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Abstract

Understanding the microbial genomic contributors to antimicrobial resistance (AMR) is

essential for early detection of emerging AMR infections, a pressing global health threat

in human and veterinary medicine. Here we used whole genome sequencing and antibi-

otic susceptibility test data from 980 disease causing Escherichia coli isolated from com-

panion and farm animals to model AMR genotypes and phenotypes for 24 antibiotics. We

determined the strength of genotype-to-phenotype relationships for 197 AMR genes with

elastic net logistic regression. Model predictors were designed to evaluate different

potential modes of AMR genotype translation into resistance phenotypes. Our results

show a model that considers the presence of individual AMR genes and total number of

AMR genes present from a set of genes known to confer resistance was able to accu-

rately predict isolate resistance on average (mean F1 score = 98.0%, SD = 2.3%, mean

accuracy = 98.2%, SD = 2.7%). However, fitted models sometimes varied for antibiotics

in the same class and for the same antibiotic across animal hosts, suggesting heteroge-

neity in the genetic determinants of AMR resistance. We conclude that an interpretable

AMR prediction model can be used to accurately predict resistance phenotypes across

multiple host species and reveal testable hypotheses about how the mechanism of resis-

tance may vary across antibiotics within the same class and across animal hosts for the

same antibiotic.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0290473 August 24, 2023 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chung HC, Foxx CL, Hicks JA, Stuber TP,

Friedberg I, Dorman KS, et al. (2023) An accurate

and interpretable model for antimicrobial resistance

in pathogenic Escherichia coli from livestock and

companion animal species. PLoS ONE 18(8):

e0290473. https://doi.org/10.1371/journal.

pone.0290473

Editor: Adeel Sattar, University of Veterinary and

Animal Sciences, PAKISTAN

Received: July 7, 2023

Accepted: August 9, 2023

Published: August 24, 2023

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: Raw sequences used

to produce the AMR output data are publicly

available on NCBI’s Sequence Read Archive under

BioProject ID PRJNA510384 (https://www.ncbi.

nlm.nih.gov/bioproject/510384). The code and data

are publicly available from the GitHub repository

(https://www.github.com/FriedbergLab/AMREcoli/)

and the Figshare repository (https://doi.org/10.

6084/m9.figshare.21737288.v1).

https://orcid.org/0000-0002-1789-8000
https://orcid.org/0000-0002-2355-8707
https://doi.org/10.1371/journal.pone.0290473
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290473&domain=pdf&date_stamp=2023-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290473&domain=pdf&date_stamp=2023-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290473&domain=pdf&date_stamp=2023-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290473&domain=pdf&date_stamp=2023-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290473&domain=pdf&date_stamp=2023-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0290473&domain=pdf&date_stamp=2023-08-24
https://doi.org/10.1371/journal.pone.0290473
https://doi.org/10.1371/journal.pone.0290473
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.ncbi.nlm.nih.gov/bioproject/510384
https://www.ncbi.nlm.nih.gov/bioproject/510384
https://www.github.com/FriedbergLab/AMREcoli/
https://doi.org/10.6084/m9.figshare.21737288.v1
https://doi.org/10.6084/m9.figshare.21737288.v1


Introduction

Antimicrobial resistance (AMR) is one of the foremost concerns in human and animal health

and well-being. Multiple organizations including the World Health Organization, the Euro-

pean Commission, and major U.S. agencies such as the U.S. Centers for Disease Control and

Prevention (CDC), the U.S. Food and Drug Administration (FDA), and the U.S. Department

of Agriculture (USDA), have recognized the global threat of AMR infections [1–3]. AMR

infections are estimated to cost more than US$20–35 billion per year in increased clinical treat-

ment costs, and to contribute an additional 35,000 deaths per year in the U.S. alone [3, 4]. In

response to this threat, the U.S. government has issued in 2015 the first National Action Plan

for Combating Antibiotic-Resistant Bacteria (CARB NAP), directing all U.S. Federal agencies

to collaboratively develop strategies against AMR infection using an integrated One Health

approach [5]. The One Health approach recognizes the interconnection between humans,

plants, animals, and the environment in global health, and emphasizes using information

across sectors to understand and combat AMR [6]. CARB NAP includes the incorporation of

multiple data streams such as the National Antimicrobial Resistance Monitoring System

(NARMS), recommendation strategies for the judicious use of antibiotics in veterinary medi-

cine, and restrictions on the use of certain glycopeptides, fluoroquinolones, and cephalospo-

rins in both human and animal healthcare [7, 8].

As part of the USDA response to the CARB NAP, the Animal and Plant Health Inspection

Service’s National Animal Health Laboratory Network (APHIS-NAHLN) established a collab-

orative AMR pilot project in 2018 with American Association of Veterinary Laboratory Diag-

nosticians (AAVLD) member laboratories [9]. A working group consisting of representatives

from the AAVLD member laboratories, Clinical Laboratory Standards Institute (CLSI), the

FDA Center for Veterinary Medicine Veterinary Laboratory Investigation and Response Net-

work (VetLIRN), and the USDA Center for Epidemiology and Animal Health (CEAH) was

convened to recommend methods and standards that would meet the pilot project’s specific

aims. These project aims included: (1) development of a sampling stream to monitor AMR in

animal pathogens routinely isolated in veterinary diagnostic laboratories; (2) development of

standardized methods for sharing and disseminating this information within the veterinary

community, and (3) making data publicly accessible to inform future policies designed to miti-

gate AMR in animals [9]. Here we capitalized on the unique and extensive data from this pilot

project to assess the state of knowledge and further elucidate the genetic mechanisms of AMR

in this diverse set of agricultural and companion animals.

Genetic models of AMR are an important area of veterinary research. The decreased cost

and increased availability of genome sequencing technologies has lead to a vast increase in the

known genetic determinants of AMR, and the subsequent creation of over a dozen reference

genetic databases and gene detection tools to assist AMR identification and research [10]. This

information is then used to support diagnostic and surveillance observations made by tradi-

tional culture-based methods, and improve identification in cases where bacteria cannot be

cultivated [11, 12]. Recently, researchers seeking to capitalize on this rapid growth of informa-

tion have turned to machine learning (ML) models to further enhance AMR surveillance [13].

