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Abstract

The concept of metric dimension has many applications, including optimizing sensor place-
ment in networks and identifying influential persons in social networks, which aids in effec-
tive resource allocation and focused interventions; finding the source of a spread in an
arrangement; canonically labeling graphs; and inserting typical information in low-dimen-
sional Euclidean spaces. In a graph G, the set SC V(G) of minimum vertices from which all
other verticescan be uniquely determined by the distances to the vertices in Sis called the
resolving set. The cardinality of the resolving set is called the metric dimension. The set Sis
called fault-tolerant resolving set if S\{v} is still a resolving set of G. The minimum cardinality
of such a set Sis called fault-tolerant metric dimension of G. GeSbTe super lattice is the lat-
est chemical compound to have electronic material that is capable of non-volatile storing
phase change memories with minimum energy usage. In this work, we calculate the resolv-
ing set (fault tolerant resolving set) to find the metric dimension(fault-tolerant metric dimen-
sion) for the molecular structure of the GeSbTe lattice. The results may be useful in
comparing network structure and categorizing the structure of the GeSbTe lattice.

Introduction

Let G be a simple, connected graph with vertex and edge set denoted by V(G) and E(G) respec-
tively. We use the notations @ and /3 to denote the order and size of G. The distance between
two vertices a, b€ V(G), denoted by d(a, b) is the length of the shortest path between them. Let
W ={a,,a,,...,a,,} C V(G)bean ordered set. Let ac V(G) and r(a, W) =

(d(a,a,),d(a,a,), ...,d(a,a,)) be the representation of a with respect to W as the m-tuple.
The set W is said to be a resolving set if r(a, W) # r(b, W) for any two distinct vertices a and b
in V(G)\W. The minimum cardinality of resolving set is called metric dimension of G, denoted
by dim(G).

The idea of resolving set was first introduced by Slater [1] in 1975. After that Harary and
Melter [2] suggested the similar concept and named it metric dimension. Chartrand et al [3]
proposed the idea of metric bases and the cardinality of metric bases is referred as metric
dimension. After these papers, a lot of work is done in this direction with applications in many
fields including technology, Sciences and Social Sciences. The applications of metric
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dimension appears in numerous scientific zones, such as the route of robots in mechanical
autonomy [4], deciding steering conventions topographically, and telecommunication [5].
Some applications of resolving set in chemistry was discussed by Chartrand et al [3].

The answer to the question whether the metric dimension of a graph is a finite number was
given by Caceres in [6]. They proved that for any integer k>0 there exist an infinite graph with
metric dimension k and this number is infinite for infinite comb graph. The computational
difficulty of metric dimension in terms of other graph parameters was explored by Gary and
Johnson [7]. The metric dimension of Cayley digraphs and Cayley graphs were studied in [3,
8] respectively. Vertik and Ahmad [9] computed the metric dimension of categorical product
of graphs [9]. The readers can see [3, 10-12] for more details on metric dimension of graph.

The resolving set W of a graph G is called fault-tolerant if for every ac W, the set W\{a} is
also a resolving set for G. The minimum cardinality of this set is called fault-tolerant metric
dimension and its elements are called metric bases of G.

The fault-tolerant metric dimension of certain crystal structures was determined by Krish-
nan and Rajan [13]. Raza et al. computed the fault-tolerant metric dimension of certain rota-
tionally symmetric convex polytopes in [14, 15]. Nadeem and Azeem [16] calculated the metric
dimension of Hexagonal mobius ladder. The research [17] focuses on computing the fault-toler-
ant metric dimension for certain network topologies (triangular snake, ladder, Mobius ladder,
and hexagonal ladder networks) and finds that the fault-tolerant metric dimension and metric
dimension differ by one in all of these network classes. The study [18] discusses fault-tolerant
designs for pyramid, OTIS, bicapped, and mesh-derived networks utilizing interconnection net-
works P, and C, graphs, allowing for stable operation even in the face of faults. For more results
on fault-tolerant metric dimension of different graphs, see [19-21].

Metric dimension and fault-tolerant metric dimension, among other things, have potential
uses in telephony, robot navigation, and geographical routing protocols [22]. In computer net-
works, metric dimension can be used to determine the minimum number of sensors or moni-
toring nodes required to observe and diagnose the behavior of the network. By selecting a set
of nodes with the smallest metric dimension, we can efficiently monitor the network’s perfor-
mance and detect faults or attacks. In sensor networks or Internet of Things (IoT) applications,
metric dimension plays a role in optimizing the placement of sensors. By strategically selecting
sensor locations with high metric dimension, we can ensure effective coverage of the moni-
tored area while minimizing the number of sensors required [23]. Metric dimension can be
utilized in route planning and navigation algorithms. By constructing a graph with vertices
representing locations and edges representing distances between them, the metric dimension
can help identify the minimum set of landmarks or waypoints necessary for efficient route cal-
culation. Metric dimension can be employed in clustering algorithms to determine representa-
tive points or prototypes that best capture the structure and characteristics of a dataset. By
selecting a minimal set of points with high metric dimension, we can effectively summarize
the data and facilitate efficient clustering [24].

