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Abstract

Gene expression programming (GEP) is one of the most prominent algorithms in function

mining. In order to obtain a more accurate function model in configuration parameters-exe-

cution efficiency (CP-EE) of map-reduce job in the high-speed railway catenary monitoring

system, this paper proposes a novel algorithm, called GEP based on multi-strategy (MS-

GEP). Compared to traditional GEP, the proposed algorithm can escape premature conver-

gence and jump out of local optimum. First, an adaptive mutation rate is designed according

to the evolutionary generations, population diversity, and individual fitness values. A manual

intervention strategy is then proposed to determine whether the algorithm enters the

dilemma of local optimum based on the generations of population evolutionary stagnation.

Finally, the average quality of the population is changed by randomly replacing individuals,

and the ancestral population is traced to change the evolutionary direction. The experimen-

tal results on the benchmarks of function mining show that the proposed MS-GEP has better

solution quality and higher population diversity than other GEP algorithms. Furthermore, the

proposed MS-GEP has higher accuracy on the function model of CP-EE of high-speed rail-

way catenary monitoring system than other commonly used algorithms in the field of func-

tion mining.

1 Introduction

The real-time nature of map-reduce job execution in high-speed railway catenary monitor-

ing software systems [1] is a key factor in measuring its performance. The execution effi-

ciency of map-reduce jobs greatly impacts the effectiveness of extracting valuable

information. The measure of execution efficiency is execution time, for the same job, shorter

execution time results in higher execution efficiency. Among the factors that affect the execu-

tion efficiency of the map-reduce job, the configuration parameters of the map-reduce job

have played a significant part [2]. Due to increasingly complex operational environments

and high demands, the traditionally manual optimization of configuration parameters and

tuning them based on experience can become difficult [3]. In the context of artificial
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intelligence (AI), it is feasible and smarter to find the appropriate better parameters by estab-

lishing a model of the configuration parameters-execution efficiency (CP-EE) of the map-

reduce job. Therefore, it is essential to establish a more accurate and reliable map-reduce job

CP-EE function model.

Recently, several attempts have been made to extensively study the optimization of the big

data job configuration parameters. Consequently, several authors proposed many models for

the execution efficiency of the big data job using AI methods. Vidhyasagar et al. [4] searched

for the optimal cluster configuration using the opposing chaotic flower pollination algorithm

within the parameter auto-tuning system. Xiaoling Luo et al. [5] proposed a performance opti-

mization method for Hadoop cluster systems using a simulated annealing algorithm. Ali Kha-

leel et al. [6] obtained the optimized Hadoop cluster configuration using a genetic algorithm

(GA) [7] and a novel intelligent algorithm based on genetic programming (GP) [8], which

achieved optimal performance on MapReduce programs. Bei et al. [9] first developed a perfor-

mance prediction model for each Hadoop component using random forest (RF) regression

algorithm, and searched for the optimal parameters using GA.

Gene expression programming (GEP) [10] is an evolutionary algorithm borrowed from GA

and GP. Traditional AI regression models [11] require predefined function structures such as

linear and polynomial regression in machine learning, and also tend to be more difficult to

explain their internal decision-making processes such as neural networks. GEP generates

expressions that are mathematical forms or procedures that make it easier to explain and

understand how the model works, helping to reveal patterns and relationships in the data. It

has been widely applied in classification [12], clustering [13], time-series data prediction [14],

and function mining [15]. The ratio of the highest fitness of the population individuals to the

maximum fitness in GEP determines the accuracy of the mined function model. However, the

standard GEP still tends to trap the population evolution in a local optimum, preventing the

algorithm from obtaining a more accurate function model.

Therefore, this paper proposes a GEP algorithm based on multi-strategy (MS-GEP) for

CP-EE of the map-reduce job function mining model construction in the catenary monitoring

system of high-speed railway and some shortcomings of GEP algorithm. The proposed

MS-GEP can obtain a more accurate function model using the GEP algorithm optimized by

the adaptive mutation rate based on population information entropy and manual intervention

strategy to guide the population evolution. The main contributions of this paper are summa-

rized as follows:

(1) We propose an adaptive mutation rate setting based on the population information

entropy that can maintain the diversity of the population by taking it into consideration.

(2) We propose a manual intervention strategy since the traditional GEP fails to converge to a

better solution due to converging prematurely or falling into the local optimum.

(3) The experimental results on the benchmark dataset show that the proposed MS-GEP out-

performs the other GEP algorithms.

(4) In the function mining experiments of map-reduce job CP-EE of the high-speed railway

catenary monitoring system, the evaluation index of the proposed MS-GEP outperforms

other commonly used function mining algorithms.