ML models have been successfully used to predict AMR resistance in pathogens such as non-

typhoidal Salmonella, Mycobacterium tuberculosis, and E. coli [14–21]. These models use

sequencing information to make accurate predictions of resistance phenotype, alleviating the

need for antimicrobial susceptibility testing and potentially identifying new AMR genetic

determinants in the process [22].

Due to this increasing interest, there is a large number of studies on genotype-to-phenotype

relationships and ML-based prediction of AMR. However, there is little previous research on
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how these relationships vary depending on the specific antibiotic, animal host, or other factors.

While several studies have found 95% to 100% correlation between AMR genotype and pheno-

type in multiple bacterial pathogens, these studies also find appreciable differences in the rates

of resistance to fluoroquinolones, tetracyclines, aminoglycosides and β-lactams [23–25]. The

differences in rates of resistance may be attributed to underlying differences in the resistance

mechanisms of AMR gene products or may simply be due to some of them used exclusively in

veterinary or animal husbandry practice [26, 27]. Additionally, bacterial isolates express widely

variable rates of resistance depending on the host animal species [28, 29]. However, animal

host information has rarely been considered in AMR models, and rarely do studies consider

these relationships in more than one host animal at a time [30, 31]. Some differences in the

micro-environments found in different animal hosts have been found to be a significant source

of genetic variation [32–34]. This variation suggests that AMR genotype-phenotype relation-

ships could be modeled in a more complex fashion. A meta-analysis examining the perfor-

mance and reliability of ML models for AMR prediction in Neisseria gonorrhoeae, Klebsiella
pneumoniae and Acinetobacter baumannii showed that model performance can vary signifi-

cantly depending on the antibiotic, data set, resistance metric, and bacterial species [35].

Although ML methods in AMR prediction have been shown to be accurate, there is a need to

better understand the variation in predictions and incorporate relevant biological and clinical

knowledge into model design and evaluation before adoption in large-scale use.

Here we used sequenced isolates of E. coli, a zoonotic and cross-species pathogen, to indi-

cate emerging AMR [36, 37]. E. coli may serve as a reservoir for transferring AMR genes to

other animal and human populations through plasmids, transposons, and other mobile genetic

elements [38]. Therefore, by examining the AMR profiles of E. coli isolates, we aim to develop

an understanding of the different genetic associations that lead to the expression of AMR phe-

notypes in domesticated animals of interest to the clinical veterinary diagnostic community

and public health practitioners.

We used genotype data from 980 E. coli isolates recovered from seven animal species to

determine the utility of AMR genotype data for predicting phenotypic resistance in a clinically

relevant context. Isolates came from various species of agricultural and companion animals as

part of the APHIS-NAHLN AMR pilot project from 2018–2022. Our goal was to construct an

interpretable, biologically informed model that would consider AMR gene content and host

animal species to predict resistance to specific antibiotics. To do so, we fit and compared mul-

tiple elastic net models to characterize the relationship between AMR genes and predict resis-

tance phenotype. We considered predictors that test different ways in which AMR genes could

confer resistance. The proposed associations based on features that include the presence or

absence of at least one gene within a group, the number of genes within each group, and the

host animal effects. We then evaluated each model’s performance by its ability to predict AMR

phenotypes. Our results show that while the different models have high predictive perfor-

mance, there are significant differences in feature importance in predicting resistance to spe-

cific antibiotics in specific hosts. These differences suggest that future AMR modeling

approaches could be made more accurate by incorporating information for each antibiotic

and animal host. We discuss these differences in terms of the prevalence of resistance between

different host animals, model complexity, gene association (binary presence/absence or sum-

mative count), and unique predictors. We also provide an estimate of our best fit model’s

power to identify predictors of AMR phenotype in this study.

Materials and methods

The outline of this work is shown in Fig 1.
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Laboratory enrollment

Laboratories participating in the AMR pilot project were enrolled annually by APHIS-

NAHLN. To maximize the representation of data at a national level, we considered factors

such as animal population, representation, and geography in the enrollment process. Labora-

tories were enrolled and submitted the sequence data represented in this analysis. At the time

of writing, the 27 participating laboratories were located in the following states: Alabama, Cali-

fornia, Colorado, Florida, Georgia, Indiana, Iowa, Kansas, Kentucky, Louisiana, Michigan,

Minnesota, Mississippi, Missouri, Nebraska, New York, North Carolina, North Dakota, Ohio,

Pennsylvania, South Dakota, Texas, Washington, and Wisconsin.

Isolate selection

We received data from 981 total E. coli samples from swine (102), cattle (198), chickens (121),

turkeys (42), ducks (1), horses (151), dogs (195), and cats (173). Participating laboratories

selected isolates for inclusion in the pilot study based on association with clinical disease, with

one sample per distinct animal source (farm, herd, or owner within a single year). Each labora-

tory assigned a unique identifier to an isolate prior to submitting to APHIS-NAHLN, to

Fig 1. Project workflow. We separate the project workflow into three distinct phases. In Data Collection (red); we

enrolled participating USDA veterinary laboratories and collected E. coli isolates from animals associated with a

clinical disease. We removed samples with improper or insufficient metadata. We then labeled samples (yellow) with

their corresponding AMR phenotype and genotype using AST and WGS (see Methods). In the final model analysis

(blue), we fit the phenotype and genotype information to multiple elastic net models, interpreted the importance of

model features, and conducted a power analysis to assess the detectable effect sizes given the study sample sizes.

https://doi.org/10.1371/journal.pone.0290473.g001
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eliminate all identifiable information from the data. Isolates were identified at the genus and

species level by each laboratory, typically by using MALDI-TOF methods standard for veteri-

nary microbiology laboratories [39]. Data submitted for each isolate included the minimum

inhibitory concentration (MIC) values for all antibiotics tested, date of isolation, host animal

species, specimen/tissue source, and final clinical diagnosis where available. After cleaning the

data entries for typographical errors, we removed the duck sample from subsequent analyses

as it represented a single animal from that species. Tissue samples were originally collected for

other clinical purposes.

Antimicrobial susceptibility testing

Participating laboratories conducted all E. coli antimicrobial susceptibility testing (AST) using

the following commercially available Sensititre™plates (Thermofisher Scientific, USA) accord-

ing to the manufacturer’s instructions: BOPO6F or BOPO7F (swine and cattle), EQUIN1F or

EQUIN2F (horses), AVIAN1F (chickens and turkeys), and COMPGN1F (dogs and cats). The

six plate layouts previously listed include a total of 50 antibiotics from 14 different antibiotic

classes, with each plate type containing between 18–24 different antibiotics.