The computation of fault-tolerant metric dimension of a graph is a difficult problem and
has applications in censor networks. If we consider the vertices in a resolving set as the posi-
tions for loran/sonar stations, the location of each vertex can be distinctly determined by its
vertex distances from the station site. From this viewpoint, a fault-tolerant (unique) resolving
set can be defined as one that still maintains the property of a resolving set even when exclud-
ing a station at a uniquely determined vertex location within the resolving set. As a result,
fault-tolerant resolving sets expand the usefulness of conventional resolving sets in graphs.
Moreover, this demonstrates that the fault-tolerant metric dimension offers a more advanta-
geous practicality compared to the metric dimension [20, 25-28].
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In this article, we have computed the metric and fault metric dimension for GeSbTe (Ger-
manium Antimony Telluride) Superlattice. The impetus for researching the Metric and Fault-
tolerant Metric Dimensions of GeSbTe (Germanium Antimony Telluride) Superlattice stems
from materials science and nanotechnology, namely the design and optimization of phase-
change materials used in nonvolatile memory systems. These dimensions reveal structural fea-
tures of phase-change materials, which are critical in nonvolatile memory systems. Researchers
can optimize material design by analyzing these dimensions, resulting in more efficient and
stable memory systems.

GeSbTe super lattice

GeSbTe (Germanium Antimony Telluride) superlattice is a material system that has garnered
significant attention in the field of phase-change memory and other related applications. It
consists of alternating layers of different compounds, namely Germanium Telluride (GeTe)
and Antimony Telluride (Sb,Tes), forming a periodic structure known as a superlattice.

One of the notable properties of GeSbTe superlattice is its ability to undergo rapid and
reversible phase transitions between amorphous and crystalline states when subjected to cer-
tain stimuli such as heat or electrical pulses. This Phase change memory (PCM), an emerging
method for nonvolatile information storage, offers a powerful combination of speed and den-
sity, both of which are crucial in the age of big data [29-31]. On the other hand, PCM is an
excellent choice for wide range of complex application including thermal emitters [32], flexible
screens [33]. Although Ge,Sb,Tes alloys is the most advanced PCM material [34, 35] but still
it’'s REEST power consumption is high [34, 35]. It has been observed that the power consump-
tion of the PCM material known as GeSbTe superlattice is very low [36]. A lot of research has
been done to explore the approaches to achieve the GeSbTe supper lattice transition [37, 38].

GeSbTe superlattice has several advantages as a phase-change material. It exhibits fast
switching speeds, high endurance, and good scalability, which are crucial factors for memory
applications. Additionally, it demonstrates good thermal stability, allowing reliable operation
over a wide range of temperatures. The unique combination of these properties has made
GeSbTe superlattice a promising candidate for next-generation non-volatile memory
technologies.

Metric dimension of GeSbTe superlattice

For simplicity, we use the notation by G[n], where n denotes the number of unit cells of the lat-
tice. Fig 1 depicts the unit section of GeSbTe superlattice where the atoms are denoted by the
vertices and the edges represent the bonds between the atoms. The molecular graphs of G[2]
and GI[3] are shown in Figs 2 and 3 respectively. To find the resolving set of G[n], we divide
the graph in to three regions namely, p, g and r (see Figs 1-3). Observe that each region of G
[n] contains 1+3# vertices. In total there are 9n+3 vertices and 13n edges. The partition of G
[n] based on the degree of vertices is depicted in Table 1

Lemma # 1: The Superlattice structure GeSbTe(p,q,r)[n] has a resolving set with cardinality
3.

Proof:Let W = {a}, b}, ¢} } is an ordered verticessubset of the GeSbTe Superlattice structure
GeSbTe(p,q,r)[n]. We will prove that W is the resolving set. Given below are the representation
of the vertices ofGeSbTe Superlattice structure GeSbTe(p,q,r)[n] with respect to W.

(2i+p—3, p+2, p+5) If0<i<2, p=1 2, 3
dd|wW) = (2i+p—3, p+4, p+5) Ifi =3, p=1 2, 3)
(2i4+p—3, 2i+p—2, 2i+p—1) If4<i<n, p=1, 2, 3

PLOS ONE | https://doi.org/10.1371/journal.pone.0290411  November 30, 2023 3/14


https://doi.org/10.1371/journal.pone.0290411

PLOS ONE

Metric and fault-tolerant metric dimension

n=1 a;

—

Fig 1. Structure of GeSbTe superlattice GeSbTe(p,q,r)[1].
https://doi.org/10.1371/journal.pone.0290411.g001
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Fig 2. Structure of GeSbTe superlattice GeSbTe(p,q,r)[3].
https://doi.org/10.1371/journal.pone.0290411.9002
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Fig 3. Structure of GeSbTe superlattice GeSbTe(p,q,r)[5].
https://doi.org/10.1371/journal.pone.0290411.g003
(—q+4, g—1, g+2) Ifi=1, q=1, 2, 3
dbiiw) =14 (2i—1, 2i+q-3, 2i+q—2) Ifi>2, g=1, 3
(2, 2i4+q—3, 2i+q-2) Ifn>i>2 q=2
(7T—r, 4—r, r—1) Ifi=1, r=1,2,3
dic|w) =4 (2i, 2i—1, 2i+r—3) Ifi>2, r=1,3
(2i+1, 2i, 2i+r—3) Ifn>i>2 r=2
Table 1. Degree of vertices and edges for partitions of superlattice structure GeSbTe(p,q,r)[n].
GeSbTe(p,q,r)[n] n=1 n=2 n=4 n=n
Vertices of Degree 1 3 4 6 n+2
Vertices of Degree 2 4 4 4 4
Vertices of Degree 3 5 10 20 5n
Vertices of Degree 4 0 2 6 2n-2
Total Vertices 12 21 39 In+3
Total Edges 13 26 52 13n