The remainder of this paper is organized as follows. Section 2 introduces the relevant

fundamentals. Section 3 presents details of the proposed MS-GEP. Section 4 shows the

experimental and analysis results. Finally, Section 5 presents the conclusion and future

research.
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2 GEP

GEP encodes individuals as fixed-length linear strings and then represents them as nonlinear

entities of different lengths and shapes. GEP improves the functional complexity loss of indi-

viduals caused by fixed-length linear strings during evolution using GA and also optimizes the

limited variation of individuals caused by nonlinear entities of different lengths and shapes

during evolution using GP. Additionally, GEP has a flexible genetic structure to avoid wasting

many resources to check the survival of individuals in GA and GP.

GEP consists of individual coding methods, individual fitness evaluation function, initial

populations and genetic operations. The genetic operations consist of selection, mutation,

inversion, insertion, gene transformation, and gene recombination. The standard GEP algo-

rithm flow is shown as follows: (1) Creating initial population and parameters setting. (2)

Chromosome decoding. (3) Evaluating fitness. (4) Determining whether the end condition is

satisfied. If it is satisfied, the process is terminated; otherwise, the next step is executed. (5) Sav-

ing the best individuals. (6) Individual selection algorithm. (7) Genetic operation. (8) Forming

a new population and return to (2).

Individuals in GEP are called chromosomes. A chromosome can be composed of one or

more genes. The combination of gene head and tail forms a gene. The head is made up of a

function set and a terminal set, whereas the tail is only made up of a terminal set. Eq (1) calcu-

lates the gene tail length Lt, where Lh is the gene head length and n is the maximum number of

operations of a single function in the function set.

Lt ¼ Lhðn � 1Þ þ 1 ð1Þ

The expressions of chromosomes are divided into expression trees and K-expressions.

For example, let the function set be F = {+, −, *, /} and the terminal set be T = {x, y}. The

length of the gene head is 3. The chromosome consists of two genes. The gene tail length

can be obtained as 4 according to Eq (1). The K-expressions of the genes are “+ * *xxyy”

and “* *y/xxx.” The expression tree is read from top to bottom, left to right to become alge-

braic. Fig 1 shows the expression tree, gene 1 and gene 2 can be converted to algebraic

expressions as “x2 + y2” and “xy,” respectively. Gene 1 and gene 2 are linked by default with

a plus sign. The K-expressions and expression tree can be converted to algebraic expres-

sions as “x2 + y2 + xy.”

Fig 1. Individual expression tree.

https://doi.org/10.1371/journal.pone.0290499.g001
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3 GEP based on multi-strategy

3.1 Adaptive mutation rate setting based on population information

entropy(MS-GEP-A)

In GEP, the mutation operation is more effective than the remaining genetic operations in the

population evolution [16]. Therefore, the mutation operation plays an essential role in main-

taining population diversity, to make the mutation rate setting particularly important. In the

standard GEP, the mutation rate is the initial setting parameter. If the mutation rate is too

high, the outstanding individuals in the population will be easily destroyed in the late stage of

population evolution. If the mutation rate is too low, a large-scale search cannot be conducted

in the early stages of population evolution. A high mutation rate is required in the early stages

of GEP evolution to facilitate large-scale population search, whereas a low mutation rate is

required in the late stages of evolution to avoid the destruction of the population’s best individ-

uals. As demonstrated by previous adaptive mutation rate studies, only individual fitness val-

ues or individual fitness values combined with evolutionary generations are usually considered

for mutation rate settings without considering the population diversity. To address the above

problems, we propose an adaptive mutation rate based on population information entropy by

considering the convergence period, population diversity and individual fitness in the muta-

tion rate setting.

Population information entropy is used to show the magnitude of contemporary popula-

tion diversity, as shown in Eq (2).

H ¼ �
Xn

i¼1

PilogPi ; ðPi � 0;
Xn

i¼1

Pi ¼ 1Þ ð2Þ

where Pi is the probability of chromosomes that appear in each region and n is the population

size. The step for calculating Pi is as follows:

Step 1. The current population individual minimum fitness is fmin, the individual maximum

fitness is fmax, and the population size is K. Divide fmin and fmax into K regions; each region

interval is given in Eq (3).

y ¼
ð1þ bÞfmax � ð1 � bÞfmin

K
ð3Þ

Each interval is then [(1 − β)fmin + (w1)θ, (1 − β)fmin + wθ), where w = 1, 2, � � �, K.

Step 2. Calculate the number of chromosomes appearing in each interval Ki. The probability

of chromosome that appears in each region Pi is then Eq (4).

Pi ¼
Ki

K
; i ¼ 1; 2; � � � ;K ð4Þ

Step 3. Using Eq (1), the contemporary population information entropy size H is calculated

by choosing e as the base.

