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Abstract

Background

Abiotic stressors impair crop yields and growth potential. Despite recent developments, no

comprehensive literature review on crop abiotic stress assessment employing deep learning

exists. Unlike conventional approaches, deep learning-based computer vision techniques

can be employed in farming to offer a non-evasive and practical alternative.

Methods

We conducted a systematic review using the revised Preferred Reporting Items for System-

atic Reviews and Meta-Analyses (PRISMA) statement to assemble the articles on the speci-

fied topic. We confined our scope to deep learning-related journal articles that focused on

classifying crop abiotic stresses. To understand the current state, we evaluated articles pub-

lished in the preceding ten years, beginning in 2012 and ending on December 18, 2022.

Results

After the screening, risk of bias, and certainty assessment using the PRISMA checklist, our

systematic search yielded 14 publications. We presented the selected papers through in-

depth discussion and analysis, highlighting current trends.

Conclusion

Even though research on the domain is scarce, we encountered 11 abiotic stressors across

7 crops. Pre-trained networks dominate the field, yet many architectures remain unexplored.

We found several research gaps that future efforts may fill.

Introduction

Abiotic stressors refer to environmental variables that adversely affect the growth and devel-

opment of plants and reduce yield to suboptimal levels [1]. The majority of agricultural
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fields and breeding nurseries expose their plants to a wide range of abiotic stimuli, ranging

both in type and severity, such as anomalies in light, radiation, extreme temperature,

drought, chemical substances, salinity, an absence of essential nutrients, harmful gases, as

well as other common to everyday stressors [2]. Abiotic stressors have the greatest impact

on crops or commercial plants since they can decrease crop production by up to 70% and

lead many crops to function at only 30% of their genetic potential [3]. The ongoing decline

of farmlands, the reduction of water supplies, and the expanding global warming patterns

and climate change caused a rise in yield loss, culminating in catastrophic financial

damage [1].

In most cases, experts handle the painstaking task of identifying and classifying crop stress

in two ways: destructive (laboratory analysis) and non-destructive (naturalistic observation).

This manual approach is time intensive and prone to errors due to the subjective aspect of

each professional’s expertise and judgment [4]. Contrarily, computer vision technologies

provision non-contact and effective solutions in agriculture, notably in the management of

weeds, animals, and plants [5]. Deep learning in computer vision has increased significantly

over the past few years, merging computer science with several disciplines of physical and life

sciences [6]. When it comes to using computers to understand images or videos, both

machine learning and deep learning can be used. However, a caveat of traditional machine

learning is that it requires domain specialists to manually extract features that the computer

can understand and work with [7]. Deep learning, on the other hand, can discern complex

patterns in high-dimensional data with minimal feature engineering [7]. Deep convolutional

neural networks (DCNN), for example, learn to map relevant features without human inter-

ference [8].

Although deep learning has been widely employed in agriculture, there is no unified compi-

lation of research that highlights the effectiveness of various approaches, especially in crop abi-

otic stress recognition. This research explores the implementation of computer vision in crop

physiology and offers an in-depth review of all articles on abiotic stress classification using

deep learning.

Materials and methods

Registration and protocol

For reporting the findings, we followed the revised Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) guidelines [9] (see S1 File for the checklist). The study

protocol was not entered into any registry. The research question was: To what extent, and

how effectively, have the most recent deep learning advances in computer vision been inte-

grated into crop abiotic stress assessment?

Eligibility criteria

We confined the search period from 2012 through 2022 to uncover recent advances in crop

abiotic stress recognition using computer vision, implying a distribution of studies in the pre-

vious decade. The following constitutes the inclusion and exclusion criteria -

Inclusion criteria:

• Original research articles written in English and published in peer-reviewed journals.

• Studies incorporating deep learning algorithms to identify or evaluate various abiotic stress-

ors of crops such as nutrient shortages, drought, chemical injuries, and pH, among others.
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Exclusion criteria:

• Research on plants that cannot be classified as crops.

• Research that does not focus exclusively on visuals or pictures as data input.