https://doi.org/10.1371/journal.pone.0290411.t001
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Since the representation of every vertex of the graph GeSbTe(p,q,r)[n] with the set W is
unique, therefore the set W is the resolving set for the graph GeSbTe(p,q,r)[n].

Special cases

Here we discuss some special cases to understand the proof of lemma 1.
Case n = 1. For the superlattice GeSbTe(p,q,r) [1], we have

d(a,|W) = (0,3,6); d(b;|W) = (3,0,3); d(ci|W) = (6,3,0);
d(ai|W) = (1,4,7); d(bi|W) = (2,1,4); d(c|W) = (5,2, 1);
d(a;|W) = (2,5,8); d(bi|W) = (1,2,5); d(c|W) = (4,1,2);
d(a)|W) = (2,3,6); d(b)|w) = (3,2,3); d(c|W) = (4,3,2).

Case n = 2. Similarly, for superlattice GeSbTe(p,q,r) [3], we have

d(a)|W) = (0,3,6); d(by|W) = (3,0,3); d(c,|W) = (6,3,0);
d(ay|W) = (1,4,7); d(bi|W) = (2,1,4); d(ci|w) = (5,2, 1);
d(a}|W) = (2,5,8); d(bi|W) = (1,2,5); d(c|W) = (4,1,2);
d(a,|W) = (2,3,6); d(b,|W) = (3,2,3); d(c,|W) = (4,3,2);
d(ay| W) = (3,4,7); d(by|W) = (4,3,4); d(c;|W) = (5,4,3);
d(ay|W) = (4,5,8); d(by|W) = (3,4,5); d(c;|W) = (4,3,4);
d(a,|W) = (4,5,6); d(by|W) = (5,4,5); d(c;| W) = (6,5,4).

Hence W = {al, b}, c}} is the resolving set.

Theorem # 1:Metric dimension of GeSbTe Superlattice structure GeSbTe(p,q,r)[n] is 3.

Proof:To prove metric dimension of GeSbTe(p,q,7)[n] is 3, we use the lemma 1 in which
W = {a}, b}, c1} is the resolving set with cardinality 3.

We will now prove that dim(GeSbTe(p,q,r)[n])>3. Suppose on contrary that dim(GeSbTe
(p,q,1)[n]) = 2 and W' is resolving set of cardinalities 2.

Case L If W = {a/,a)}, (p.p, <3), (p.po €{1,2,3}), 1<i,1<j, ie
{1,2,3,...... n), je{1,2,3,...... ,n}. Then d(b|W1) = d(b®|W7), where
(ILme{1,2,...,n}),(q,9, € {1,2,3}) and dim(GeSbTe(p,q,r)[n])#2.

Case2: If W = {b?,bf"}, (9,9, <3), (9,9,€{1,2,3}), 1<i, 1<j, i€
{1,2,3,...... n), je{1,2,3,...... ,n}. Then d(¢]|Wr) = d(c?|W/) where
(Lme{1,2,...,n}),(r,r, € {1,2,3}) and dim(GeSbTe(p,q,r)[n])#2.

Case3: If W' = {c/,c'}, (r,7,<3), (r,r,€{1,2,3}), 1<i, 1<), i€
{1,2,3,...... n), j€{1,2,3,...... ,n}. Then d(c;|W/r) = d(b1 | W) where
(Lme{1,2,...,n}),(r,q € {1,2,3}) and dim(GeSbTe(p,q,r)[n])#£2.
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Casea: If W' = {af,b!}, <3,q9<3, p,qe{l,2,3}, 1<i, 1<), i€
{1,2,3,...... n}, j€{1,2,3,...... ,n}. Then d(a}|Wr) = d(b1|W7) where
(ILme{1,2,...,n}),(p,q € {1,2,3}) and dim(GeSbTe(p,q,r)[n])#2.

Case5:1f W' = {af, ¢}, p<3,r<3, p,re{l,2,3}, 1<i, 1<j, i€
{1,2,3,...... n}, je{1,2,3,...... ,n}. Then d(b]|W/1) = d(c, |W') where
(Lme{1,2,...,n}),(q,r € {1,2,3}) and dim(GeSbTe(p,q,r)[n])#£2.

Case 6:If W = {b], [}, q<3, r<3,q re{l,2,3}, 1<i, 1<j, i€
{1,2,3,...... n}, je€{1,2,3,...... ,n}. Then d(b|Wr) = d(b%| W) where
(ILme{1,2,...,n}),(q,q, € {1,2,3}) and dim(GeSbTe(p,q,r)[n])#2.