We used current clinical breakpoint guidelines from the Clinical and Laboratory Standards

Institute (CLSI) established based on a combination of factors including the host animal spe-

cies, sample source and type (e.g., urinary tract or skin/soft tissue infection), and bacterial iso-

late. Seventeen antibiotics have interpretive clinical breakpoints established for E. coli in

various animal species at the time of writing in the Vet01S [40]. These were: amikacin (dogs,

horses), amoxicillin-clavulanic acid (cats, dogs), ampicillin (cattle, cats, dogs, horses), cefazolin

(dogs, horses), cefovecin (cats, dogs), cefpodoxime (dogs), ceftazidime (dogs), ceftiofur (cattle,

swine), cephalexin (dogs), doxycycline (horses), enrofloxacin (cats, dogs, horses, poultry), gen-

tamicin (dogs, horses), marbofloxacin (cats, dogs), minocycline (horses), orbifloxacin (cats,

dogs), piperacillin-tazobactam (dogs), and pradofloxacin (cats, dogs). Based on these break-

points, we classified samples as expressing sensitive, intermediate, or resistant antimicrobial

phenotypes (S1 Table in S1 File). To simplify model prediction, intermediate phenotypes were

labeled as antibiotic resistant.

For antimicrobials without CLSI breakpoints, samples were classified into wildtype (wt)
and non-wt groups using epidemiological cut-off values (ECOFF) from the European Com-

mittee on Antimicrobial Susceptibility (EUCAST) [41]. Isolates with MIC values at or below

the ECOFF value are considered to be members of the wildtype population for that given bac-

terial species and antimicrobial. ECOFF values are calculated by fitting a cumulative log-nor-

mal distribution using non-linear least squares regression to MIC data curated by the

EUCAST database [42]. ECOFF values were collected from the EUCAST MIC distribution

website (http://www.eucast.org) in February 2023. Unlike CLSI breakpoints, ECOFF values

are non-host animal specific. If an isolate’s phenotype was ambiguous, such as MIC values

reported as “less than or equal” to a value exceeding its CLSI breakpoint or ECOFF value, the

sample phenotype was labeled “Non-Interpretable”. Isolate and antimicrobial combinations

without a CLSI breakpoint or ECOFF value, or with a Non-Interpretable phenotype, were

removed from further analysis (S2 Table in S1 File).

DNA extraction and whole-genome sequencing

Isolates were either sequenced directly by participating laboratories or submitted to the

National Veterinary Services Laboratories (NVSL) for whole-genome sequencing (WGS).

Briefly, extracted DNA was used to prepare indexed genomic libraries using the Nextera XT1

DNA Library Prep Kit (Illumina). Multiplexed libraries were sequenced using 250 × 2 paired-
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end read chemistry on the Illumina MiSeq1 platform at an average sequencing depth of

91.2 ± 32.3-fold.

Isolates were verified as E. coli using Kraken against a database consisting of RefSeq com-

plete genomes database release ver. 2.09 [43], UniVec-core, and host genomes commonly

encountered by the NVSL, with 85% reference genome coverage or greater after Bayesian

Reestimation of Abundance, using default parameters [44, 45]. Following this validation

step, de novo assembly of bacterial genomes was performed using SPAdes v3.14.0 [46] and

resultant scaffolds were processed using the AMRFinder v1.0.1 [47] and ABRicate v3.2.3

[48] tool kits against the National Center for Biotechnology Information (NCBI), AMRFin-

der, and ResFinder [49] databases. Resultant gene hits from these tool kits, with minimum

inclusion requirements of 70% amino-acid identity and 95% reference gene coverage, were

then collated with the metadata as putative AMR genes found in each E. coli isolate. Plasmid

genes were not used due to insufficient information linking the presence or absence of those

genes with specific antibiotic resistance. In total, 197 different AMR genes were identified

across all samples.

Determining animal host differences

We used Fisher’s exact test to determine if there were significant differences in the fraction

of resistant or non-wt phenotypes between animal hosts for each antibiotic in the data set.

We applied the Bonferroni-Holm (BH) correction for multiple comparisons to p-values, and

a BH corrected p-value threshold of 0.05 was used to determine significance. All analyses

and statistical tests were done using R 4.2.2, model training and evaluation was performed

using the tidymodels family of packages, and visualizations created with the ggplot2 3.4.1

[50–52].

Elastic net regularization

We used an elastic net model to estimate the effect of relevant genotype predictors on the resis-

tance phenotype. An elastic net is a penalized regression model which combines the penalties

of Least Absolute Shrinkage and Selection Operator (LASSO) and Ridge regressions [53–55].

The elastic net utilizes two tunable parameters, a shrinkage parameter λ for the LASSO regres-

sion, and a mixing parameter α that determines the relative importance of the LASSO and

Ridge penalties when they are added together. Rifge-driven shrinkage and LASSO-driven pre-

dictor selection make elastic net suitable for AMR prediction from genotype, where the num-

ber of predictors greatly exceeds the number of samples, while retaining a higher level of

predictor interpretability compared with other ML methods [56]. The candidate elastic net

predictors were built from relevant antibiotic genes, defined as the set of AMR genes known to

cause resistance to the specified antibiotic.

We curated a custom database that captures the knowledge of gene-specific AMR based on

common published literature (See Data Availability). In this database, AMR genes are associ-

ated with specific individual antibiotics or a general class of antibiotics. Throughout this analy-

sis, we separately fit samples with CLSI and ECOFF breakpoints. In addition, to avoid fitting

models with low power, we excluded antibiotics represented in fewer than 5 samples per phe-

notype label. For the remaining 31 antibiotic and breakpoint combinations, we only admitted

genes into the relevant set X i that are known to confer resistance to antibiotic i. The exception

was the Full model, where all AMR genes, including genes associated with other antibiotics,

were considered. We then used elastic net with the logistic regression (Eq (1)) to model and

predict isolate antibiotic resistance based on the presence or absence of genes in the gene
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group.