The adaptive mutation rate can be defined as a nine-tuple: Pauto = {α, pmax, pmin, H, g, G, f,
fmax, fmin}, and the redefined mutation rate is shown in Eq (5).

Pauto ¼ Pmin þ ðPmax � PminÞ ∗ exp � a ∗H ∗
2f

fmax þ fmin
∗
g
G

� �

ð5Þ

where Pmax is the upper limit of mutation rate, Pmin is the lower limit of mutation rate, g is the

current number of evolutionary generations, G is the total number of evolutionary setting gen-

erations, α is the correction factor, H is the current population information entropy, fmax is the
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highest fitness value of population individuals, fmin is the lowest fitness value of population

individuals, and f is the current individual fitness value.

In the adaptive mutation rate evolution based on population information entropy, the indi-

vidual mutation rate is less affected by the population information entropy in the early stage of

evolution. Individuals in the population can perform large-scale search with large mutation

rates and quickly search for better individual’s near the current individual’s location. In the

middle and late stages of evolution, the individual mutation rate is more influenced by the

population information entropy. When the population information entropy decreases, the

population diversity decreases, and the mutation rate increases, increasing the possibility of

jumping out of the local optimum in the population evolution. Meanwhile, when the popula-

tion information entropy increases, the population individuals are more evenly distributed,

and the mutation rate decreases, decreasing the possibility of destroying the excellent individu-

als in the population. Individuals with higher fitness in the population evolve with a relatively

lower mutation rate to ensure the succession of high quality individuals as much as possible.

In contrast, individuals with lower fitness evolve with a higher mutation rate, which can

improve the quality of inferior individuals in the population. Therefore, the adaptive mutation

rate setting based on information entropy avoids the premature maturation phenomenon to a

certain extent, improves the population diversity, and allows the algorithm to converge to a

better solution.

3.2 Manual intervention strategies to guide population evolution

(MS-GEP-I)

Although the standard GEP can jump out of the premature faster by combining the benefits of

GA and GP, the GEP algorithm is irreversible in the evolutionary process, making it unable to

easily jump out of the local optimum and search for a better solution when it is stuck in a local

optimum dilemma. In GEP, increasing the mutation rate and population size can reduce the

possibility of being placed in a local optimum dilemma. Moreover, increasing the mutation

rate tends to destroy the good individuals in the population making it difficult for the algo-

rithm to converge stably. The time complexity of the algorithm increases as the population size

grows. Thus, the manual intervention strategy is proposed to guide population evolution

toward a better solution. Specifically, different intervention strategies are chosen by evolving

stagnation generation to jump out of the local optimal as soon as possible. The detailed steps

of the manual intervention strategy are shown as follows.

Step 1. In the population evolution process, the first generation of the population after the

change in the highest adapted individuals is used as a backtracking point. As the population

evolves, the set BS is formed from different backtracking points to set up the stack. The alter-

nate set AS is set with another initialized population.

Step 2. islimita is a judgment that the number of stagnation generations ca of manual inter-

vention strategy 1 reaches the threshold of population stagnation generations la, i.e., a judg-

ment that the population evolves into a local optimum in Step 3. islimitb is the judgment that

the stagnation algebra cb of manual intervention strategy 2 reaches the threshold of population

stagnation algebra lb, i.e., the judgment that the population evolution enters the local optimum

in Step 4. When islimita and islimitb are false, Step 3 is executed. Meanwhile, when islimita is

true and islimitb is false, Step 4 is executed. Furthermore, when islimita is false and islimitb is

true, Step 5 is executed.

Step 3. GEP evolves with an adaptive mutation rate based on population information

entropy. When the optimal individual fitness of population individuals is not updated, ca is

self-increasing with a step size of 1; otherwise, ca is reset.
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Step 4. Execute manual intervention strategy for contemporary populations 1. Calculate the

mean value of individual fitness of the current population, favg, and calculate the mean value of

the individual fitness of current population in ideal condition, feavg as shown in Eq (6). Intro-

duce the error factor of fitness value d. Calculate favg − feavg.

feavg ¼
fmax þ fmin

2
ð6Þ

If |favg − feavg|< d, the population evolves according to step 3; otherwise, individuals of the

contemporary population are randomly replaced according to their parents and grandparents,

except for the highest fitness individuals until the condition |favg − feavg|< d is satisfied. When

the fitness of the optimal individuals of the population is not updated, ca and cb are self-

increasing in a step size of 1; otherwise, ca and cb are reset.

