-Egger regression yielded

similar results (β = 0.03, 95% CI 0.95–1.09, P = 0.51). In contrast, the protective effect of type 2

diabetes on BMD remained significant even after adjusting for BMI (IVW: β = 0.02, 95% CI

1.00–1.05, P = 0.02; MR-Egger:β = 0.01, 95% CI 1.008–1.071, P = 0.01). The F-statistic values

in the MVMR were all greater than 10, indicating a low likelihood of bias in the results and

high reliability and stability of the study findings. Detailed results are presented in Table 3.

3.3 Mediated Mendelian randomization

We conducted a mediated MR analysis to examine the potential mediating role of type 2 diabe-

tes in the association between BMI and BMD. The results are presented in detail in Table 4.

Since there was no direct effect between BMI and BMD, the mediating effect was calculated as

the indirect effect (β = β1 × β2). Our study found that type 2 diabetes was a mediator in the

relationship between BMI and BMD, with a mediation effect estimate of β = 0.04 (OR = 1.04,

95% CI 1.02–1.06, p = 0.04).

4 Discussion

This study employed aggregated data from extensive GWAS to explore the interplay between

BMI, type 2 diabetes, and BMD using MR analysis. In the two-sample MR analysis, both BMI

and type 2 diabetes exhibited an elevated risk of OP. However, upon adjusting for type 2 diabe-

tes, we observed a reduction in OP risk associated with BMI. Furthermore, mediated MR anal-

ysis unveiled that BMI contributed to an increased risk of OP, yet this effect was mediated by

type 2 diabetes.

Numerous previous observational clinical studies have reported the association between

BMI and BMD, although the impact of higher BMI on bone health remains a topic of debate.

Some studies have demonstrated a positive correlation between BMI and BMD [33], with cer-

tain researchers proposing that maintaining adequate fat mass enhances BMD, particularly in

postmenopausal women [34]. However, others have observed a negative correlation between

Table 3. Results of multivariate Mendelian randomisation analysis.

Exposure Outcome Method β 95% Cl P value F-statistics

BMI

BMD

IVW -0.01 0.94–1.05 0.93 71.73

MR-Egger 0.03 0.95–1.09 0.51

type 2 diabetes IVW 0.02 1–1.05 0.02 67.17

MR-Egger 0.01 1.008–1.071 0.01

https://doi.org/10.1371/journal.pone.0290530.t003

Table 4. Results of intermediate Mendelian randomisation analysis.

Exposure Mediated Outcome β OR 95% Cl P value

BMI type 2 diabetes 0.98 2.67 2.36–3.03 2.922086e-53

type 2 diabetes BMD 0.03 1.03 1.01–1.06 0.001

BMI BMD 0.04 1.04 0.99–1.09 0.1

BMI type 2 diabetes BMD 0.04 1.04 1.02–1.06 0.04

https://doi.org/10.1371/journal.pone.0290530.t004
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fat mass and BMD, as increased fat mass can lead to heightened levels of pro-inflammatory cyto-

kines, thereby accelerating bone resorption and loss [35]. Moreover, a prospective study identified

obesity as a potential risk factor for fractures in postmenopausal women [36]. In our present

study, we employed separate two-sample MR analyses and identified a causal association between

BMI, type 2 diabetes, and OP. However, upon correcting the analysis using multisample MR, no

causal association between BMI and OP was observed. This suggests the potential influence of

confounding factors on the relationship between BMI and the development of OP, thereby intro-

ducing bias to the results. Given the intricate interplay of exposure factors in the clinical setting,

joint modeling was employed to account for these interactions in the analysis.

Type 2 diabetes is confounding when analyzing the relationship between BMI and BMD.

Some researchers employing MR analysis [37] provide support for a causal connection

between BMI and type 2 diabetes, while multiple clinical studies [38–40] demonstrate a strong

correlation. The utilization of MVMR to mitigate bias induced by type 2 diabetes revealed no

causal association between BMI and OP, indicating that type 2 diabetes might serve as a poten-

tial mediator in the relationship between BMI and OP risk. These findings imply that the

impact of BMI and type 2 diabetes on BMD entails a complex process. To further investigate

the causal pathways, mediated MR models incorporating genetic tools to explore mediators

are being contemplated, as they hold the potential to provide novel insights into causal

relationships.