Prðyij ¼ 1 j xij;wijÞ ¼
1

1þ ex
t
ijβiþwt

ijαiþxt
ijΓiwij

ð1Þ

In Eq (1), yij is an element in the binary vector yt
i ¼ ðyi1; yi2; . . . ; yimi

Þ, where yij = 1 denotes

resistance or non-wt response to the i-th of n antibiotics in the j-th of mi samples. Vector

xt
ij ¼ ðxij1; xij2; . . . ; xijpi

Þ, where xijk 2 {0, 1} represents the presence or absence in the j-th sam-

ple of the k-th of pi predictors which confer resistance or non-wt phenotype to the ith antibi-

otic. Vector βt
i ¼ ðbi1; bi2; . . . ; bipi

Þ denotes the set of regression coefficients for the gene effects

to antibiotic i, each βik a measure of the relative degree of association between a gene k and the

resistance or non-wt phenotype to antibiotic i. To account for potential effects of the animal

host on the rate of isolate response, we include a set of predictors, wt
ij ¼ ðwij1;wij2; . . . ;wijli

Þ

corresponding to a one-hot encoding of the animal host for each isolate j tested for resistance

or non-wt phenotype to antibiotic i and coefficients αt
i ¼ ðai1; ai2; . . . ; aili

Þ for the effect of

each animal on resistance or non-wt phenotype to antibiotic i among li distinct species treated

with this antibiotic. For example, in a model for antibiotic i with data only from swine and cat-

tle samples, wij is the length-two predictor for “swine” and “cattle” with 0 or 1 values to indi-

cate if sample j came from a swine or cattle host. An interaction term, xt
ijΓiwij, represents the

animal-specific differences in the genetic effects for resistant or non-wt phenotypes in different

animal hosts, with Γi a pi × li matrix of coefficients. To keep notation simple, we neglect adding

an extra index for CLSI or ECOFF breakpoint, but some antibiotics participate in two fits with

distinct estimates for each type of breakpoint. We also considered the possible effect location,

the US state or region from which a sample was sourced, may have on phenotype. We found

location and host animal labels were not independent (w2 < 2:2� 10� 16), likely due to a bias

for certain animal hosts to be raised in specific geographic regions, and we therefore only con-

sidered animal hosts as a relevant predictor.

To consider the relative predictive power of different predictors, we built models from sets

of predictors implying distinct biological mechanisms of resistance, (Table 1), by default allow-

ing main and gene interaction effects for host species. Main effects are those contributed by

individual predictors while interaction effects are those in which the effect of a predictor is

Table 1. Elastic net model formulations. We use figurative equations to represent the different models, using i to

index the current antibiotic in question. Covariates wi indicate host animal, xi indicate presence/absence of genes in

the relevant set X i (x for all AMR genes, not just those in the relevant set), vi indicate presence/absence of any relevant

gene, and zi the count of observed relevant genes. Operator * indicates interactions considered, while + indicates main

effects only. See text for a detailed explanation of each model.

Model Formulation Brief explanation

Gene yi * wi * xi Is the relevant set (X i) of AMR genes predictive of resistance?

Gene & Binary yi * wi * (xi + vi) Does knowing any gene in a given set in addition to the relevant gene set

(X i) improve resistance prediction?

Gene & Count yi * wi * (xi + zi) Does knowing the total number of genes (rather than individual identity) in

addition to the relevant gene set (X i) improve resistance prediction?

Gene & Binary &

Count

yi * wi * (xi + vi
+ zi)

A combination of the two previous models.

Full yi * wi * x Is the total detectable set of AMR genes, ignoring known conferred

resistance, a better predictor of resistance?

Count yi * wi * zi Is the total number of genes in the relevant set (X i) predictive of resistance?

Binary yi * wi * vi Is the presence of any gene within the relevant set (X i) predictive of

resistance?

https://doi.org/10.1371/journal.pone.0290473.t001
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dependent upon one or more other predictors. The Gene model considers presence/absence of

any gene in the relevant gene set X i known to confer resistance to the i-th antibiotic. The

Binary model considers a single binary indicator vij = 1 if
P

k¼2X i
xijk � 1, which will be predic-

tive if the presence of any one gene from the relevant gene set X i is capable of conferring resis-

tance. The Count model includes only the number zij ¼
P

k2X i
xijk of observed relevant

resistance genes as a predictor, implying each additional relevant gene from X i linearly

increases the log odds of resistance. We also fit various combinations of these models. Lastly,

we tested a Full model using all AMR genes identified in an isolate, ignoring biological knowl-

edge about whether those genes are known to confer resistance to the predicted antibiotic. We

define candidate predictors as the set of predictors used in each model.

Model training and feature stability

After applying the inclusion criteria, we were left with 31 subsets of data meeting our require-

ments: 15 using CLSI breakpoints and 16 using ECOFF values, representing 24 unique antibi-

otics in total. We then fit separate elastic net models to each subset of data. For each model, we

further split the subset of data into 80:20 training and testing splits, and fit the model with the

training data. Within the training subset, a 10-fold cross validation scheme was used to select

the value of the α and λ hyperparameters, optimizing the accuracy of predicted resistance phe-

notype. We evaluated the model fit by calculating the prediction accuracy of the fitted model

with the testing data. When the number of candidate predictors is large, selected predictors for

models can be unstable and vary between model fits [57, 58]. To identify important predictors,

we used a stability selection method where we repeatedly refit the model (80:20 cross-valida-

tion and selection of α and λ) with a random 80% of candidate predictors over 1000 replicates

[59, 60]. We considered important predictors to be selected predictors found in over 66% of

model replicates. After training and stability selection, X̂ i � X i denotes the set of important

predictors consistently included in the model.

Model performance and power analysis

To evaluate model performance, we used a suite of evaluation metrics standard to binary clas-

sification models described in Table 2. Briefly, these different metrics discriminate the perfor-

mance of the model to accurately identify samples sensitive or resistant to antibiotics, while

considering the samples that are incorrectly predicted to be sensitive or resistant.

There is no accepted method of power calculation for elastic net models. Instead, we sought

to assess the post hoc power to detect a pre-specified effect size for each predictor in the Gen-
e&Binary&Count model. Our goal was to, at least roughly, assess whether the observational

Table 2. Model performance metrics. Model performance was evaluated using F1 score, Negative Predictive Value

(NPV), Positive Predictive Value (PPV), Sensitivity/Recall, and Specificity. The F1 score represents the harmonic mean

of the Precision and Recall; NPV is a calculation of true negatives / all negatives; PPV is a calculation of true positives /

all positives; Sensitivity/Recall is a calculation of true positives / (all true positives and false negatives); and Specificity is

a calculation of true negatives / (all true negatives and false positives). TN, FN, TP, and FP refer to true negatives, false

negatives, true positives, and false positives respectfully.