Step 5. Execute manual intervention strategy 2 on the contemporary population and intro-

duce discrimination factor lp as in Eq (7). Replace all but the highest adapted individuals in the

contemporary population according to the discrimination factor. The population newp is as

then shown in Eq (8).

lp ¼ b
Cb

lb
c ð7Þ

New p ¼
BS½ls � lp� lp � ls

AS½0� lp � ls

8
<

:
ð8Þ

If the discrimination factor does not exceed the length of backtracking point ls, all contempo-

rary populations, except the highest adaptation individuals, are replaced with individuals of

the population indexed as ls − paralimit in backtracking point BS. Meanwhile, if the discrimi-

nation factor exceeds the length of backtracking point ls, all contemporary populations, except

the highest adaptation individuals, are replaced with individuals of the population in the alter-

nate set AS. When the optimal individual fitness of the population individuals is updated, ca
and cb are reset.

Introducing the manual intervention strategy has the following benefits. The population

evolutionary stagnation generation threshold can be set after introducing the manual interven-

tion strategy 1. When the population cannot jump out of a local optimum in the adaptive

mutation rate evolution, individuals of the current population would be randomly replaced by

individuals of the parent and grandparent generations to improve the population diversity and

the average quality of the population. If the population is still unable to jump out of the local

optimum after implementing manual intervention strategy 1, the population is considered to

have made a mistake in the direction during the evolution of the parent or grandparent. At

this time, manual intervention strategy 2 is executed. The backtracking strategy is activated for

the current population. All the individuals in the current population, except the optimal indi-

viduals, are backtracked to their parents or grandparents. A new evolutionary direction would

then be found to strive for a better solution.

The flowchart of the MS-GEP genetic operation is shown in Fig 2, and the rest is the same

as the standard GEP process.

4 Experiment and discussion

In this paper, we conducted two experiments to verify the competitiveness of the proposed

MS-GEP in function mining. The experimental environment for the algorithms is Windows
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10 operating system with Intel Core i7 3.00 GHz processor and 16 GB RAM. The experimental

program is implemented using Python 3.8. The experimental environment for the operational

efficiency dataset of map-reduce operations for the catenary monitoring system of high-speed

railway is a cluster of three servers. The server parameters are Intel Core i7, 3.00 GHz CPU,

and 8 GB RAM. Its operating system is Ubuntu 18.04.2, and its software environment is jdk-

1.8.0 and hadoop-2.7.6.

4.1 Competitive experiments of the MS-GEP algorithm

To evaluate the proposed MS-GEP algorithm, we created MS-GEP-A, MS-GEP-I, MS-GEP,

NMO-SARA [17], GEP [10], and FF-GEP [18] in the literature for comparative experiments.

NMO-SARA and MS-GEP-A differ in the mutation rate settings and additional parameters.

The additional parameters of NMO-SARA are set the same as those in the literature [17].

MS-GEP-I has the same parameters as GEP, except for la and lb. MS-GEP has the same param-

eters as FF-GEP, except for mutation rate and additional parameters. The maximum number

of evolutionary generations for all algorithms was set to 1000. Table 1 presents the specific

parameter settings. All algorithms in the experiment use relative error fitness function. Relative

error and the individual fitness fi are calculated as Eqs (9) and (10), n is the number of test

Fig 2. MS-GEP genetic operation.

https://doi.org/10.1371/journal.pone.0290499.g002

PLOS ONE An improved gene expression programming algorithm for function mining

PLOS ONE | https://doi.org/10.1371/journal.pone.0290499 November 16, 2023 7 / 17

https://doi.org/10.1371/journal.pone.0290499.g002
https://doi.org/10.1371/journal.pone.0290499


samples.

RE ¼
Xn

i¼1

j
xi � yi
yi
j ð9Þ

fi ¼ 50
Xn

i¼1

ð1 � j
xi � yi
yi
jÞ ð10Þ

We employed the test functions in Koza [19], Nguyen [20], and Keijzer [21]. The test sam-

ples are generated from 20 groups of test functions. The test functions are shown in Table 2.

When the test functions are F1, F2, F3, F4, F5, and F6, the set of algorithmic functions is {+, −,

*, /, sin, cos, exp, ln}. Meanwhile, when the test functions are F7, F8, F9, and F10, the set of

functions is fþ; ∗; 1=n; � n;
ffiffiffi
n
p
g. The terminal set is set to the sign of the independent termi-

nal of the test function. For example, the terminal set is {x, y} for the test function F6.

Table 2. GP problems.