Hence, dim(GeSbTe(p,q,r)[n])>3.

Lemma # 2:TheGeSbTe Superlattice structure GeSbTe(p,q,r)[n] has a fault tolerent resolv-
ing set with cardinality 4.

Proof: To show the graph GeSbTe(p,q,r)[n], has fault tolerent resolving set with cardinality 4
and we want to prove that W, = {al, bl, ¢}, b?} is one of the fault tolerent resolving set.

For this we can calculate the distances of each vertex from Wyas follows

(2i+p—3,p+2, p+5 p+1) f0<i<2, p=123
d(a’|W,) = (2i+p—3,p+4, p+52i+p—3) Ifi=3, p=123
(2i+p—3,2i+p—22i+p—12i+p-3) Ifn>i>4 p=1,23

(—q+4, g—1, g+2, i) Ifi=1, q=13
d(b|w,) = (—q+4, q—1, g+2, q—2i) Ifi=1, q="2
(2i—1, 2i+q—3, 2i+q—2, 2i+q—4) Ifn>i>2 ¢q=1,3
(2, 2i+q—3, 2i+q—2, 2i+q—4) Ifn>i>2, qg=2
(7T—r, 4—r,r—1, 5—1r) Ifi=1, r=1,2,3
(26, 2i—1, 2i+r—3, 5—r) Ifi=2 r=1,3
d(ci|w;) = (2i4+1,2i, 2i4+r—3, 5—r) Ifi=2, r=2

(2i, 2i—1, 2i+r—3, 20—2) Ifn>i>3, r=13

(2i4+1, 2i, 2i4+r—3, 2i—1) Ifn>i>3, r=2

Since the representation of every vertex of the graph GeSbTe(p,q,r)[n] with the set W(is
unique, therefore the set Wyis the resolving set for the graph GeSbTe(p,q,r)[n].

Now we want to prove that Wris the fault tolerant resolving set for this we will eliminate
each element one by one and show that it will again a resolving set.

If we remove a; from Wythen W, = {b}, ¢, b7} and

(P+2,p+5 p+1) F0<i<2 p=1,2 3
d(ai|W,) = (p+4,p+5, 2i+p—3) Ifi=3 p=123
(2i+p—2,2i+p—1,2i+p—3) Ifn>i>4, p=1,23
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(g—1, q+2, i) Ifi=1, q=1,3
d(bIW,) = (g—1, q+2, gq-—2i) Ifi=1, q=2
(2i+q—3, 2i+q—2, 2i+q—4) Ifn>i>2 q=13
(2i4+q9—3, 2i4+qg—2, 2+qg—4) Ifn>i>2, g=2
4-r, r=1, 5-r) Ifi=1, r=1,23
(2i—1, 2i+r—3, 5—r) If i =2, r=1,3
d(c]|W,) = (2i, 2i+r—3, 5-r) Ifi=2, r=2

(2i—1, 2i+r—3, 2—2) Ifn>i>3, r=1,3

(2i, 2i+r—3, 2i—1) Ifn>i>3  r=2

Since the representation of every vertex of the graph GeSbTe(p,q,r)[n] with the set W, is

unique, therefore the set W, is the resolving set for the graph GeSbTe(p,q,r)[n].

If we remove b, from Wythen W, = {a;, c;, b7} and

(2i+p—3,p+5 p+1) f0<i<2 p=1,23

da|W,) =4 (2i+p—3,p+52+p=-3)  Ifi=3  p=123
(2i4+p—3,2i+p—1,2i+p—-3) Ifn>i>4, p=123

dpiw,) =4 (a4 at2, q-20) fi=1, q=2
(2i—1, 2i+q—2, 2i+q—4) Ifn>i>2 q=13

(2i, 2i+q—2 2+q—4) Ifn>i>2 q=2

(7—r, r—1, 5—r) Ifi=1, r=1,2,3

(2i, 2i+r—3, 5—r) Ifi=2, r=1,3

a(d|W,) =< (2i+1, 2i+r—3, 5—r) If i =2, r=2

(2i, 2i+r—3, 20—2) Ifn>i>3, r=1,3

(2i4+1, 2i+r—3, 2i—1) Ifn>i>3, r=2

Since the representation of every vertex of the graph GeSbTe(p,q,r)[n] with the set W, is
unique, therefore the set W, is the resolving set for the graph GeSbTe(p,q,r)[n].
If we remove ¢, from Wythen W, = {a}, b7, b;} and

(2i+p—3,p+2,p+1) fo<i<2, p=1,23

d@\W,) =<  (2i+p—3,p+4,2i+p—3) Ifi=3, p=1,23
(2i+p—3,2+p—22+p—3) Ifn>i>4, p=1,23
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(—q+4, q—1, i) Ifi=1, q9=1,3