Metric Model

Negative Predictive Value (NPV) TN
TNþFN

Positive Predictive Value (PPV or Precision) TP
TPþFP

Sensitivity (Recall) TP
TPþFN

Specificity TN
TNþFP

F1 Score 2�
precision�recall
precisionþrecall

https://doi.org/10.1371/journal.pone.0290473.t002
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study could have detected a moderate effect of each predictor given the observed sample sizes

and assuming no interaction with other predictors. Whether a predictor actually gets selected

into the fitted elastic net model, however, depends on the complicated relationships between

predictors [61], which was ignored in our power analysis. We based our analysis on simple

logistic regression and a Wald test-derived procedure described in [61] and implemented in

the R WebPower package [61, 62] with the wp.logistic() function. We set α = 0.05 and

distribution family to “Bernoulli” when testing binary predictors and to “normal” when testing

the “count” predictor in relevant models. In all cases, we sought the power of detecting effect

sizes of β1 = 0.7, 1.1, 1.6, 2.3 or a 2, 3, 5 or 10-fold increase in the odds of resistance upon inclu-

sion (or unit increase) of the predictor. For the binary predictor xijk indicating the presence of

gene k conferring resistance to antibiotic i, we set the null model resistance probability (param-

eter p0) to the observed proportion in the subset of observations j with xijk = 0 and the alterna-

tive model resistance probability (parameter p1) was set to the expected proportion of

resistance upon the desired fold increase in odds of resistance. For the “count” predictor, we

set p0 to the observed proportion of resistance in the sample and p1 to the proportion

obtained upon increasing the odds of resistance by the desired fold.

Results

We examined the prevalence of antibiotic resistant or non-wt phenotypes across 980 E. coli
isolates. When evaluating prevalence, we only consider phenotypes with at least five samples.

The highest prevalence of resistance was for minocycline (100%; n = 21), doxycycline (94.5%;

n = 52), and ampicillin (92.5%; n = 571). The lowest prevalence was for amikacin (6.45%;

n = 22) and piperacillin-tazobactam (6.74%; n = 13). Non-wt phenotypes were most prevalent

against imipenem (66.7%; n = 4), ampicillin (52.6%; n = 91) and amoxicillin (35%; n = 57). We

observed zero isolates with non-wt phenotypes against amikacin (n = 175). The following anti-

biotics had non-interpretable MIC values; azithryomycin (n = 116), cephalexin (n = 152), and

florfenicol (n = 65).

Previous studies have shown isolate resistance varies between different animal species [28,

29, 63–65], and we confirm isolates from distinct animal hosts exhibit widely varying rates of

AMR. We used a Fisher’s exact test to identify significant differences in the proportion of resis-

tant isolates between host species for multiple antibiotics, with respect to CLSI or ECOFF val-

ues (Fig 2). For streptomycin and neomycin, the rate of resistance was significantly lower in

chicken relative to isolates from other host animals. For gentamicin, another aminoglycoside,

dog isolates had the lowest rate of resistance. Horse isolates had the largest differences in resis-

tance against three drugs relative to other animal hosts, with over 85% of isolates resistant to

cefazolin, ampicillin, and enrofloxacin. Cat, horse, and cattle isolates shared high rates of resis-

tance to ampicillin, significantly greater than dog isolates. Although ECOFF values are not ani-

mal specific, we observe significant differences in the fraction of non-wt phenotypes for

trimethoprim-sulphamethoxazole, chloramphenicol, tetracycline and doxycycline. Across

shared antibiotics, turkey isolates had an overall higher proportion of resistant phenotypes

than chicken isolates, and isolates from dogs had higher rates of resistance than isolates from

cats. Even within similar groups of animals (e.g. avian species: chicken and turkey, or compan-

ion species: cats and dogs), there are significant differences in rates of resistance observed for a

given antibiotic.

Predicting resistance

We fit increasingly complex elastic net models corresponding to types of association for the

genetic determinants of AMR (Fig 3). We assume genotype-to-phenotype associations will
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vary depending on the host, so each model includes host animal main and interaction effects

as a baseline. Many existing AMR models predict resistance based on the presence of any
AMR genes relevant to the modeled antibiotic [66–68]. A relevant AMR gene is a gene known

to confer resistance to a specific (or response) antibiotic. We fit an equivalent model, Binary,

and measure its F1 score, or the harmonic mean of the precision and recall at 69.2% ± 24.1%.

We subsequently fit more complex models building upon reasonably assumed mechanisms of

resistance. The Count model, which evaluates whether the log odds of resistance linearly

increases with the presence of every additional AMR gene, achieved a mean F1 of 92.0% ±
10.3% across all antibiotics. The Gene model uses the presence of individual AMR genes as sep-

arate predictors, allowing different genes to have distinct roles in conferring resistance. The

Gene model, despite having more predictors, only achieved a F1 of 84.1% ± 18%, lower than

the Count model.

We separately added the “binary” or “count” predictors to the Gene model, allowing the

underpowered data sets to use simpler predictors in addition to individual genes. The

Fig 2. Significant differences in antibiotic resistance between animal hosts. The y-axis labels indicate the antibiotic and breakpoints used to determine

resistant phenotype. The x-axis represents the percentage of resistant isolates. Symbols indicate animal host. Each point is the proportion of resistant

isolates to the named antibiotic among those extracted from the indicated animal host. Only antibiotics with a significant difference in the proportion of

resistance isolates between animal species are shown (adjusted p-value, *� 0.05, **�0.01, ***� 0.001). FPA = Folate Pathway Antagonist, TMP/

SMX = trimethoprim-sulphamethoxazole.

https://doi.org/10.1371/journal.pone.0290473.g002
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Gene&Binary model achieved a slightly higher mean F1 of 85.5% ± 16.1%. The Gene&Count
achieved the best performance with a mean F1 of 98.2% ± 2.3%, with a similar performance to

that of the Gene&Binary&Count model with a mean F1 of 98.3% ± 2.2%. While the perfor-

mance of the Gene&Count and Gene&Binary&Count models were nearly equivalent (98.2% ±
2.3% and 98.3% ± 2.2%, respectively), the addition of the “binary” predictor to the Gene model

conferred some information on the resistance relationship, although it is mostly eclipsed by

the more pertinent and predictive information conferred by “count”. It should be noted that

on the training set, the Gene&Binary&Count model achieved a mean F1 of 98.6% ± 2.6%. The

improvement in performance over single mechanism models (Binary, Count, and Gene) con-

firms that AMR genes do not contribute equally to antibiotic resistance. We also fit a Full
model that considered all identified AMR genes, not exclusively those expected to confer resis-

tance to the model antibiotic, and found the additional predictors did not lead to improved

performance over the Gene&Count combination (F1 of 88.7% ± 14.4%).

