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Abstract

Cost information is critical to ease managers’ decisions in daily business, but its provision is
informationally demanding and error prone. Effective design choices for costing systems
that can reduce errors are the subject of a growing body of research. The computational
model by Anand, Balakrishnan, and Labro (2019) collates previous research in a unifying
framework, turning it into a potential standard for future studies. This paper uses this frame-
work and aims to investigate the mechanism behind the well-documented empirical pattern
of product cost cross-subsidization in a large-scale simulation experiment. According to this
pattern, volume-based costing systems bias the costs of high-volume products upward and
of low-volume products downward. Although this pattern has important implications for firms
and is discussed extensively in the literature, it has not yet been investigated with computa-
tional models. As the first objective of this paper, we replicate the original model by following
a pattern-oriented model replication approach. The second objective is to study the mecha-
nism behind the pattern of product cost cross-subsidization. We are unable to reproduce it
systematically with the original model. However, the pattern emerges when we extend the
model to include a simple cost hierarchy with distinct resource consumption types and vol-
ume-based cost drivers. This allows us to specify the likely mechanism behind it. Building
on these results, we further extend the model with empirical and theory-based ABC cost
hierarchies and assess their effect on product cost cross-subsidization. Our results suggest
that production environments underpin more diverse cost hierarchies in practice than previ-
ously implemented in the model. Overall, we argue that our extension provides relevant
insights into the pattern of product cost cross-subsidization, while our replication and exten-
sion strengthen the models’ credibility and usability for future research.

Introduction

Firms require accurate cost information, especially for decisions on product pricing, product
elimination, resource planning, inventory evaluation, and cost management [1-3]. Costing
systems report cost information (e.g., costs of products or services) by monitoring resource
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consumption in production environments. Because products, processes, and organizational
structures are manifold and interdependent, costing systems demand data depicting detailed
resource consumption. However, obtaining the required data is expensive and often virtually
impossible. This results in inaccurate costing information, namely costing errors, as the firm’s
costing system does not accurately trace resource consumption. Hence, when designing the
costing system, managers face a trade-off to balance the costs of implementing and maintain-
ing detailed and complex costing systems with the negative consequences of costing errors [4].

Against this backdrop, a growing body of research is investigating the effectiveness of alter-
native design choices in costing systems to reduce costing errors. While certain studies elabo-
rate on individuals’ estimation errors when measuring production activities for costing
systems [5,6], other studies employ simulation modeling to capture the interactions between
design choices and production environments [7-9] to, in turn, comparatively assess their
resulting accuracy. Simulation modeling has the advantage that it can contrast reported cost
information with true benchmark costs, which are empirically unobservable [10,11] in a wide
variety of production environments. For example, although case studies can investigate design
choices in production environments [12], they cannot determine true costs and compare their
accuracy with those produced by other design choices.

Anand, Balakrishnan and Labro [13] propose a unifying computational model as a frame-
work (hereafter the ABL framework) to evaluate design choices for costing systems in different
production environments. The ABL framework includes design rules to exercise choices on
costing systems and embeds model components and results in prior research [e.g., 7-9,14].
This makes it a potential go-to standard for future studies on costing system design to unravel
remaining puzzles in practice and literature. For example, there is still no discussion of non-
linear cost consumption or the costs of unused capacity [15].

Similarly, large-scale computational experiments have not investigated well-documented
empirical patterns like product cost cross-subsidization in volume-based costing systems. This
pattern of costing errors is discussed widely in the cost accounting literature and has important
practical implications for firms. Accordingly, cost-based pricing tends to distort selling prices
due to this pattern: high-volume products would be too expensive, while low-volume products
would be too cheap. As a result, the demand for high-volume products might decrease, while
low-volume products do not generate enough profit. Overall, this adversely affects a firm’s
competitiveness and profitability, emphasizing the practical relevance of this pattern.