AW, = (—q+4, g—1, g—2i) Ifi=1, q=2
(2i—1, 2i+q—3, 2i+q—4) Ifn>i>2 ¢g=1,3

(2i, 2i+q—3, 2i+q—4) Ifn>i>2 g=2

(7T—r, 4—r, 5—r) Ifi=1, r=1,2,3
(2, 2i—1, 5—r) Ifi=2 r=13

dic|W,) =< (2i+1, 2i, 5—r) Ifi=2, r=2
(2i, 2i—1, 2i—2) Ifi>3, r=13

(2041, 2i, 2i—1) Ifi>3, r=2

Since the representation of every vertex of the graph GeSbTe(p,q,r)[n] with the set W3 is
unique, therefore the set W is the resolving set for the graph GeSbTe(p,q,r)[n].
If we remove b} from Wjthen it becomes again W = {a;, b}, ¢} }
(2i+p—3,p+2,p+5) Ifo<i<2, p=12,3
d(a|w) = (2i+p—3, p+4, p+5) fi=3 p=1,23
(2i+p—3,2i+p—22i+p—1) Ifn>i>4, p=123

(—q+4, g—1, g+2) Ifi=1, q=1,2,3
dbW) =14 (2i—1, 2i+q-3, 2i+q—2) Ifn>i>2 q=1,3
(2i, 2i+q—3, 2+q—2) Ifn>i>2, —2

(7T—r, 4—r, r—1) Ifi=1, r=1,2,3
dic|W) =< (2i, 2i—1, 2i+r—-3) Ifn>i>2, r=1,3
(20+1,2, 2i4+r—3) Ifn>i>2  r=2
Since the representation of every vertex of the graph GeSbTe(p,q,r)[n] with the set W, is

unique, therefore the set W, is the resolving set for the graph GeSbTe(p,q,r)[n].
Hence proved that Wyis the fault resolving set.

Special casen=1

Here we discuss a special case n = 1 to understand the proof of lemma 2.
The set W, = {ay, by, c{, b} } is the fault resolving set.By using the results of lemma 2 for

n =1, we have

d(a;|W;) = (0,3,6,2); d(b;|W) = (3,0,3,1); d(c;[W;) = (6,3,0,4);
d(a;| W) = (1,4,7,3); d(bi|W) = (2,1,4,0); d(ci|Wy) = (5,2,1,3);
d(a)|W;) = (2,5,8,4); d(bi|wy) = (1,2,5,1); d(ci|Wy) = (4,1,2,3);
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d(a,|W)) = (2,3,6,2); d(by|W)) = (3,2,3,1); d(cy|W)) = (4,3,2,4);
If we remove a, from Wythen W, = {b}, c{, b7 }. By using the results of lemma 2 for n = 1,
we have
d(a,|W,) = (3,6,2); d(b,|W,) = (0,3,1); d(c|Wy) = (3,0,4);
d(ai|W,) = (4,7,3); d(bi|W,) = (1,4,0); d(ci[w,) = (2,1,3);
d(ay|W,) = (5,8, 4); d(by|W,) = (2,5,1); d(c|wy) = (1,2,3);
d(a,|W,) = (3,6,2); d(b,|W;) = (2,3, 1); d(c,|W,) = (3,2,4);
If we remove b, from Wythen W, = {aj, c{, b7}. By using the results of lemma 2 for n = 1,
we have
d(ay|W,) = (0,6,2); d(b,|W,) = (3,3, 1); d(c|W,) = (6,0,4);
d(ai|W,) = (1,7,3); d(bi|W,) = (2,4, 0); d(ci|W,) = (5,1,3);
d(a}|W,) = (2,8,4); d(by|W,) = (1,5,1); d(c|W,) = (4,2,3);
d(a,|W,) = (2,6,2); d(b,|W,) = (3,3, 1); d(c,|W,) = (4,2,4);
If we remove ¢; from Wythen W, = {aj}, b;, b7}. By using the results of lemma 2 for n = 1,
we have
d(a,|W;) = (0,3, 2); d(by|Wy) = (3,0, 1); d(c|W;) = (6,3, 4);
d(a;|Wy) = (1,4,3); d(bi|W,) = (2,1,0); d(ci|W;) = (5,2,3);
d(aj|W;) = (2,5,4); d(by|Wy) = (1,2,1); d(c|W,) = (4,1,3);
d(a,|W,) = (2,3,2); d(b,|W;) = (3,2, 1); d(e,|W,) = (4,3,4);

If we remove b} from Wjthen it becomes again W = {a;

lemma 2 for n = 1, we have

, b1, c!}. By using the results of

d(a)|W) = (0,3,6); d(by|W) = (3,0,3); d(c,|W) = (6,3,0);
d(@|W) = (1,4,7); d(bl|w) = (2,1,4); d(c|W) = (5,2,1);
d(aj|W) = (2,5,8); d(bj|w) = (1,2,5); d(c]|W) = (4,1,2);
d(a,|W) = (2,3,6); d(by|W) = (3,2,3); d(e,|W) = (4,3,2);

Hence proved that Wyis the fault resolving set.
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Theorem # 2:The fault tolerant metric dimension of GeSbTe Superlattice structure GeSbTe
(p,g;n)[n] is 4.

From lemma 2 we see that the cardinality of Wyis 4 and from Theorem 1, we proved that
the metric dimension of GeSbTe(p,q,r)[#] is 3, hence the fault tolerant metric dimension of
GeSbTe(p,q,r)[n] is 4.