Across all evaluated antibiotics and breakpoints, the Count model (i.e. number of genes)

demonstrated the strongest improvement in phenotype prediction compared with additional

genes or the Binary model. The Count model achieved performance exceeding more complex

models using only a single predictor. Surprisingly, the performance of the Count model sug-

gests the number of resistance genes is more important for predicting resistance than specific

gene identity, and individual genes alone cannot predict resistance. At the same time, it is also

possible the Count model offers a low-dimensional approximation to a more complex resis-

tance relationship involving multiple genes and their interactions that cannot be supported by

the limited data in this study. Still, there were several antibiotics where the “count” variable

was insufficient to predict resistance by itself. Both the Count and Gene models achieved F1

scores� 76.9 for amoxicillin/clavulanic acid, ampicillin, and cephalexin. Notably, the joint

Gene&Count model achieved improved F1 scores of� 95.7 for the same antibiotics.

All models included animal main effects and animal × gene interaction effects to allow dif-

ferent levels and types of genetic associations across animal host. To evaluate the role of animal

effects in these models, we removed animal main and interaction effects from the best

Fig 3. Elastic net model evaluation. We fit seven different elastic net models evaluating the effect of different predictors described in Table 1, including:

AMR genes, animal host, presence of n� 1 AMR gene (“binary”), and total counts of relevant AMR genes (n, “count”). The Gene&Binary&Count model

best predicts the resistance phenotype, with the highest median F1 score and median accuracy across the different antibiotics. Model performance was

evaluated using F1 score, NPV, PPV, Sensitivity/Recall, and Specificity. NPV = Negative Predictive Value; PPV = Positive Predictive Value.

https://doi.org/10.1371/journal.pone.0290473.g003
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performing Gene&Binary&Count model. The performance of the Gene&Binary&Count
model without animal effects was nearly equivalent with an achieved mean F1 of 98.0% ± 2.4%.

Despite our initial assumptions, the inclusion of animal predictors did not impact resistance

prediction on average. The lack of animal host influence on AMR resistance could be

explained by the isolation of animal hosts from each other, thus limiting cross-species trans-

mission of AMR genes. The co-linearity between different AMR genes and animal hosts would

allow genetic predictors to effectively substitute for animal effects [69], but a no-animal Count
model, which masked the identity of individual genes and did not use any animal information,

achieved only a slightly lower mean F1 score of 90.5% ± 14.7% compared with the animal

Count model (mean F1 of 92.0%).

Analysis of individual predictors

Because all prior results are averaged across models, it is important to understand the contri-

bution of individual predictors to individual models and to help establish an interpretable bio-

logical understanding of AMR. We decided to explore the individual predictors in the Gene
+Binary+Count model Although inclusion of the “binary” and animal predictors had little

average effect, the elastic net handles the excess predictors with no decrease in average perfor-

mance, allowing assessment of the importance of all these predictors in the individual models.

We evaluated the importance, effect size, and power to detect each predictor. Given the high

number of possible genetic predictors and the inevitable imbalance in predictors and response,

this observational study is under-powered for many possible predictors. We therefore com-

puted for each predictor a power to detect with a simplified model (see Methods). Across all 31

models, the average power to detect any predictor with effect size of 0.7 (two-fold increase in

odds of resistance) at significance level 0.05 in the Gene&Binary&Count model was only 0.56

(sd = 0.22%). At an effect size of 2.3, equivalent to a ten-fold increase in the odds of resistance,

the same average power was 0.90 (sd = 0.28%).

Next, we wanted estimate the relative contribution of the host animal effect. To do so we

calculated the proportion of important animal-related predictors, which include the animal

host predictors and their interactions with AMR genes, for each model. Of the 31 fitted mod-

els, 14 did not use any animal-related predictors, and we observed that models with fewer pre-

dictors do not consider animal information. Models with 30 or more predictors had a majority

of animal-related predictors. The non-wt doxycycline, chloramphenicol, and neomycin were

the only models with less than 27 total predictors that did not use any animal information. The

models with a high proportion (�80%) of animal interaction terms among their important

predictors were non-wt trimethoprim-sulphamethoxazole (93.2%), cefazolin resistance

(86.9%), ampicillin resistance (84.9%), non-wt ceftazidime (83.6%), non-wt amoxicillin

(82.9%), gentamicin resistance (82.9%), non-wt spectinomycin (82%), and non-wt streptomy-

cin (80%). There was a trend for non-wt models to select animal predictors, with 12/16 (75%)

incorporating animal information, while 10/15 (67%) of resistance models did not use any.

While some models used animal information, the total importance of animal predictors in the

Gene&Binary&Count model was relatively low (S3 Table in S1 File), consistent with the

already reported small improvement in average model performance.