This study aims to investigate the mechanism behind the pattern of product cost cross-sub-
sidization by using a large simulation experiment that considers the potential influence of dif-
ferent cost hierarchies. In the spirit of cumulative science, this study pursues a two-step design:
first, it replicates the ABL framework; second, it subsequently investigates the pattern of prod-
uct cost cross-subsidization. Concerning the practice of making the most of computational
models, we follow the suggestion of Thiele and Grimm [16] not to build a new computational
model from scratch for each research question but (1) to reuse and leverage existing models
and (2) to guide the model analysis with empirical patterns [17,18]. Still, computational models
and their numerical experiments are prone to programming and implementation errors [19].
Such imperfections are difficult to detect and potentially affect the results of the simulation
experiments [20]. A replication is, therefore, imperative to increase the credibility of the
computational model’s scientific claims, verify the model’s usability for future studies, and
reproduce the findings of this model’s predecessors [e.g., 14,21].

Accordingly, the first objective of this study is to replicate the ABL framework to verify its
usability for future studies. To this end, based on the original model’s conceptual description
and implementation, we closely replicate the ABL framework by implementing it in a new soft-
ware environment. We follow prior approaches to computational model replication and adopt
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best practices [20,22] and guidelines [16,23]. The replication rules out influences on the results
caused by implementation specificities or programming errors [20]. We determine replication
success by applying the three criteria proposed by Axtell et al. [22]-numerical, distributional,
and relational equivalence. These criteria have been applied previously in several replication
studies [e.g., 20,24] and are regarded as a quasi-standard. Relational equivalence is achieved
when both models qualitatively produce the same results. This criterion has the lowest weight
for replication success. Distributional equivalence assesses whether results from both models
are statistically indistinguishable [22]. Finally, numerical equivalence specifies that both mod-
els compute the same output numerically. Pseudo-random number generators or insufficient
sample sizes make it very hard to achieve numerical equivalence for stochastic models [25]. To
focus our analysis, we follow the strategy of pattern-oriented modeling [16-18]. We under-
stand patterns as descriptions of specific relations between input and output variables [26] and
draw on three well-documented patterns of costing system behavior, namely Cost-pool Rela-
tionship, Degree of Resource Sharing, and Dominant Undercosting. We scrutinize whether
there are substantial differences between the original and replicated models in regard to the
relation described by the pattern.

The second objective of this study is to use the replicated model to dissect the mechanism
behind the pattern of product cost cross-subsidization in volume-based costing systems. The
product cost cross-subsidization pattern describes that a costing system overcosts high-volume
products and undercosts low-volume products [27]. Prior research has already investigated
key concepts concerning product cost cross-subsidization. Cooper and Kaplan [28] are the
first to note that overhead costs are, in most cases, not proportional to production quantities.
They therefore propose Activity Based Costing (ABC) that recognizes and accounts for quan-
tity-independent resource consumption, which they believe is a requirement for the emer-
gence of product cost cross-subsidization pattern.

To support their claim and their newly proposed cost allocation approach, Cooper and
Kaplan-in a series of publications [4,27,29-31]-propose the subdivision of a manufacturing
firm’s resource consumption into four tiers, which they denote as a “cost hierarchy”: unit-
level, batch-level, product-sustaining-level and facility-sustaining-level costs. For instance,
unit-level costs vary with activities that occur for single units in the production process (e.g.,
direct labor). Batch-level costs, by contrast, vary with batch activities (e.g., number of setups).
Consequently, allocating costs based on unit-level activities, as in volume-based costing sys-
tems, would result in the described product cost cross-subsidization pattern [31]. Therefore,
ABC is required to diminish the pattern because it employs activity cost drivers from all tiers
of the cost hierarchy. However, although the ABC systems have been substantially developed
(e.g., Time-driven ABC [32] and Performance-focused ABC [33]), several surveys still reported
a high usage of simple volume-based costing systems [34,35]. Hence, understanding the mech-
anism behind product cost cross-subsidization in volume-based costing systems is highly rele-
vant for a significant fraction of firms.