Function Function Formula Range

F1 x6 + x5 + x4 + x3 + x2 + x [-1,1]

F2 x5 − 2x3 + x [-1,1]

F3 ln(x + 1) + ln(x2 + 1) [0, 2]

F4 sin(x) + sin(x + x2) [-1,1]

F5 sin(x) + sin(y2) [0, 1]

F6 2sin(x)cos(y) [0, 1]

F7 xy + sin(x − 1)(y − 1) [-3,3]

F8 lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p

Þ [0, 100]

F9 x3

5
þ

y3

2
� y � x [-3,3]

F10 e−xx3cos(x)sin(x)(cos(x)sin2(x) − 1) [0, 10]

https://doi.org/10.1371/journal.pone.0290499.t002

Table 1. Parameters setting of experiment.

NMO-SARA MS-GEP-A GEP MS-GEP-I FF-GEP MS-GEP

Population size 30

Number of genes 3

Head length 6

Linking function +

Selection strategy Roulette-wheel

Mutation rate Ref [17] Eq (5) 0.04 0.04 0.04 Eq (5)

1-point Recombination 0.7 0.7 0.7 0.7 0.7 0.7

Inversion 0.1 0.1 0.1 0.1 0.1 0.1

IS transposition 0.1 0.1 0.1 0.1 0.1 0.1

RIS transposition 0.1 0.1 0.1 0.1 0.1 0.1

Gene transposition 0.1 0.1 0.1 0.1 0.1 0.1

Max Mutation rate 0.1 0.1 0.1

Min Mutation rate 0.01 0.01 0.01

la 50 50

lb 50 50

Correction factor α 0.5 0.5

https://doi.org/10.1371/journal.pone.0290499.t001
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Performance metrics for the above six algorithms were determined by executing each algo-

rithm 20 times independently for each test function. Table 3 presents the results. The value

“avg” represents the algorithm’s average fitness value after running the specified test function

20 times independently. The number of times the best individual’s RE is less than 0.16 after the

algorithm has run the test function is the “target.” “Better” refers to how often the average fit-

ness value of the proposed algorithm performs better than the comparison algorithm. “Equal”

is the number of times both algorithms perform equally. “Worse” is the number of times the

proposed algorithm performs poorly, as measured by its average fitness value. It can be seen

that the proposed MS-GEP outperforms FF-GEP in test functions F2, F4, F5, and F6 with the

number of hits. Meanwhile, MS-GEP-I outperforms GEP, except in test function F5. Table 4

presents the results of Wilcoxon’s test. It considers root mean square error (RMSE) of all sam-

ples. Analyzing the comparative data, MS-GEP-A, MS-GEP-I, and MS-GEP in most test func-

tions outperform NMO-SARA, GEP, and FF-GEP, respectively. MS-GEP-A, MS-GEP-I, and

MS-GEP are more stable.

MS-GEP-A, MS-GEP-I, MS-GEP, GEP, NMO-SARA, and FF-GEP were further analyzed

in terms of the maximum and minimum RMSE. As shown in Fig 3, the vertical coordinates

are the RMSE. Smaller RMSE means better algorithm performance. Under most of the test

functions, MS-GEP-A, MS-GEP-I, and MS-GEP have better maximum and minimum RMSE

than NMO-SARA, GEP, and FF-GEP. This indicates that MS-GEP-A, MS-GEP-I, and

MS-GEP have a higher possibility to jump out of the local optimum and converge to a better

solution during the evolution process. To visually analyze the performance of each algorithm

Table 3. Performance metrics of comparative experiment.

NMO-SARA MS-GEP-A GEP MS-GEP-I FF-GEP MS-GEP

tar avg tar avg tar avg tar avg tar avg tar avg

F1 0 928 0 935 0 948 0 951 0 931 0 950

F2 1 827 0 859 0 829 1 855 1 848 2 870

F3 0 968 0 972 0 977 0 972 0 973 0 973

F4 4 988 2 989 2 991 7 991 5 991 12 997

F5 13 997 15 996 11 983 11 997 13 996 16 998

F6 0 978 1 984 0 971 1 972 1 977 3 983

F7 0 629 0 620 0 618 0 655 0 635 0 651

F8 0 974 0 978 0 976 0 977 0 985 0 985

F9 0 463 0 465 0 464 0 459 0 479 0 467

F10 0 327 0 353 0 331 0 353 0 323 0 369

Better 2 8 3 7 4 7

Equal 0 0 1 1 0 2

Worse 2 2 0 2 0 1

https://doi.org/10.1371/journal.pone.0290499.t003

Table 4. Wilcoxon’s test.