Information sources

As per Gusenbauer et al. [10], only 14 of the 28 academic search systems reviewed are well-

suited to evidence synthesis in the form of systematic reviews, having satisfied all required per-

formance standards. As our investigated topic is reliant on many different subjects such as

plant science, and computer science, we selected the following multidisciplinary principal

databases mentioned in the study -

• Scopus

• Web of Science

• ScienceDirect

• Bielefeld Academic Search Engine (BASE)

• Wiley Online Library

On December 18, 2022, using the optimal search string described in the next section, we

retrieved the results from various search engines. It should be noted that Scopus was the pri-

mary search engine utilized to determine the most effective search term.

Search strategy

Before commencing the systematic study, it is critical to select the best search string possible in

order to generate the maximum number of relevant articles that can address the issue at hand.

The optimal search string, determined after several trials and errors, is the following—(“crop”
OR “plant” OR “soil organic matter” OR “pH” OR “water”) AND (“nutri*” OR “npk” OR “ele-
ment*” OR “abiotic stress”) AND (“defici*” OR “short*” OR “inadeq*” OR “insuffi*”) AND
(“estima*” OR “predict*” OR “recogn*” OR “detect*” OR “assess*” OR “analysis”) AND
(((“machine” OR “deep”) AND “learning”) OR “artificial intelligence” OR “image process*”). We

included ‘plant’ in our search phrase since some studies specified plants as their researched

item, but, those can be referred to as crops.

S2 File includes the exact search strings of each search engine, along with additional param-

eters. The file includes certain exceptions. For example, the optimized search query returned

no items in the BASE, therefore we dropped certain phrases to gather valuable documents.

Moreover, due to Boolean connector constraints, we were unable to use the whole search

string in the ScienceDirect engine, forcing us to discard a few keywords. Finally, we defined

Agriculture as the subject area for ScienceDirect, BASE, and Wiley Online Library, which

allowed us to exempt irrelevant entries.

Selection process

Following the search procedure, all returned entries from the five search engines were added

to a single comma-separated value (CSV) file, and duplicates were deleted. Two researchers

(N.A.O. and F.M.T.) independently assessed all non-duplicate records’ titles and abstracts

using the eligibility criteria. A third researcher (M.N.U.) served as a mediator in the event of a
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disagreement. Following that, two researchers (N.A.O. and M.N.U.) collaborated to screen the

previously selected records for the eventual inclusion in the review by perusing their full texts.

Data collection process

We developed a data extraction form to collect data from selected papers, which was utilized

by a review author (N.A.O.) initially and then validated by another author (M.N.U.). All dis-

agreements were aired and resolved collectively. S3 File contains the data extraction form.

Data items

Table 1 lists and defines the collected data items. In general, the dataset split ratio is clearly

stated in the article, i.e., the ratio of the entire dataset divided into training, testing, and valida-

tion data. We determined the split ratio manually for the studies that did not provide the ratio,

but rather the sample sizes of each data category.

We selected the model that the authors identified as the best performing from said research

and verified it using the reported overall model accuracy. Following that, we calculated inter-

class precision and recall for each abiotic stress using the confusion matrix presented in the

study. Although accuracy represents the model’s overall efficacy, in an imbalanced dataset

where the sample distribution of classes is not uniform, it skews towards the class that has the

highest number of samples, assigning larger weights to it [11]. Moreover, while some research-

ers trained their algorithms to identify both biotic and abiotic stressors, we primarily looked

for the latter in this systematic review. Owing to these reasons, we opted to retrieve precision

and recall (see Eqs (1) and (2)), which indicate the model’s ability to predict and recognize a

specific class, respectively.

Precision ¼
True Positives

True Positives þ False Positives
ð1Þ

Recall ¼
True Positives

True Positives þ False Negatives
ð2Þ

Study risk of bias assessment

After reviewing the full texts to the eligibility requirements, the selected studies, a total of 26

publications, were subjected to a two-round risk of bias analysis. In the first round, we identi-

fied whether the publisher or journal is predatory using a decision tree (see S1 Fig) derived

from several prior studies [12–16] and the checklist from the “Think. Check. Submit” campaign

[17]. While conducting a systematic review, encountering eligible articles published in

Table 1. List of data extraction form items.