Although prior analytical and simulation-based research did investigate costing errors and
resulting product cost cross-subsidization, it primarily focused on ABC systems. For instance,
Gupta [36] and Labro and Vanhoucke [7] observe the Dominant Undercosting pattern, which
results in product cost cross-subsidization for ABC systems. Unlike our experiment, these
studies did not consider volume-based costing systems. One prior study that focuses on vol-
ume-based costing systems is Hwang et al. [37]. There, the authors develop a numerical exam-
ple based on an analytical model to study antecedents of over- or undercosting biases in
product costs. Although they provide insights into product cost cross-subsidization, their
employed numerical example is limited to two products and simple production environments.
Other simulation studies [e.g., 9,14] employ the overall accuracy of a costing system as their
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primary dependent variable and do not focus on product cost cross-subsidization in their anal-
yses. Collectively, previous analytical and simulation studies provide a strong basis for the
modeling of various production environments and costing systems. However, since they lack
detail or generality, they do not adequately explain the mechanism behind the observed pat-
tern of cross-subsidization of product costs in volume-based costing systems.

We, therefore, aim to investigate the mechanism of product cost cross-subsidization in a
large set of production environments representing different cost hierarchies to, in turn, gener-
ate a detailed understanding of the pattern in volume-based costing systems. Thus, by follow-
ing Grimm et al. [17] and implementing additional functionalities and reproducing the
pattern of product cost cross-subsidization, we employ a pattern-oriented modeling approach
to develop a computational model with greater structural realism.

Collectively, the results of the first objective confirm the successful replicability of the ABL
framework. We document relational and distributional equivalence between the original and
replicated models. We find that general model behavior holds in our replicated model and, in
more detail, we document the reproducibility of the three well-documented patterns drawn
from prior research in both models. Concerning the second objective, we show that the
unchanged ABL framework does not reproduce the product cost cross-subsidization pattern,
indicating that it does not incorporate the mechanism behind this pattern. However, by
extending the model with a cost hierarchy of non-unit-level resources and volume-based cost
drivers, we can reproduce the pattern, allowing us to specify its likely mechanism based on a
large-scale computational experiment. Eventually, we corroborate this mechanism by imple-
menting a full four-tier ABC cost hierarchy and showing that an increased alignment between
non-unit-level costs and unit-level cost drivers diminishes the pattern.

Replication
Introduction of the numerical framework of ABL

The computational model from the ABL framework consists of two main components: the
firm in the form of a production environment and its costing system. The production environ-
ment specifies how resources are used to produce products or services. Using a computational
model has the advantage that all resource usages are observable without error, that is, a full
information setting is provided that, in turn, can be used as a benchmark. This is important in
practice, considering that production environments are complex systems involving various
interdependencies between machines, labor, administrative tasks, and other supplementary
activities. Gathering complete data about such environments is not feasible or simply too
costly in practice [38]. Thus, costing systems use limited data when measuring or calculating
cost information. This lack of data requires design simplifications and rules of thumb, thus
making errors unavoidable. Overall, the model’s objective is to contrast the benchmark of a
full information setting of production environments with limited information settings of vari-
ous costing systems, thereby allowing the calculation of costing system errors. Fig 1 conceptu-
ally illustrates the two main components of the computational model.

The first component of the computational model-the production environment-is the firm’s
full information setting that resembles all resource usages of all products and their production
volumes (MXQ) in a resource consumption matrix (RES_CONS_PAT). The matrix has as
many columns as resources (NUMB_RES) and as many rows as products (NUMB_PRO).
Hence, every entry y resembles the usage of resource j by product i. Since every resource has
its price, the model computes resource costs (RCC) from the RES_CONS_PAT. User-defined
settings randomly draw all parameters. MXQ is drawn from a uniform distribution, with user-
specified boundaries to reflect differently heterogeneous production quantities, represented by
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Fig 1. Conceptual illustration of the computational model.