NMO-SARA vs MS-GEP-A GEP vs MS-GEP-I FF-GEP vs MS-GEP

p-value 8.29E-4 0.00218 1.12E-4

If p-value < 0.05, the difference in results between algorithms is significant according to the Wilcoxon’s signed-rank

test.

https://doi.org/10.1371/journal.pone.0290499.t004
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in the dilemma of the local optimum, the change of in the population fitness in the evolution-

ary process is recorded on the test function F6. As shown in Fig 4(a), NMO-SARA performs

significantly better than MS-GEP in the early stage. MS-GEP-A tends to enter the local opti-

mum. MS-GEP-A finally converges to almost the same level as NMO-SARA through the evo-

lution of adaptive mutation rate based on population information entropy. As shown in Fig 4

(b), MS-GEP-I and GEP converge to almost the same level when the population evolves to 300

generations. During the evolution of the population after 300 generations, GEP is unable to

obtain a better solution, whereas MS-GEP-I finally converges to a better solution by jumping

out of the local optimum twice through the manual intervention strategy. As shown in Fig 4

(c), FF-GEP enters the local optimum twice for a long time. In contrast, MS-GEP is smoother

Fig 3. RMSE comparison in all test function (a) F1 (b) F2 (c) F3 (d) F4 (e) F5 (f) F6 (g) F7 (h) F8 (i) F9 (j) F10.

https://doi.org/10.1371/journal.pone.0290499.g003

Fig 4. Evolutionary processes on special functions (a) NMO-SARA vs MS-GEP-A (b) GEP vs MS-GEP-I (c) FF-GEP vs MS-GEP.

https://doi.org/10.1371/journal.pone.0290499.g004
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in convergence, without falling into the local optimum for a long time, eventually converging

to the global optimal solution in the middle and late stages of the evolution.

However, MS-GEP-A, MS-GEP-I, and MS-GEP do not outperform GEP, NMO-SARA,

and FF-GEP respectively in all test functions. As shown in Fig 3(j), the minimum RMSE of

MS-GEP-A in test function F10 is worse than that of NMO-SARA. The GEP algorithm itself

has some randomness in the evolutionary process, whereas MS-GEP-A and NMO-SARA are

adaptive algorithms whose evolutionary process is not reversible, causing the phenomenon

that the minimum RMSE of MS-GEP-A is worse. In addition, as can be seen from Fig 3(d),

MS-GEP-I is significantly worse than GEP in terms of the maximum RMSE of the test function

F4. The GEP algorithm has some randomness in initializing the population. Although

MS-GEP-I and MS-GEP use a manual intervention strategy, the algorithms can change the

evolutionary direction and intervene in the population individuals during the evolution pro-

cess, and the low quality of the initialized population individuals still affects the RMSE of the

optimal individuals converged by the algorithms. Similarly, it can also explains that why

MS-GEP-I in Fig 3(h) is worse than GEP in the filed of the minimum RMSE and why

MS-GEP in Fig 3(i) is worse than FF-GEP in terms of the minimum RMSE and the maximum

RMSE.

In most test functions, MS-GEP-A, MS-GEP-I, and MS-GEP respectively outperform

NMO-SARA, GEP, and FF-GEP. To analyze the change of population diversity of

MS-GEP-A, MS-GEP-I, and MS-GEP on the better-performing test functions, we calcu-

late the population information entropy during the evolution of each algorithm according

to Eq (2). As shown in Fig 5, the orange dots represent the proposed algorithms in this

paper, and the blue dots the comparison algorithms. Fig 5(a) shows the results of running

on the test function F10, and Fig 5(b) and 5(c) show the results of running on the test

function F7. As shown in Fig 5(a), MS-GEP-A outperforms NMO-SARA in terms of the

population information entropy throughout the evolutionary process. It proves that tak-

ing evolutionary generations, population diversity, and the quality of individuals in the

population into consideration in the adaptive mutation rate setting is helpful to improve

the diversity of the population, so as to find a better solution. As shown in Fig 5(b),

MS-GEP-I has close population diversity to GEP in the early stage of population evolu-

tion. In the middle of the evolution, MS-GEP-I has greater population diversity than GEP.

This is also similar to the case of Fig 5(c). This is because the algorithm randomly replaces

individuals in the population during the evolution guided by the manual intervention,

improving the population diversity and increasing the possibility of the algorithm to find

a better solution.

Fig 5. Population diversity comparison on all function (a) NMO-SARA vs MS-GEP-A (b) GEP vs MS-GEP-I (c) FF-GEP vs MS-GEP.

https://doi.org/10.1371/journal.pone.0290499.g005
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4.2 Function mining of map-reduce job CP-EE for high-speed railway

systems

4.2.1 Experimental data and modeling. Due to the different operating environments and

requirements for system performance, as presented in Table 5, 12 parameters are screened

from the literature [22, 23] that have a large impact on the map-reduce job execution efficiency

of the high-speed railway system. We set different values for the parameters in Table 5 and ran

the Map-Reduce job through an automated test script. The single set of data output is a map-

ping of 12 configuration parameters and job execution time, where the 12 parameters are the

independent variables and the job execution time is used as the dependent variable. A total of

1800 datasets, obtained from the high-speed railway system cluster test, are used to build the

map-reduce job CP-EE model, with 1200 and 600 training and test sets, respectively.