Data

item

Description

Reference Title, author, and year

Aim Investigated abiotic stressors and crops

Dataset Collection environment, sample per class, the color space of the input image, and the availability of the

dataset

Approach Dataset split ratio, learning type, and the utilized deep learning model

Outcome Inter-class precision and recall on the test/validation data

https://doi.org/10.1371/journal.pone.0290383.t001
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potentially predatory journals is increasingly prevalent [18]. Since the utility of a systematic

review is dependent on the articles evaluated, it is critical to exclude the predatory journals

that lessen reliability [18]. Two reviewers (N.A.O. and M.N.U.) collaborated to complete the

screening and eliminated the doubtful articles from further consideration in this review. The

first round’s five discarded articles are included in the S4 File, leaving 21 articles for the next

round.

In the second round, we evaluated the methodological quality of the remaining 21 studies

to minimize the chance of selecting studies with limited evidence. We used a slightly modified

quality assessment tool adopted from [19, 20]. The scoring technique was revised to promote

flexibility and inclusiveness, as binary grading on a criterion fulfillment appeared harsh in gen-

eral. This framework focuses on the primary outcome, thoroughness of the literature review,

validation of the studied dataset, reproducibility of the framework with simple explanations,

and a coherent conclusion supported by the outcome (see Table 2). Overall methodological

quality scores were determined by adding each study’s specific criteria ratings. The methodo-

logical quality was rated as “high” if the overall score was greater than or equal to 4, “moderate”

if the overall score was less than 4 but greater than 2, and “low” if the overall score was less

than or equal to 2. Three reviewers (N.A.O., M.N.U., and M.L.B.) independently assessed the

methodological quality of 21 studies, and the S5 File comprises the reviewers’ evaluation

sheets. After discussion, we excluded the publications all three reviewers rated as “poor” in

methodological quality. A flawed framework would have introduced bias into the analysis,

resulting in an inaccurate representation of our retrieved data items, notably the outcome.

S4 File contains the excluded 7 articles that did not meet the threshold.

Certainty assessment

Three reviewers (N.A.O., M.N.U., and M.L.B.) independently assessed the certainty of the out-

come of the reviewed studies using the Grading of Recommendations Assessment,

Table 2. Methodological quality appraisal tool.

Criterion Details Score

1. Outcome measures A. Valid/identifiable with well-defined objectives 1

B. Identifiable, but with ambiguous terminologies and objectives 0.5

C. Invalid/unreliable and poorly described 0

2. Background or literature

review

A. Detailed, with discernible differences from the reviewed studies 1

B. Detailed, but no distinguishing feature from the reviewed studies is

indicated

0.5

C. Limited or non-existent 0

3. Sample or dataset A. Well-described data collecting process, with substantial data for

validation

1

B. Well-explained data collecting process,with inadequate data for

validation

0.5

C. Ineptly outlined data collecting process, with almost no, if any, data for

validation

0

4. Study design or

methodology

A. Straightforward, comprehensible, and reproducible 1

B. Fairly clear, and but not completely reproducible 0.5

C. Ambiguous framework and an absence of reproducibility 0

5. Conclusions A. Completely substantiated by the findings 1

B. Mostly substantiated, yet there are some undefined and partially

reported findings

0.5

C. Not supported by the results, with unverified presumptions 0

https://doi.org/10.1371/journal.pone.0290383.t002
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Development and Evaluation (GRADE) defined four levels of evidence quality (see S1 Table)

[21]. S6 File comprises the certainty assessment sheet for evaluating the 14 studies selected for

this systematic review.

Results

Study selection

Fig 1 illustrates the complete PRISMA 2020 framework for the selection process following the

eligibility criteria. We discovered 2,399 non-duplicate records while scanning the databases.