https://doi.org/10.1371/journal.pone.0290370.g001

Q_VAR. The resource cost vector (RCC) consists of "big" and "small" resources. The input
parameter DISP2 defines "big" resources’ share of the total costs (TC), whereas DISPI indicates
the number of "big" resources, which must not exceed the total number of resources (NUM-
B_RES). Subsequently, a high DISP2 value in combination with a low DISPI value resembles
disparate resource costs, with a few "big" resources resulting in a large proportion of the total
costs (TC). The RES_CONS_PAT links production quantities and resource costs. The input
parameters DENS, COR1, and COR2 generate resource consumption diversity in the
RES_CONS_PAT matrix. DENS defines the number of non-zero entries in the matrix. For
example, a value of 0.2 sets approximately 20% of RES_CONS_PAT to be non-zero, meaning
that products share only a few resources, for example, in a work-shop environment [14]. The
correlation parameters set the similarity between resource consumption for two parts of the
matrix, aiming to reflect different tiers in the cost hierarchies, such as unit-level and batch-
level resources [39]. Therefore, high CORI and COR2 values induce similarity between prod-
ucts through highly correlated resource consumption. Low values increase the disparity, e.g.,
meaning that products become dissimilar [40]. If all information is available about production
volumes (MXQ), resource consumption (RES_CONS_PAT), and resource costs (RCC), the
benchmark costs of a cost object (PCB) can be calculated by multiplying a relative resource
consumption (RES_CONS_PATp) for every resource by every product with the resource costs
from RCC.

PCB = RES_.CONS_PATp * RCC (1)
The second component of the computational model-the costing system—only obtains lim-
ited information from RES_CONS_PAT and then calculates the costs of the final cost objects.
The costing system is a two-stage allocation system [7]. First, resource costs are pooled in a
selected number of cost pools using a cost-pool-allocation heuristic (PACP). Cost pools (CP)
contain the costs of the pooled resource costs. Second, every cost pool requires an allocation
base, called a cost driver, using a cost-driver selection heuristic (PDR). The allocation base is
the resource consumption of a selected resource. It allocates the cost pool costs to the final
objects, assigning the cost information to products, customers, or distribution channels. Balak-
rishnan, Hansen and Labro [14] find that the choice and functionality of costing system design
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heuristics (PACP and PDR) in the two-stage allocation system significantly affect the errors in
reported costs.

The original model has four different heuristics for the assignment of resource costs to cost
pools, which are described in more detail in the online appendix of Anand et al. [13]:

1. Size-Miscellaneous (SM): In a setting with m cost pools, the (m-1) largest resources are
assigned to one cost pool each. The remaining resources are allocated in the last cost pool
(i.e., miscellaneous cost pool, “miscpool”).

2. Size-Correlation-Miscellaneous (SMC): In a setting with m cost pools, the (m-1) largest
resources are assigned to one cost pool each. All remaining resources are assigned to these
same (m-1) cost pools based on how much they correlate to the seeded resources. Once the
total value of the unassigned resources falls below a certain amount of monetary units (MIS-
CPOOLSIZE) or the correlation value (CC) falls below a certain point, all remaining
resources are put in a miscellaneous pool.

3. Size-Random-Miscellaneous (SRM): The (m-1) largest resources are assigned to (m-1) cost
pools. The rest of the resources are then randomly assigned to cost pools until the total
monetary value of the unassigned resources falls below a certain amount of monetary units
(MISCPOOLSIZE). Once this happens, all remaining resources are put in a miscellaneous
pool.

4. Size-Correlation-Miscellaneous-CutOff (SCMC): The largest resource is allocated to a cost
pool, then further resources are allocated to this cost pool if their correlation is larger than
CC. This is repeated for the next cost pools. If there are as many remaining resources as
unfilled cost pools, every remaining cost pool is filled with a resource. If more resources are
unassigned than empty cost pools and MISCPOOLSIZE is reached, every remaining cost
pool, except the last, is filled with one resource, and the miscpool is filled with the remaining
resources.