We go on to explain the importance of the parameters in Table 5. x2, x5 and x6 represent the

proportion of the corresponding resources allocated to the operation in question. If we set too

large, the processing speed of this stage is increased, but more resources are consumed to affect

the processing speed of the remaining operations. x3, x4 and x10 represent the handling capac-

ity of the operation and have the same impact as the previous three parameters. x1 is the size of

the buffer, which is based on memory and therefore affects the memory usage of the rest of the

tasks. x7 and x8 are settings for file compression at different stages, and compression or not

will also affect the execution time of the operation. x9 is the resource request for the Reduce

task after the Map task has reached a specified percentage. x11 is the size of each data block in

HDFS. From the above analysis it can be seen that the search for a balance between the various

configuration parameters and the performance of the system is important.

We derived a more accurate map-reduce job CP-EE model by setting the MS-GEP parame-

ters. Table 5 presents the mapping relationship between variables and map-reduce job configu-

ration parameters in MS-GEP. MS-GEP parameters are set, as presented in Table 6. The

function set is F ¼ fþ; � ; ∗; =; pow; ffiffi
;
p sin; cos; tan; logg. The terminal set is T = {x0, � � �, x11}.

The evolutionary generations are set to 20000, the selection strategy uses the roulette wheel algo-

rithm. We used the mean square error (MSE) fitness function. MSE are calculated as Eq (11).

MSE ¼
1

n

Xn

n¼1

ðxi � yiÞ
2

ð11Þ

Table 5. Relationship of map-reduce job configuration parameters.

Parameters Value Range

InputDataSize x0 [1, 5]

mapreduce.task.io.sort.mb x1 [80, 200]

mapreduce.map.sort.spill.percent x2 [0.5,0.9]

mapreduce.task.io.sort.factor x3 [10, 100]

mapreduce.reduce.shuffle.parallelcopies x4 [5, 10]

mapreduce.reduce.shuffle.input.buffer.percent x5 [0.5,0.8]

mapreduce.reduce.shuffle.merge.percemt x6 [0.5.0.9]

mapreduce.map.output.compress x7 0 or 1

mapreduce.output.fileoutputformat.compress x8 0 or 1

mapreduce.job.reduce.slowstart.completedamps x9 [0.05,0.2]

mapreduce.reduce.merge.immem.threshold x10 [10, 1000]

dfs.blocksize x11 [128, 1024]

https://doi.org/10.1371/journal.pone.0290499.t005
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The optimal individual can be derived after running the algorithm according to the above

settings. Table 7 presents the map-reduce job CP-EE model K-expressions.

4.2.2 Model testing and comparative analysis with other models. Bei et al. [9] con-

structed Hadoop performance prediction models in stages using a RF algorithm. Were K et al.

[24] introduced common methods for constructing complex functional relationships, such as

neural networks and support vector machines.

We used three metrics, namely, mean square error (MSE), mean absolute error (MAE), and

coefficient of determination (R2) to test the accuracy and feasibility of the model, according to

the calculation by Eqs (11)–(13), respectively. It can be seen that when the predicted value of

the model is closer to the target value of the test data, MSE and MAE are smaller, R2 is larger,

and the accuracy of the model is higher.

MAE ¼
1

n

Xn

n¼1

jxi � yij ð12Þ

Table 6. Parameters setting of function mining experiment.

Parameters Value

Population size 30

Number of genes 8

Head length 10

Linking function +

Mutation rate Eq (5)

1-point Recombination 0.3

2-point Recombination 0.3

Gene Recombination 0.1

IS transposition 0.1

RIS transposition 0.1

Gene transposition 0.1

Stagnation generation threshold la 100

Stagnation generation threshold lb 100

https://doi.org/10.1371/journal.pone.0290499.t006

Table 7. The K-expression of CP-EE model.