Conclusion

Metric dimension is a concept in graph theory that measures how effectively a set of vertices in
a graph can be used to uniquely identify other vertices. It has applications in many fields
including technology, Sciences and Social Sciences. In particular it is useful in location deter-
mination problems, where the goal is to find the position of an object or event based on limited
measurements or observations. By selecting a minimal set of nodes with high metric dimen-
sion, we can accurately determine the location of the target object or event. In this work, we
have computed the metric dimension of GeSbTe superlattice. The obtained results may be use-
ful for better understanding the structure. The metric dimension of other material that is use-
ful in the field of phase change memory can be calculated in future.

Acknowledgments

The authors really appreciated the kind support from the Research Supporting Project
(RSP2023R401), King Saud University, Riyadh, Saudi Arabia.

Author Contributions

Conceptualization: Khurram Shahzad, Abdul Rauf, Fairouz Tchier, Adnan Aslam.
Data curation: Liu Ligin, Khurram Shahzad, Abdul Rauf, Fairouz Tchier, Adnan Aslam.
Formal analysis: Khurram Shahzad, Abdul Rauf.

Funding acquisition: Liu Ligin, Fairouz Tchier, Adnan Aslam.

Investigation: Liu Ligin, Khurram Shahzad, Abdul Rauf, Adnan Aslam.

Methodology: Liu Liqin, Khurram Shahzad, Abdul Rauf, Fairouz Tchier, Adnan Aslam.
Project administration: Liu Liqin, Abdul Rauf, Fairouz Tchier, Adnan Aslam.
Resources: Liu Ligin, Abdul Rauf, Fairouz Tchier, Adnan Aslam.

Software: Liu Ligin, Abdul Rauf, Fairouz Tchier, Adnan Aslam.

Supervision: Liu Ligin, Abdul Rauf, Fairouz Tchier, Adnan Aslam.

Validation: Liu Liqin, Khurram Shahzad, Abdul Rauf, Adnan Aslam.

Visualization: Liu Ligin, Khurram Shahzad, Abdul Rauf.

Writing - original draft: Khurram Shahzad, Abdul Rauf.

Writing - review & editing: Liu Liqin, Abdul Rauf, Fairouz Tchier, Adnan Aslam.

References

1. Slater P. J., “Leaves of trees, proceeding of the 6th southeastern conference on combinatorics, graph
theory, and computing,” Congressus Numerantium, vol. 14, pp. 549-559, 1975.

2. Harary F. and Melter R. A., “On the metric dimension of a graph,” Ars Combinatoria, vol. 2, pp. 191—
195, 1976.

PLOS ONE | https://doi.org/10.1371/journal.pone.0290411  November 30, 2023 12/14


https://doi.org/10.1371/journal.pone.0290411

PLOS ONE

Metric and fault-tolerant metric dimension

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

Chartrand G., Eroh L., Johnson M. A., and Oellermann O. R., “Resolvability in graphs and the metric
dimension of a graph,” Discret. Appl. Math., vol. 105, no. 1-3, pp. 99—113, 2000, https://doi.org/10.
1016/S0166-218X(00)00198-0

Khuller S., Raghavachari B., and Rosenfeld A., “Landmarks in graphs,” Discret. Appl. Math., vol. 70,
no. 3, pp. 217-229, 1996, https://doi.org/10.1016/0166-218X(95)00106-2

Beerliova Z. et al., “Network discovery and verification,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3787 LNCS, pp. 127—-138, 2005, https://doi.
org/10.1007/11604686_12

Caceres J., Hernando C., Mora M., Pelayo |. M., and Puertas M. L., “On the metric dimension of infinite
graphs,” Discret. Appl. Math., vol. 160, no. 18, pp. 2618-2626, 2012, https://doi.org/10.1016/j.dam.
2011.12.009

Garey M. R. and Johnson D. S., “A guide to the theory of NP-completeness,” J. Symb. Log., vol. 48, no.
02, pp. 498-500, 1983, [Online]. Available: https://www.cambridge.org/core/product/identifier/
S0022481200038524/type/journal_article

Imran M., “On the metric dimension of barycentric subdivision of Cayley graphs,” Acta Math. Appl. Sin.,
vol. 32, no. 4, pp. 1067—1072, 2016, https://doi.org/10.1007/s10255-016-0627-0

Vetrik T. and Ahmad A., “Computing the metric dimension of the categorial product of some graphs,”
Int. J. Comput. Math., vol. 94, no. 2, pp. 363-371, 2017, hitps://doi.org/10.1080/00207160.2015.
1109081

Caceres J. et al., “On the metric dimension of cartesian products of graphs,” SIAM J. Discret. Math., vol.
21, no. 2, pp. 423-441, 2007, https://doi.org/10.1137/050641867

Chartrand G. and Zhang P., “The theory and application of resolvability in graphs,” Congr. Numer., vol.
160, pp. 47-68, 2003.