The BIGPOOL method selects a cost driver by finding the largest resource within a cost
pool as the cost driver. Because the costing system only obtains a subset of the resource con-
sumption matrix (RES_CONS_PAT), it only approximates the full resource consumption. This
subset is defined as the activity consumption matrix (ACT_CONS_PAT). Each row in ACT_-
CONS_PAT provides the measured resource consumption of the costing system for each cost
object and cost pool. Consequently, ACT_CONS_PAT has as many columns as the number of
cost pools (CP). For each cost pool CP the sum of the allocated resource costs is known (e.g.,
from financial accounting [1]). Hence, multiplying the relative resource consumption of every
entry with the respective dollar amount allocated in each CP provides the occurring costs of
each cost object. Summing over the entries for each row provides the reported costs of the cost
object (PCH) by the costing system.

PCH = ACT_CONS_PATp * CP (2)

As the last step, the Mean Absolute Percentage Error (MAPE) between PCB and PCH of
every product 7 is calculated to evaluate the resulting costing errors for different costing system
designs in different production environments. S4 Appendix overviews descriptions of all mod-
eled variables and relevant technical terms.

NUMB_PRO p~H1 _ pCR.
MAPE = ! 3
2 9

i=1 !
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Table 1. Design of experiments.

Input variables
Production Environment

COR1
Correlation between volume
resources

COR2

Correlation between batch
resources

DENS

Density of RES_CONS_PAT
Q_VAR

Diversity in production quantities
DISP1

Number of "big” resources

DISP2

Share of costs that are assigned to
the “big” resources

Costing System

cp
Number of Cost Pools

PACP
Heuristic to allocate resources
into cost pools

PDR
Heuristic for cost-driver selection

Design points = 11*3*3*3*3*3*3*4 = 32,076 (i.e., unique parameter combinations), 712,800 observations.

Replication of the computational model of the ABL framework

The first objective of this study is to replicate the computational model of the ABL framework.
The ABL model provides a ready-to-use framework for future research, even though the origi-
nal paper does not document results. To address relational equivalence, we first conduct a
broad numerical experiment-following the 3k-design of experiments—in which we vary all rel-
evant parameters [41]. Although other design of experiment approaches exist in various fields
[e.g., 42,43] we orientate along the guideline provided by Lorscheid et al. [41], as it was devel-
oped explicitly for simulation-based experiments. Using an OLS regression model containing
the relevant variables, we compare their effects on costing errors (MAPE) in both models to
evaluate relational equivalence. Second, to assess distributional and numerical equivalence
between the two models, we focus on three well-documented patterns of costing system design
to obtain a relevant angle on the computational model’s results [16,17]. S1 Appendix contains
a detailed description of our pattern-oriented replication approach.

Table 1 depicts the conducted numerical experiment with all relevant input, control, and
output variables and the factor ranges and levels for the 3k-experiment. We exert a 3k-design
parameter setting CLow’, ’Middle’; "High’) that upscales the standard 2k-design of ABL (Low’,
"High’) by evenly separating the parameter range into the three segments. This has the advan-
tage that non-linear effects can be detected [41]. Moreover, for replication purposes, we imple-
ment the full range of possible cost pools (i.e., 1 to 50) and all cost pool allocation heuristics
(PACP) to gain a complete picture of the boundaries. In total, we generate 32,076 design points

Control variables Output variables
U[-0.8,0.8] NUMB_PRO 50 MAPE
Number of products Mean Absolute Percentage Error
U[-0.8,0.8] NUMB_RES 50 BE_AB
Number of resources Difference between share of significantly
overcosted and share of undercosted products
U[0.2,0.9] NUMB_PRO PCB
Number of products Benchmark costs of a cost object
U[10,20]; U[10,40]; U | CC 0.4 PCH
[10,60] Correlation Cut-off variable Heuristics costs of a cost object
2;5;10 MISCPOOLSIZE 0.25 MXQ
Relative share of costs in MISCPOOL Production quantities per product
U[0.2,0.9] TC 1.000.000 | Percentage Error (PE)
Total Costs PE = (PCH-PCB)/PCB
NUMB_FIRMS 200

1,5,10,15,20,25,
30,35,40,45,50

SM, SCM, SRM,
SCMC

BIGPOOL

https://doi.org/10.1371/journal.pone.0290370.t001

Number of runs for every input variable
combination for the production environment
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(i.e., unique parameter combinations) with 729 unique production environment parameter
combinations and 44 different costing systems. Combined with the 200 randomly generated
production environments (NUMB_FIRMS) described in Anand et al. [13], we obtained
712,800 observations overall. We conduct this balanced design of our experiment for both the
original and replicated models [44].