K-expressions

ffiffi
:
p x1:x6: � :sin:log:þ :sin:þ :=:x11:x8:x9:x4:x2:x7:x9:x0:x3:x0:x11

ffiffi
:
p
þ : � : � :þ :þ :x1:∗: � :tan:x4:x4:x0:x7:x1:x4:x1:x8:x3:x11:x1

+.x0././.−.x10.−.*. +.+.x3.x11.x9.x4.x4.x9.x10.x7.x7.x7.x5

+.x0. −.x9.Sin.*.+.log./.+.x1.x11.x4.x1.x2.x1.x3.x7.x5.x5.x10

+./.x0./. −.x10.+.*.+. −.x0.x9.x11.x4.x4.x10.x4.x3.x1.x11.x6

+.x7.+.*. −.x5.tan.cos.tan.*.x10.x10.x0.x0.x4.x10.x6.x5.x7.x9.x5

/.+.x2.x8. −.+.x8.x6.+.*.x0.x9.x4.x11.x1.x11.x9.x10.x11.x9.x5

*.+. −.pow.x0.+.*.cos.*.cos.x2.x9.x8.x2.x2.x4.x0.x3.x2.x4.x0

One row represents one gene, eight rows have a total of eight genes. Genes are converted to expression trees by

Section 2 and then to algebraic expressions.

https://doi.org/10.1371/journal.pone.0290499.t007
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R2 ¼

½
Xn

n¼1

ðxi � �xÞ2ðyi � �yÞ2�2

Xn

n¼1

ðxi � �xÞ2ðyi � �yÞ2
ð13Þ

We used support vector regression (SVR) [25], RF [26], back propagation neural network

(BPNN) [27], and MS-GEP to model the map-reduce job CP-EE, respectively. SVR, RF and

BPNN were trained and tested on the same datasets as MS-GEP. The relevant datasets are set

up as in section 4.2.1. MSE, MAE, and R2 were then calculated based on the test dataset pre-

sented in Table 8.

Fig 6 shows the prediction results of the models developed using SVR, RF, BPNN, and

MS-GEP through the test data compared with the target results.

We compared Fig 6(a)–6(d). It can be seen that the prediction results of RF and MS-GEP

are closer to the target results. While the predictions of SVR and BPNN are relatively discrete,

so RF and MS-GEP fit better models with higher model accuracy than the models fitted with

SVR and BPNN. Specifically, the predicted values of SVR and BPNN are more dispersed from

the regression line between 50 and 55, which may be due to the fact that SVR and BPNN do

not take certain variables into account better in their modeling. As can be seen in the results

for RF and msgpe where R2 is closer, RF is more discrete than MS-GEP for predictions with

target values of 45 or less. This difference may account for the slightly lower R2 of RF than

MS-GEP.

As presented in Table 8, RF and MS-GEP are closer in the three indicators of MSE, MAE,

and R2, indicating that the model established by MS-GEP is reliable. The three indexes of

MS-GEP are better than RF, so the model of map-reduce job CP-EE established by MS-GEP is

better than that of the RF. Table 9 shows that MSGEP outperforms RF in all but the minimum

error. The MAE shows that MS-GEP is more accurate, while the standard deviation demon-

strates that the MS-GEP performance is more stable. However, the minimum error of RF is

better than that of MS-GEP, which may be due to the complexity of the mathematical expres-

sion fitted by MS-GEP, so it is difficult to come up with an exact error of zero.

5 Conclusion

This paper proposed a new algorithm, i.e., MS-GEP, based on the shortcomings of the stan-

dard GEP algorithm. Based on the theoretical analysis, we set the adaptive mutation rate based

on the population information entropy, individual fitness, and evolutionary generations.

Inspired by manual intervention in biological evolution, we create a manual intervention strat-

egy to guide the population evolution. The results show that the proposed MS-GEP improves

population diversity, avoids premature convergence, and fall into local optimum.

Table 8. Performance metrics of function mining experiment.

MSE MAE R2

SVR 17.53 3.20 0.787

BPNN 17.28 3.03 0.790

RF 10.85 2.26 0.862

MS-GEP 9.29 2.15 0.883

https://doi.org/10.1371/journal.pone.0290499.t008
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Benchmark tests have shown that the proposed MS-GEP has better solution quality and

higher stability than NMO-SARA, GEP and FF-GEP in most cases. In the experiments of

high-speed railway map-reduce job configuration parameters function mining, the proposed

MS-GEP still outperforms other commonly used algorithms in constructing complex func-

tions in each evaluation index when a specific function model is available, indicating its effec-

tiveness in solving real-world problems.

However, we also recognized that map-reduce job configuration parameters are character-

ized by nonlinearity and high noise, which may have some impact on model performance. In

future research, we will aim to reduce these disturbances more comprehensively and effectively

to further improve the accuracy and robustness of the model. In addition, we will also explore

the application of MS-GEP to other fields to expand its application scope.

Fig 6. Performance comparison in CP-EE model (a) SVR model (b) BPNN model (c) RF model (d) MS-GEP model.

https://doi.org/10.1371/journal.pone.0290499.g006

Table 9. The test error of RF and MS-GEP.

RF MS-GEP

MAE 2.26 2.15

maximum error 20.40 15.21

minimum error 0 0.006

standard deviation 2.28 2.08

https://doi.org/10.1371/journal.pone.0290499.t009
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