Only 44 reports remained after the screening, and we were unable to retrieve 2 of them. We

Fig 1. PRISMA 2020 workflow of the systematic study. The hierarchical figure depicts the complete number of entries evaluated at various phases of

the systematic review, as well as the reasons for exclusion in the final step of screening.

https://doi.org/10.1371/journal.pone.0290383.g001
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eventually considered 14 papers [22–35] eligible and in-topic for the systematic review after

reviewing the 42 reports. S4 File depicts the specific rationale behind the exclusion of the

remaining reports.

Study characteristics

In this section, we provide an analytical overview of all the reviewed articles, highlighting

major aspects of the retrieved data items. Fig 2 illustrates the number of selected studies dis-

persed over the years. Prior to 2018, there appeared to be a lack of research in this subject,

despite the effective use of deep learning and computer vision in biomedical [36] and other

agricultural [37, 38] domains. Nevertheless, this sector is growing steadily because the majority

of study is from 2022.

Regarding the crops chosen, Fig 3 displays the distribution among the studies. Rice (Oryza
sativa L.) is one of the most researched crops for detecting abiotic stresses, which is fitting given

that it is the most essential crop in the world, sustaining more than half of the planet’s population

[39]. While Sugarcane (Saccharum officinarum L.), Lettuce (Lactuca sativa L.), and Maize (Zea
mays L.) have only been studied once each, Tomato (Solanum lycopersicum L.), Soybean (Glycine
max L. Merr.), and Sugar beet (Beta vulgaris L.) have all undergone multiple investigations.

Fig 4 shows the distribution of the abiotic stressors discussed in the articles included in the

systematic review. Thirteen of the fourteen research papers discussed potassium deficiency.

The top three addressed abiotic stressors, as shown in Fig 4, are also the most important mac-

ronutrients for plant growth [40], collectively known as NPK.

Fig 2. Temporal distribution of research articles in the systematic review. It should be noted that the calculated distribution of the research extends

only to December 18, 2022.

https://doi.org/10.1371/journal.pone.0290383.g002
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Table 3 outlines the characteristics of the datasets featured in the included studies. The sam-

ples were generally collected in two ways. The first method used field-based sampling, and the

stressors were not induced in the crops, but rather observed spontaneously. In the second pro-

cedure, stressors such as drought or a deficiency of vital nutrients were artificially induced in

the targeted crops. Both strategies have a roughly similar number of studies, with 6 employing

the initial method and 8 using the latter. The RGB color model, which has the primary colors

red, green, and blue divided into three channels, was used in all of the articles under review.

With the exception of [27], which employed thermal pictures for the cognition of drought

stress in sugarcane, every single reviewed report employed digital images. As shown in

Table 3, there is a definite indication of an equitable distribution of study for both open-access

and closed-access datasets (7 studies each).

Fig 3. Distribution of crops targeted by selected research articles. Rice has drawn the most research interest (5 out of 14 studies), followed by

Tomato, Soybean, and Sugar beet (2 out of 14 studies each).

https://doi.org/10.1371/journal.pone.0290383.g003
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The dispersion of the reviewed articles according to the deep learning frameworks that each

study indicated to be most effective is illustrated in Fig 5. Ensemble learning integrates predic-

tions from several models of neural networks to minimize the prediction variance and general-

ization error [41]. The biggest drawback of selecting just one top-performing model is that it

may not always be the network that performs the best on unseen test data [42]. Hence, of the

14 studies considered, 4 used ensembling to combine various pre-trained DCNN models to

offer the best and most efficient classifiers. A few research have made use of custom-built

DCNN structures as well, as shown in Fig 5.

Fig 6 represents the various pre-trained networks and the instances that they were used in

this systematic review. The predominantly implemented deep learning architectures in the

selected studies were InceptionV3 [43], InceptionResNetV2 [44], and DenseNet201 [45] (3 out

of 14 studies each). The reviewed articles also used VGG16 and VGG19 [46], Xception [47],

and other DenseNet structures, as depicted in Fig 6.