Previous studies have proposed several mechanisms for the association between BMI and

BMD. One explanation is that an increase in BMI can promote mechanical stress on bone den-

sity, stimulating the proliferation, differentiation, and mineralisation of osteoblasts, effectively

increasing bone density [41]. Additionally, skeletal muscle and bone are closely linked, and the

stresses generated during muscle movement can directly affect bone. While bones will produce

specific changes in order to adapt to the stress exerted by muscle. For example, synthesis and

expression of osteoblast-related genes are increased; and the proliferation, differentiation and

mineralisation of human osteoblasts and osteocytes will be significantly accelerated, ultimately

increasing bone strength to adapt to stress changes [42]. Adiposity, as an endocrine marker,

can secrete growth factors such as adiponectin and leptin to promote bone growth [43]. Fur-

thermore, adipocytes can produce estrogen, which impacts bone metabolism, especially in

postmenopausal women [44]. In addition to these mechanisms, our study revealed a potential

mediation of type 2 diabetes in the relationship between BMI and BMD. Regarding the specific

mechanisms involved, a multitude of factors are deemed accountable. Firstly, insulin, a hor-

mone recognized for its regulatory function in bone anabolism, is believed to play a pivotal

role in the pathogenesis of type 2 diabetes. Consequently, insulin levels may elucidate the ele-

vated BMD levels observed in individuals with type 2 diabetes [45,46]. Insulin can directly

impact osteoblast and osteoclast differentiation through insulin receptors, or indirectly influ-

ence them by regulating vitamin D and parathyroid hormone levels [47–49], thus exerting an

influence on BMD levels. Furthermore, individuals with type 2 diabetes often exhibit insulin

resistance, which leads to increased blood glucose levels due to inadequate insulin secretion.

Under conditions of insulin resistance, the body compensates by augmenting insulin secretion

to counteract this response, resulting in elevated blood insulin levels. This insulin resistance,

along with compensatory high insulin levels, can contribute to enhanced bone mineral density

[50,51]. Secondly, contemporary research has demonstrated that elevated blood glucose levels

in vivo affect osteoclast differentiation and hinder osteoclast-mediated bone matrix degrada-

tion, thereby leading to increased BMD [52]. Lastly, thiazides [53] and statins [54], commonly

employed in the treatment of type 2 diabetes, have been shown to promote BMD augmenta-

tion. In conclusion, the influence of BMI on BMD is considerable, and type 2 diabetes may

serve as a significant mediating factor in this process.
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The present study exhibits several noteworthy strengths. It represents the first application

of MR in investigating the association between BMI, type 2 diabetes, and BMD within a Euro-

pean population. In contrast to conventional observational research methods, MR techniques

effectively mitigate inherent limitations, such as confounding factors and reverse causality,

which can impact result accuracy [55]. In this study, we employed SNPs with genome-wide

associations and independent inheritance but no LD as IVs to enhance the reliability of our

findings.While MR serves as a powerful approach to establish causal relationships between

exposures and outcomes using summary statistics, it is imperative to interpret our findings

cautiously due to several limitations. Firstly, our investigation relied on data derived from two

extensive GWAS, and subgroup analyses were not feasible due to the absence of specific demo-

graphic information and clinical records of the study participants. Secondly, the presence of

an ethnic bias is plausible in our study since the subjects were of European descent. Therefore,

extrapolating our conclusions to other racial populations without further investigation may

not be appropriate. Moreover, additional research is required to validate our findings and

incorporate them into clinical diagnostic procedures and treatment options. Lastly, as all the

data analyzed were sourced from databases, potential sample overlap could introduce bias to

the findings due to weak instruments.Furthermore, considering the established correlation

between BMI and type 2 diabetes, we conducted a mediated MR analysis with BMI as the

exposure, type 2 diabetes as the mediator, and BMD as the outcome. Our outcomes indicate

that the relationship between BMI and BMD might be mediated by type 2 diabetes, thereby

providing novel insights for clinical research. Ultimately, given the high prevalence of obesity,

type 2 diabetes, and OP within the population, our findings possess significant implications

for healthcare policies. By elucidating the causal relationships among these conditions, we can

better equip ourselves to implement early prevention strategies and timely interventions.

In summary, our study provides evidence of a direct positive association between type 2

diabetes and BMD, and suggests that the impact of BMI on BMD may be mediated by type 2

diabetes. These findings indicate that type 2 diabetes could serve as a protective factor for

BMD and should prompt clinicians to consider this potential association. Nevertheless, further

clinical investigations are required to unravel the intricate causal relationship between BMI,

type 2 diabetes, and BMD.
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