Unique predictors for resistance within an antibiotic class

Next we sought to understand the relative complexity of AMR genotype-to-phenotype rela-

tionships across different antibiotics. To do so, we compared the number of important predic-

tors for each model, by comparing the number of important predictors was correlated with the

number of candidate predictors for each antibiotic (Pearson’s correlation, R = 0.61). The
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model for amikacin and cefovecin selected a large proportion, 30/35 (85.7%) and 84/98

(85.7%), respectively, of their candidate predictors as important (Table 3). However, this pat-

tern was not observed in other β-lactam class antibiotics. For ampicillin resistance, important

predictors were only 26.7% of candidates, and amoxicillin-clavulanic acid resistance only

selected 8/95 (8.4%) of possible predictors. The fraction of important predictors was similar

Table 3. Unique predictors in fitted Gene&Binary&Count elastic net model by antibiotic. The important predictors included in the fitted Gene&Binary&Count models

for each antibiotic were identified and compared to the shared important predictors for antibiotics within the same class. For each antibiotic class, “Shared” is the number

of important predictors selected in all antibiotics within the same class, the denominator indicates the total number shared predictors. jX̂ i j is the total number of important

predictors selected by the model.
Pj

i¼1
bi is the sum of coefficient absolute values for predictors. jX ij refers to the number of candidate predictors considered. jX

0

i j refers to

the number of candidate predictors with estimated power�0.80 at an effect size of 2.3. “Unique” is the number of important predictors jX ij that are unique to that antibi-

otic relative to its class. β-lactams and β-lactam combination antibiotics had the highest number of total and unique important predictors spread across each of the antibiot-

ics in its class. Models for fluoroquinolone resistance only agreed on a single predictor (Count).

BP Class Antibiotic Shared Unique jX̂ ij
Pj

i¼1
bi jX

0

i j
jX ij

CLSI aminoglycoside amikacin 22/29 8 30 37.6 35 35

gentamicin 19 41 50 53 53

β-lactam TZPa 2/17 6 27 190 34 71

ampicillin 22 73 81.4 273 274

cefazolin 43 99 247 127 128

cefovecin 37 84 53.3 97 98

cefpodoxime 16 115 34 71

ceftazidime 8 26.3 24 51

ceftiofur 1 22 148 33 71

cephalexin 15 85 26 55

co-amoxiclavb 8 23.7 94 95

fluoroquinolone enrofloxacin 1/11 1 0.476 41 41

marbofloxacin 1 0.258 10 11

orbifloxacin 1 0.44 11 11

pradofloxacin 1 0.258 10 11

ECOFF FPA TMP/SMX3 88 88 43.7 127 127

aminocyclitol spectinomycin 3/13 50 50 62 89 89

aminoglycoside gentamicin 2/17 36 41 110 146 146

neomycin 15 24 56.5 64 64

streptomycin 28 40 94.9 47 47

β-lactam amoxicillin 65 82 76.1 100 101

ampicillin 12 0.962 193 194

cefazolin 31 65 43.1 54 83

cefpodoxime 1 15 215 25 53

ceftazidime 9 55 31.1 182 183

ceftiofur 28 85 122 346 347

co-ticarclavd 2 12 94.9 32 69

fluoroquinolone enrofloxacin 1 1 0.39 35 35

phenicol chloramphenicol 22 22 40.4 51 51

tetracycline doxycycline 5/27 6 11 35 27 27

tetracycline 34 39 70.6 79 79

a piperacillin-tazobactam
b amoxicillin-clavulanic acid
c trimethoprim-sulphamethoxazole
d ticarcillin-clavulanic acid

https://doi.org/10.1371/journal.pone.0290473.t003
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for antibiotics across CLSI and ECOFF breakpoints, the model for non-wt ampicillin selected

12 important predictors out of 194 or 6.1%.

In contrast with the varying complexity of β-lactam models, the models for fluoroquino-

lones were much simpler. Despite good power to detect a role for individual genes, only the

“count” predictor was consistently selected for both resistant and non-wt phenotype predic-

tion. For marbofloxacin, orbifloxacin, and pradofloxacin resistance models, this may be caused

by the relatively low number of candidate predictors (n = 11). However, the models for resis-

tant and non-wt enrofloxacin have more candidate predictors comparable with several β-lac-

tams yet still only select for the “count” predictor. The sharing of a single predictor across

different models suggests resistance or non-wt phenotype prediction is more similar for fluo-

roquinolones than other antibiotics. Aminoglycoside resistance shared a large fraction of

important predictors, 22/29 (73.3%) for amikacin and 22/41 (53.6%) for gentamicin, respec-

tively. These similarities were not present for non-wt aminoglycoside phenotype prediction,

where the important predictors for gentamicin, neomycin, and streptomycin were mostly

unique. A table of important model predictors for each antibiotic and breakpoint, not includ-

ing animal interaction predictors, is provided in the supplement (S4 Table in S1 File).

The difference in important predictors for resistance to antibiotics within the same class

may indicate that differences do exist in the genetic associations for resistance. This difference

could also be explained by insufficient data in a particular antibiotic and breakpoint subset to

study the antibiotic or low power when considering smaller effect sizes.

Discussion

The availability of sequence data has been proposed as a major tool for monitoring antibiotic

resistance [70–72]. Multiple studies have used WGS to predict resistance phenotypes in patho-

gens such as E. coli, Klebsiella pneumoniae, Salmonella enterica serovar Typhimurium, and

Staphylococcus aureus [73–75]. These studies report high concordance between a pathogen’s

AMR profile and predicted resistance phenotype, and consequently affirm the potential of

sequencing methods to improve AMR surveillance. In recent years, the predictive accuracy the

ability to extract useful information about these relationships has increased with the develop-

ment of predictive ML models for AMR [13, 56]. However, we found these AMR genotype-

phenotype relationships to vary substantially depending on the animal host and antibiotic,

indicating a degree of AMR-predictive complexity that has not yet been discussed. These

results are supported by earlier studies which show varying rates of resistance for antibiotics

across animal hosts [28, 29]. While the potential utility and use of bacterial genotype data in

monitoring AMR is certain, there is a need to refine current approaches to account for the bio-

logical variation in AMR mechanisms between different host animals, antibiotics, and known

AMR conferring genes.

AMR genotype-phenotype relationships are biologically complex

We observe the largest improvement in F1 score from the Gene model to Gene&Count mod-

els in cephalexin, ampicillin, amoxicillin-clavulanic acid, and fluoroquinolone class antibi-

otic resistance. This suggests the additive effect of multiple AMR genes against those

antibiotics is a more effective predictor of resistance than the identity of the genes involved.