Table 4 summarizes the integrated approach, data partition, and learning strategy adopted in

the included research. All research employed supervised learning, except for [22], where the

authors utilized a subset of the data for training the Autoencoder model unsupervised before

combining it with supervised InceptionResNetV2. Table 4 indicated a heterogeneity in split

ratio among studies. A dataset is divided into training, validation, and testing subsets to assist a

model in optimizing its weights, avoiding overfitting and underfitting, and establishing robust-

ness by assessing performance on unseen data, respectively [48]. Instead of a fully connected

Fig 4. Distribution of crop abiotic stressors targeted by selected research articles. The graph displays the percentage of overall research addressing a

specific abiotic stressor divided by the number of publications considered for the systematic review. It should be noted that several research targeted

multiple abiotic stressors simultaneously.

https://doi.org/10.1371/journal.pone.0290383.g004
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Table 3. An overview of the dataset features in the reviewed articles.

Ref. Crop Studied abiotic stressors Sample size Sampling condition Image type Color space Data Accessibility

[22] Tomato Calcium deficiency 305 Controlled Digital RGB Not open

Potassium deficiency 131

Nitrogen deficiency 135

[23] Soybean Iron deficiency 1834 On-field Digital RGB Not open

Potassium deficiency 2182

Herbicide injury 1311

[24] Rice Phosphorus deficiency 333 On-field Digital RGB Open

Potassium deficiency 383

Nitrogen deficiency 440

[25] Rice Phosphorus deficiency 333 On-field Digital RGB Open

Potassium deficiency 383

Nitrogen deficiency 440

[26] Rice Phosphorus deficiency 500 Controlled Digital RGB Not open

Potassium deficiency 500

Nitrogen deficiency 500

Boron deficiency 500

Zinc deficiency 500

Iron deficiency 500

Herbicide injury 500

Drought stress 500

Submergence stress 500

[27] Sugarcane Drought stress 1350 Controlled Thermal RGB Not open

[28] Sugar beet Nitrogen deficiency 708 Controlled Digital RGB Open

Phosphorus deficiency 808

Potassium deficiency 794

Calcium deficiency 893

[29] Rice Phosphorus deficiency 333 On-field Digital RGB Open

Potassium deficiency 383

Nitrogen deficiency 440

[30] Tomato Nitrogen deficiency 103 Controlled Digital RGB Not open

Magnesium deficiency 152

Potassium deficiency 223

Calcium deficiency 207

[31] Maize Drought stress 6320 Controlled Digital RGB Open

[32] Rice Phosphorus deficiency 333 On-field Digital RGB Open

Potassium deficiency 383

Nitrogen deficiency 440

[33] Soybean Potassium deficiency 1083 On-field Digital RGB Not open

[34] Lettuce Phosphorus deficiency 550 Controlled Digital RGB Not open

Potassium deficiency 1000

Nitrogen deficiency 850

[35] Sugar beet Nitrogen deficiency 708 Controlled Digital RGB Open

Phosphorus deficiency 808

Potassium deficiency 794

Calcium deficiency 893

https://doi.org/10.1371/journal.pone.0290383.t003
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Fig 5. Distribution of deep learning architectures employed by selected research articles. The authors primarily employed the most common pre-

trained networks accessible at present (8 out of 14 studies), with custom-designed networks being used the least (2 out of 14 studies).

https://doi.org/10.1371/journal.pone.0290383.g005

Fig 6. Distribution of pre-trained DCNN architectures employed by selected research articles. It should be emphasized that several studies

employed multiple pre-trained DCNN architectures for ensembling.

https://doi.org/10.1371/journal.pone.0290383.g006
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layer, the authors employed Support Vector Machines (SVM) for classification in [31]. We have

abbreviated the titles of the frameworks to render them simpler to recall in the following parts.

Table 5 discloses the highest precision and recall attained for each crop and its associated

abiotic stressors. According to Table 5, Rice happens to be the most diversified, having been

Table 5. An overview of the outcomes in the reviewed articles.