Hernando C., Mora M., Pelayo I. M., Seara C., and Wood D. R., “Extremal Graph Theory for Metric
Dimension and Diameter,” Electron. Notes Discret. Math., vol. 29, no. SPEC. ISS., pp. 339-343, 2007,
https://doi.org/10.1016/j.endm.2007.07.058

Krishnan S. and Rajan B., “Fault-Tolerant Resolvability of Certain Crystal Structures,” Appl. Math., vol.
07, no. 07, pp. 599-604, 2016, https://doi.org/10.4236/am.2016.77055

Raza H., Hayat S., and Pan X. F., “On the fault-tolerant metric dimension of convex polytopes,” Appl.
Math. Comput., vol. 339, pp. 172—185, 2018, https://doi.org/10.1016/j.amc.2018.07.010

Raza H., Hayat S., and Pan X. F., “Binary locating-dominating sets in rotationally-symmetric convex
polytopes,” Symmetry (Basel)., vol. 10, no. 12, 2018, https://doi.org/10.3390/sym10120727

Faisal Nadeem M. and Azeem M., “The fault-tolerant beacon set of hexagonal Mébius ladder network,”
Math. Methods Appl. Sci., 2023, https://doi.org/10.1002/mma.9091

Wang H., Azeem M., Nadeem M. F., Ur-Rehman A., and Aslam A., “On Fault-Tolerant Resolving Sets
of Some Families of Ladder Networks,” Complexity, vol. 2021, 2021, https://doi.org/10.1155/2021/
9939559

Nadeem M. F., Imran M., Afzal Siddiqui H. M., and Azeem M., “Fault tolerance designs of interconnec-
tion networks,” Peer-to-Peer Netw. Appl., vol. 16, no. 2, pp. 1125-1134, 2023, https://doi.org/10.1007/
s$12083-023-01462-4

Zheng Z. B. et al., “Fault-Tolerant Metric Dimension of Generalized Wheels and Convex Polytopes,”
Math. Probl. Eng., vol. 2020, 2020, https://doi.org/10.1155/2020/1216542

Basak M., Saha L., Das G. K., and Tiwary K., “Fault-tolerant metric dimension of circulant graphs Cn
(1,2,3),” Theor. Comput. Sci., vol. 817, pp. 66—79, 2020, https://doi.org/10.1016/j.tcs.2019.01.011

Sahal.,LamaR., Tiwary K., Das K. C., and Shang Y., “Fault-Tolerant Metric Dimension of Circulant
Graphs,” Mathematics, vol. 10, no. 1, 2022, https://doi.org/10.3390/math10010124

Raza H., Hayat S., and Pan X. F., “On the fault-tolerant metric dimension of certain interconnection net-
works,” J. Appl. Math. Comput., vol. 60, no. 1-2, pp. 517-535, 2019, https://doi.org/10.1007/s12190-
018-01225-y

Sarga G., Malavika S., and Manjusha R., “Integrated monitoring of the system components using metric
dimension of graphs,” Mater. Today Proc., vol. 42, pp. 1404-1408, 2020, https://doi.org/10.1016/j.
matpr.2021.01.147

Shao Z., Wu P., Zhu E., and Chen L., “Metric Dimension and Robot Navigation in Specific Sensor Net-
works,” Proc. - 2018 Int. Conf. Cyber-Enabled Distrib. Comput. Knowl. Discov. CyberC 2018, pp. 369—
373, 2019, https://doi.org/10.1109/CyberC.2018.00072

Hayat S., Khan A., and Zhong Y., “On Resolvability-and Domination-Related Parameters of Complete
Multipartite Graphs,” Mathematics, vol. 10, no. 11,2022, https://doi.org/10.3390/math10111815

PLOS ONE | https://doi.org/10.1371/journal.pone.0290411  November 30, 2023 13/14


https://doi.org/10.1016/S0166-218X%2800%2900198-0
https://doi.org/10.1016/S0166-218X%2800%2900198-0
https://doi.org/10.1016/0166-218X%2895%2900106-2
https://doi.org/10.1007/11604686%5F12
https://doi.org/10.1007/11604686%5F12
https://doi.org/10.1016/j.dam.2011.12.009
https://doi.org/10.1016/j.dam.2011.12.009
https://www.cambridge.org/core/product/identifier/S0022481200038524/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022481200038524/type/journal_article
https://doi.org/10.1007/s10255-016-0627-0
https://doi.org/10.1080/00207160.2015.1109081
https://doi.org/10.1080/00207160.2015.1109081
https://doi.org/10.1137/050641867
https://doi.org/10.1016/j.endm.2007.07.058
https://doi.org/10.4236/am.2016.77055
https://doi.org/10.1016/j.amc.2018.07.010
https://doi.org/10.3390/sym10120727
https://doi.org/10.1002/mma.9091
https://doi.org/10.1155/2021/9939559
https://doi.org/10.1155/2021/9939559
https://doi.org/10.1007/s12083-023-01462-4
https://doi.org/10.1007/s12083-023-01462-4
https://doi.org/10.1155/2020/1216542
https://doi.org/10.1016/j.tcs.2019.01.011
https://doi.org/10.3390/math10010124
https://doi.org/10.1007/s12190-018-01225-y
https://doi.org/10.1007/s12190-018-01225-y
https://doi.org/10.1016/j.matpr.2021.01.147
https://doi.org/10.1016/j.matpr.2021.01.147
https://doi.org/10.1109/CyberC.2018.00072
https://doi.org/10.3390/math10111815
https://doi.org/10.1371/journal.pone.0290411