Evaluation of replication success

To evaluate replication success, we compare the replicated model with the original model
based on the parameters’ effects on the cost error (MAPE). As the different cost pool allocation
heuristics (PACP) result in quite different costing systems, we split the data set accordingly
and conducted an OLS regression for each heuristic. We note that the dependent variables of
our regression analyses are not normally distributed in our datasets, which is not unusual for
simulation models [45]. Moreover, according to the literature, the normality of the dependent
variable is not always necessary to obtain accurate and unbiased estimates in regression analy-
ses, particularly when the sample size is large [46,47]. Nonetheless, to ensure the robustness of
our results, we conducted two additional analyses. First, we performed robustness analyses on
our regression coefficients with transformations of the dependent variable. Second, we
employed a bootstrapping approach for significance testing to address the underlying non-
normality. Untabulated results show that our findings remain consistent after both robustness
tests. Table 2 provides an overview of the regression analyses for each cost pool allocation heu-
ristic PACP.

First, we note that the adjusted R” for three of the four heuristics is nearly similar between
the original and replicated models. Only for the heuristic Size-Correlation-Miscellaneous
(SCM) does the regression of the replicated model explain more of the total variance, showing
a greater difference between the two models. Second, there are two smaller differences in sig-
nificance levels between the two models. For the heuristic Size-Correlation-Miscellaneous-Cut-
Off (SCMC), CORI has a small significant positive effect on MAPE. This effect is, however,

Table 2. Relational equivalence for all parameters.

SM SCM SRM SCMC
ORIGINAL | REPLICATION | ORIGINAL | REPLICATION | ORIGINAL | REPLICATION | ORIGINAL | REPLICATION

Production Environment

DISP1 0.14** 0.13** 0.11** 0.09** 0.09** 0.09** 0.09** 0.09**
DISP2 -0.37** -0.37** -0.31%* -0.27** -0.27** -0.28** -0.24** -0.24**
DENS -0.24** -0.25** -0.27** -0.29** -0.29** -0.30** -0.23** -0.24**
COR1 0.00 0.00 0.00 0.00 0.00 0.00 0.01** 0.00
COR2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q_VAR 0.00 0.00 -0.03** 0.00 0.00 0.00 -0.04** -0.04™*
Costing System
cp -0.74** -0.74** -0.77** -0.83** -0.82** -0.82** -0.76** -0.75**
Adj. R® 764 763** .783** 847%* .848** .845** .695** 691**
N 178,200 178,200 178,200 178,200 178,200 178,200 178,200 178,200

Dependent variable: Mean absolute percentage error (MAPE); CP = Number of cost pools; DISP1 = Number of “big” resources; DISP2 = Share of costs that are assigned
to “big” resources; DENS = Degree of resource sharing; CORI = Correlation between volume resources; COR2 = Correlation between batch resources; Q_VAR =
Disparity in production volumes; Presented f coefficients are standardized;

* indicates p < .05.

** indicates p < .01.

https://doi.org/10.1371/journal.pone.0290370.t002
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only present in the original model. Second, using the heuristic Size-Correlation-Miscellaneous
(SCM), the disparity in production volumes (Q_VAR) significantly affects MAPE only in the
original model (-0.03**) but not in the replicated model. Apart from this, the significance lev-
els are equal for all parameters.

Finally, there are differences at the level of magnitude (e.g., Size-Correlation-Miscellaneous
(SCM)-DISP1 (original): 0.11**, DISPI (replication): 0.09**). There are, however, no changes
in the direction of effects between the models. Thus, following Belding [25] that complete
equivalence of the original and replicated models is nearly impossible in stochastic simula-
tions, we suggest that the replicated model’s implementation is relationally but not yet numeri-
cally equivalent to the original model’s implementation.