Crop Studied abiotic stressors Highest precision (in %) Corresponding model Highest recall (in %) Corresponding model

Rice Phosphorus deficiency 100 EM4 [32] 100 EM4 [32]

Potassium deficiency 100 EM4 [32] 95.24 EM4 [32]

Nitrogen deficiency 95.46 EM4 [32] 100 EM4 [32]

Boron deficiency 95.81 PT2 [26] 91.5 PT2 [26]

Zinc deficiency 97.41 PT2 [26] 94 PT2 [26]

Iron deficiency 96.46 PT2 [26] 95.5 PT2 [26]

Herbicide injury 91.39 PT2 [26] 95.5 PT2 [26]

Drought stress 96.06 PT2 [26] 97.5 PT2 [26]

Submergence stress 94.03 PT2 [26] 94.5 PT2 [26]

Tomato Nitrogen deficiency 83.16 PT5 [30] 83.61 PT5 [30]

Magnesium deficiency 84.91 PT5 [30] 91.84 PT5 [30]

Potassium deficiency 92 PT5 [30] 91.09 PT5 [30]

Calcium deficiency 100 PT5 [30] 98 PT5 [30]

Sugar beet Nitrogen deficiency 99.99 PT8 [35] 98.91 PT8 [35]

Phosphorus deficiency 100 PT8 [35] 98.37 PT8 [35]

Potassium deficiency 99.43 PT8 [35] 99.54 PT4 [28]

Calcium deficiency 99.64 PT8 [35] 99.11 PT8 [35]

Soybean Iron deficiency 97.99 C1 [23] 99.06 C1 [23]

Potassium deficiency 100 PT6 [33] 100 PT6 [33]

Herbicide injury 96.99 C1 [23] 98.02 C1 [23]

Lettuce Phosphorus deficiency 94.34 PT7 [34] 90.91 PT7 [34]

Potassium deficiency 97 PT7 [34] 97 PT7 [34]

Nitrogen deficiency 96.49 PT7 [34] 97.06 PT7 [34]

Sugarcane Drought stress 81.11 PT3 [27] 87.69 PT3 [27]

Maize Drought stress 96.74 C2 [31] 89 C2 [31]

https://doi.org/10.1371/journal.pone.0290383.t005

Table 4. An overview of the strategies implemented in the articles under review.

Ref. Dataset split ratio Best performing framework Abbr. framework Learning type

[22] 0.80:0.20:0 Ensemble (InceptionResNetV2 and Autoencoder) EM1 Semi-supervised

[23] 0.70:0.20:0.10 Custom DCNN C1 Supervised

[24] 0.70:0.10:0.20 VGG19 PT1 Supervised

[25] 0.80:0.10:0.10 Ensemble (InceptionV3 and Xception) EM2 Supervised

[26] 0.60:0.04:0.36 VGG16 PT2 Supervised

[27] 0.70:0.30:0 InceptionResNetV2 PT3 Supervised

[28] 0.70:0.30:0 DenseNet161 PT4 Supervised

[29] 0.73:0.18:0.09 Ensemble (InceptionResNetV2 and DenseNet201) EM3 Supervised

[30] 0.72:0.18:0.10 DenseNet121 PT5 Supervised

[31] 0.53:0.13:0.34 Custom DCNN with SVM C2 Supervised

[32] 0.75:0.20:0.05 Ensemble (DenseNet169, DenseNet201, and InceptionV3) EM4 Supervised

[33] 0.85:0.05:0.10 DenseNet201 PT6 Supervised

[34] 0.60:0.20:0.20 InceptionV3 PT7 Supervised

[35] 0.80:0.10:0.10 EfficientNetB4 PT8 Supervised

https://doi.org/10.1371/journal.pone.0290383.t004
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subjected to a multitude of distinct abiotic stressors. Every single one of the research achieved

precision and recall scores of more than 80%, with several research studies reaching 100% for

certain abiotic stressors. Among the studies included, the models struggled to recognize nitro-

gen deficiencies in Tomato, achieving the lowest pair of precision and recall scores. On the

opposite end of the scale, the associated deep learning frameworks achieved 100% on both

metrics for Rice phosphorus deficiency and Tomato potassium deficiency. However, concern-

ing the latter research, it should be highlighted that the authors tested merely 5% of the dataset,

which equates to approximately 16 samples for the corresponding class.