PLOS ONE

Metric and fault-tolerant metric dimension

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Siddiqui H. M. A, Hayat S., Khan A., Imran M., Razzaqg A., and Liu J. B., “Resolvability and fault-tolerant
resolvability structures of convex polytopes,” Theor. Comput. Sci., vol. 796, pp. 114-128, 2019, hitps://
doi.org/10.1016/j.tcs.2019.08.032

Hayat S., Khan A., Malik M. Y. H., Imran M., and Siddiqui M. K., “Fault-Tolerant Metric Dimension of
Interconnection Networks,” IEEE Access, vol. 8, pp. 145435-145445, 2020, https://doi.org/10.1109/
ACCESS.2020.3014883

Raza H., Hayat S., Imran M., and Pan X. F., “Fault-tolerant resolvability and extremal structures of
graphs,” Mathematics, vol. 7, no. 1,2019, https://doi.org/10.3390/math7010078

Wauttig M., “Towards a universal memory?,” Nat. Mater., vol. 4, no. 4, pp. 265—-266, 2005, https://doi.
org/10.1038/nmat1359

Wuttig M. and Yamada N., “Phase-change materials for rewriteable data storage,” Nat. Mater., vol. 6,
no. 11, pp. 824-832, 2007, https://doi.org/10.1038/nmat2009 PMID: 17972937

Zhu M. et al., “One order of magnitude faster phase change at reduced power in Ti-Sb-Te,” Nat. Com-
mun., vol. 5,2014, https://doi.org/10.1038/ncomms5086 PMID: 25001009

DuK. et al., “Control over emissivity of zero-static-power thermal emitters based on phase changing
material GST,” 2017 Conf. Lasers Electro-Optics, CLEO 2017—~Proc., vol. 2017-Janua, pp. 1-2, 2017,
https://doi.org/10.1038/Isa.2016.194 PMID: 30167194

Hosseini P., Wright C. D., and Bhaskaran H., “An optoelectronic framework enabled by low-dimensional
phase-change films,” Nature, vol. 511, no. 7508, pp. 206—211, 2014, https://doi.org/10.1038/
nature13487 PMID: 25008527

Yamada N., “Origin, secret, and application of the ideal phase-change material GeSbTe,” Phys. Status
Solidi Basic Res., vol. 249, no. 10, pp. 1837-1842, 2012, https://doi.org/10.1002/pssb.201200618

Yamada N., Ohno E., Nishiuchi K., Akahira N., and Takao M., “Rapid-phase transitions of GeTe-
Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys., vol. 69, no.
5, pp. 2849-2856, 1991, https://doi.org/10.1063/1.348620

Simpson R. E. et al., “Interfacial phase-change memory,” Nat. Nanotechnol., vol. 6, no. 8, pp. 501-505,
2011, https://doi.org/10.1038/nnano.2011.96 PMID: 21725305

Yu X. and Robertson J., “Modeling of switching mechanism in GeSbTe chalcogenide superlattices,”
Sci. Rep., vol. 5,2015, https://doi.org/10.1038/srep12612 PMID: 26219904

Kalikka J., Zhou X., Dilcher E., Wall S., Li J., and Simpson R. E., “Strain-engineered diffusive atomic
switching in two-dimensional crystals,” Nat. Commun., vol. 7, 2016, https://doi.org/10.1038/
ncomms11983 PMID: 27329563

PLOS ONE | https://doi.org/10.1371/journal.pone.0290411  November 30, 2023 14/14


https://doi.org/10.1016/j.tcs.2019.08.032
https://doi.org/10.1016/j.tcs.2019.08.032
https://doi.org/10.1109/ACCESS.2020.3014883
https://doi.org/10.1109/ACCESS.2020.3014883
https://doi.org/10.3390/math7010078
https://doi.org/10.1038/nmat1359
https://doi.org/10.1038/nmat1359
https://doi.org/10.1038/nmat2009
http://www.ncbi.nlm.nih.gov/pubmed/17972937
https://doi.org/10.1038/ncomms5086
http://www.ncbi.nlm.nih.gov/pubmed/25001009
https://doi.org/10.1038/lsa.2016.194
http://www.ncbi.nlm.nih.gov/pubmed/30167194
https://doi.org/10.1038/nature13487
https://doi.org/10.1038/nature13487
http://www.ncbi.nlm.nih.gov/pubmed/25008527
https://doi.org/10.1002/pssb.201200618
https://doi.org/10.1063/1.348620
https://doi.org/10.1038/nnano.2011.96
http://www.ncbi.nlm.nih.gov/pubmed/21725305
https://doi.org/10.1038/srep12612
http://www.ncbi.nlm.nih.gov/pubmed/26219904
https://doi.org/10.1038/ncomms11983
https://doi.org/10.1038/ncomms11983
http://www.ncbi.nlm.nih.gov/pubmed/27329563
https://doi.org/10.1371/journal.pone.0290411