From a biomechanistic perspective, orbifloxacin, a fluoroquinolone, disrupts bacterial cells

by interfering with DNA replication enzymes such as topoisomerase and DNA gyrase. One

mechanism of fluoroquinolone resistance is the synthesis of proteins to competitively inhibit

DNA gyrase and prevent fluoroquinolones from disrupting its function [76]. For these anti-

biotics, the number of genes and, in turn, the number of synthesized proteins, may be a
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more accurate predictor of resistance than the identity of individual genes. In which case,

transcriptomic data may be invaluable for fluoroquinoline resistance prediction. Another

possibility is that the Gene model is over-parameterized in these data, and a more parsimoni-

ous model with a single predictor could achieve better performance, but in most cases the

power to detect individual genes in quite high. Controlled experiments could confirm the

importance of the “count” predictor, or additional samples may yet yield the statistical

power to reveal the importance of gene identities. Furthermore, while the “count” of relevant

AMR genes is an important predictor of resistance and models including the “count” predic-

tor exceed the performance of the rule-based model (Binary) for certain antibiotics, the

more complex joint model using the genomic, animal host, count, and binary predictors

(Gene&Binary&Count) performs better still.

The genetic complexity of antibiotic resistance, in terms of the number of important predic-

tors, was much higher for β-lactam and β-lactam combination antibiotics. The β-lactam class

models, using both CLSI and ECOFF values, selected the highest number of unique predictors

per antibiotic. More specifically, the most complex resistance models were for cefazolin, cefo-

vecin and ampicillin. Although many of the important predictors in these models correspond

to subclasses of the β-lactamase gene, their significance as unique predictors suggests they are

non-substitutive and have varying importance in conferring resistance. Differences in β-lacta-

mase protein target affinity and degree of membrane permeability may make certain subclasses

of β-lactamase proteins more suited to act on specific antibiotics [77]. The model for resistance

to amoxicillin-clavulanic acid, a different β-lactam class antibiotic, only selected for eight

important predictors. This difference in complexity may be due to unique properties of amoxi-

cillin-clavulanic acid or genetic mechanisms unique to amoxicillin-clavulanic acid resistance.

The difference in model complexity for each antibiotic type suggests there are antibiotic-

specific AMR genotype-to-phenotype complex relationships more complex than have been

previously explored [23–25]. While WGS information can be used to accurately predict AMR

phenotype, the most effective way to use that information may differ between antibiotics. As

an example, there were significant differences in the odds of resistance between different ani-

mal hosts for some antibiotics, and animal predictors were used to improve the predictive

power of our models. Yet for other antibiotics, such as fluoroquinolones, our results show ani-

mal predictors were not necessary to make accurate predictions. In addition, the choice of spe-

cific important predictor selection in our model was significantly affected by the power to

detect those predictors. Animal-specific fluoroquinolone interactions may affect resistance at a

lower effect size than what is detectable in our study.

Notably, we observed a difference in the importance of selection for animal predictors in

non-wt and resistant phenotypes. Animal predictors and interactions are more commonly

found in models predicting resistance, suggesting that the animal/tissue differences

respected by CLSI breakpoints also associate with differences in AMR genetic determinants.

As expected, ECOFF-determined wt phenotypes, which are host independent, yield fewer

important animal predictors. On the other hand, the development of CLSI breakpoints do

take into consideration the presence/absence of numerous clinical factors, including animal

host species, source tissue, and, in turn, antimicrobial- and animal-specific

pharmacokinetics.

Our observations suggest that using the elastic net approach with animal predictors can

accurately predict antibiotic non-wt phenotypes, even when those phenotypes are established

using inherently non-clinical ECOFF values. As a result, the work shown here would suggest

that specific antibiotics: namely, chloramphenicol, doxycycline, tetracycline, trimethoprim sul-

famthoxazole, amoxicillin, neomycin, and spectinomycin, be prioritized for CLSI breakpoint

analysis and development.
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AMR prediction is accurate, but incomplete

Both the Gene&Count and Gene&Binary&Count models were able to accurately predict iso-

late resistance. Although performance varied between different antibiotics, mean the F1 for

both models were very high (0.988). All models share a higher average positive predictive

value than negative predictive value, suggesting there are types of AMR which are not

accounted for in the model and would improve negative prediction. This same complexity

may also increase the chance that important resistance-conferring genes are missing from

the tested predictors [78]. Theoretical power calculations for elastic net models have yet to

be defined, but calculations based on traditional logistic regression suggest that despite the

size of this study, our approach was underpowered considering: (1) the number of predictors

and (2) an effect size equivalent to a two-fold increase in the likelihood of resistance, even

when limited to only the relevant AMR genes for each antibiotic. Therefore, important pre-

dictors of AMR would best be assessed in an experiment explicitly designed to detect the

effect of multiple genetic predictors. This type of experiment would require significantly

more samples than were observed here to ensure sufficient statistical power, especially when

measuring smaller effect sizes.

Conclusions

Our study illustrates the genetic and environmental complexity of AMR that is often

ignored in models based on ML. We confirmed that existing genetic determinants of

AMR are generally accurate predictors of antibiotic resistance across animal hosts and

antibiotics. However, we find evidence for possible differences in the mechanisms of

AMR across host species. Using elastic net models, which offer more interpretable features

than other high dimensional models, we find the genotype/phenotype relationship for

AMR depends on multiple factors, including the genetic association with AMR, animal

host, antibiotic, and AMR genes. While our study identifies strong genetic predictors of

AMR resistance from observational samples, these predictors are merely a subset of the

candidate predictor genes that we expect to confer resistance. It is uncertain if predictors

not included in the model are unnecessary for predicting resistance, or whether we lack

sufficient power to measure their effect on resistance. We suggest these results be further

elucidated in a more powerful study, where smaller effect sizes can be detected. the effect

size of individual genes can more accurately be measured. It might also be possible to test

some of the biological mechanisms revealed from our interpretable elastic net models.

While there is considerable evidence that WGS data are highly predictive of AMR pheno-

type and will improve AMR prevention strategies, we suggest there is still much to learn

about the genotype-to-phenotype relationships and their differences across hosts and

antibiotics. Models fit to data from multiple hosts and antibiotics may be most useful

when there are commonalities in resistance mechanisms across hosts and antibiotics (e.g.

in the same class), but our results show such models must also allow for some differences.

In the end, such models may improve early diagnosis across hosts, and help us take action

to combat resistance, especially when resistance patterns that also threaten human health

emerge in non-human hosts.
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34. Richards VP, Lang P, Bitar PDP, Lefébure T, Schukken YH, Zadoks RN, et al. Comparative genomics

and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae. Infec-

tion, Genetics and Evolution. 2011; 11(6):1263–1275. https://doi.org/10.1016/j.meegid.2011.04.019

PMID: 21536150
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