Discussion

This section highlights the research gaps identified during our systematic review. It is worth

noting that the research gaps we are addressing strictly fall within the scope of our research,

which is geared towards image-based deep learning frameworks for crop abiotic stress

assessment.

1. Crops: According to an FAO report, over 6000 plant species have been grown for food,

with 200 species maintaining a considerable production level globally [49]. As seen in

Fig 3, we came across only 7 of these crops throughout our systematic review. Moreover,

the world’s top five staple foods—Rice, Wheat (Triticum aestivum L.), Maize, Potato

(Solanum tuberosum L.), and Cassava (Manihot esculenta Crantz)—provide the bulk of

the world’s dietary requirement for both nutrients and energy [50]. Although we found

some studies on Rice and Maize, we encountered no publications on Wheat, Potato, or

Cassava.

2. Abiotic stressors: According to Fig 4, the majority of the research targeted various micro

and macronutrient deficiencies in crops. Some studies also investigated water-related

stresses including drought and submergence. Unfortunately, no research on the cognition

of early indicators of water stress or nutritional inadequacies were encountered. Other abi-

otic factors that have a detrimental effect on crop productivity include soil characteristics

such as acidity, alkalinity, and salinity [51, 52], as well as variations in light intensity [53].

Furthermore, our planet is undergoing a significant climatic transition, with temperature as

a key indicator. According to this systematic study, no literature addressed temperature-

related stress that affects plant physiological mechanisms [54].

3. Datasets: In precision agriculture, the labor and expenditures necessary for image acquisi-

tion, categorization, and labeling, as well as physico-chemical evaluations of crops in some

circumstances, end up making dataset preparation challenging [55]. Open access data

reduces the difficulty of data preparation while also ensuring reproducibility and encourag-

ing more individuals to take part. For instance, 4 out of 5 Rice-related research used the

same dataset, which is freely available on Kaggle. In the case of Sugar beet, a research

released the dataset alongside their article, which prompted another study on the same

dataset by different authors. Notwithstanding the upsurge of research seen in Fig 2, addi-

tional open access datasets can draw researchers’ interest in this subject matter. Further-

more, the datasets presented only contain RGB pictures, although alternative color spaces

have achieved state-of-the-art scores in individual plant diseases [56] and on the benchmark

PlantVillage dataset [57].

4. Deep learning architectures: Although certain DenseNet, VGG, and Inception-based

architectures were employed, a multitude of DCNNs remained left out. For example, just

one of the approximately 15 alternative topologies from the EfficientNet [58] and
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EfficientNetV2 [59] networks have been utilized (see Fig 6). We found no publications that

used MobileNet frameworks, which are considered to be computationally efficient and

resource-friendly [60]. Moreover, ConvNeXt architectures [61] and Vision Transformers

(ViT) [62], which hold state-of-the-art for the majority of benchmark datasets and are read-

ily available through Python’s Keras [63] and Pytorch [64] libraries, respectively, weren’t

used in any of the studies.

Conclusion

Our research aimed to present a holistic view of crop abiotic stress cognition using cutting-

edge deep learning techniques in computer vision. With this in mind, we conducted a system-

atic review of studies spanning the last 10 years using the PRISMA framework. We found 14

publications after conducting the systematic search, which we used to highlight current devel-

opments in the subject. Rice and potassium shortage represent the most researched crop and

abiotic stress. The authors preferred DenseNet topologies, with Inception models following

close behind. We extensively outlined research shortcomings that could potentially be

resolved.

We want to be clear that even though we followed the procedure meticulously, it is entirely

possible that we missed essential reports or increased the chance of error. However, we are

adamant that none of these restrictions will affect the review’s overall substance. This study

can guide computer and plant science researchers, encouraging further work.
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