Test of distributional equivalence

To focus our assessment of distributional equivalence, we draw on three well-documented pat-
terns and compare the results of the original and replicated models. Table 3 lists the three pat-
terns and prior references in empirical and theoretical research. The three patterns are: Cost-
pool Relationship [e.g., 14,48], Degree of Resource Sharing [e.g., 14,49] and Dominant Under-
costing [e.g., 7].

The perspective on single patterns allows for a more fine-grained analysis of the replica-
tion’s success at the level of distributional equivalence. We compare the moments of the distri-
bution of the output variable (i.e., mean, standard deviation, skewness, and kurtosis) for each
pattern to evaluate statistical alignment that satisfies distributional equivalence. We purpose-
fully avoid statistical power-tests, such as the Kolmogorov-Smirnov test [22], because statistical
tests are over-sensible with large sample sizes [61,62], as in our numerical experiment (712,800
observations). To support our selection, we generate increasing sample sizes randomly drawn
from our numerical experiment’s total data set. For each sample size, we compare the Kolmo-
gorov-Smirnov-Test’s p-value and the average deviation in regression coefficients (as in
Table 2). S2 Appendix shows this comparison and highlights that the two criteria behave anti-
proportional, with the p-value of the Kolmogorov-Smirnov-Test increasing in significance
with a larger sample size (indicating differences between the two models), while the regression
coefficients become more aligned.

The comparison of computed values for the three investigated patterns between the replica-
tion model and the original are visualized in Fig 2. The graphs show small but no large differ-
ences between the computed values of both models. Note that reproducing the three empirical
patterns is not the focus of this experiment but rather the alignment of the two models. How-
ever, we find that all three patterns are qualitatively reproduced by both models.

Table 4 lists mean, standard deviation, skewness, and kurtosis for both models’ output vari-
able distributions and for relevant design points in the respective pattern.

For the Cost-pool Relationship pattern, we increase the number of cost pools and observe
whether the error in reported costs measured as MAPE decreases, as the pattern predicts. In its
simplest form, a costing system can be used with one cost pool, which allocates all indirect
costs to cost objects as a broad average [63]. Such simple costing systems are considered to be

Table 3. Three patterns of costing system behavior.

Pattern
Cost-pool Relationship
Degree of Resource Sharing

Dominant Undercosting

Description Empirical references | Numerical/Analytical References
A greater number of cost pools increases the costing accuracy. [36,48,50,51] [7-9,13,14,21]

A lower degree of resource sharing results in a lower costing accuracy. [52-55] [14,21,56]

Most products are undercosted. [36,57,58] [7,21,59,60]

https://doi.org/10.1371/journal.pone.0290370.t003
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Fig 2. Relational Equivalence Visualizations for the three investigated patterns. MAPE = Mean absolute percentage error. CP = Number of cost
pools. DENS = Degree of resource sharing.
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highly inaccurate, causing errors in cost information [63,64]. Increasing the number of cost
pools allows for finer assignments of resource costs to cost pools and enables, in turn, a more
accurate allocation of their costs. In other words, a costing system with more cost pools cap-
tures resources in more detail with more allocation bases [34,53]. Overall, it is common knowl-
edge that adding more cost pools to a costing system increases the accuracy of cost

Table 4. Relational equivalence for the three investigated patterns.

Cost Pool Relationship

REPLICATION ORIGINAL
(91 M SD Skew-ness Kurtosis M SD Skew-ness Kurtosis AlM
1 0.390 0.100 1.54 3.16 0.390 0.099 1.68 3.15 0.000
20 0.235 0.127 1.38 6.40 0.224 0.121 1.37 6.34 0.011
40 0.059 0.049 2.14 9.35 0.055 0.046 2.15 9.32 0.004

Degree of Resource Sharing

REPLICATION ORIGINAL
DENS' M SD Skew-ness Kurtosis M SD Skew-ness Kurtosis |A|M
LOW 0.306 0.130 1.13 5.63 0.301 0.134 1.14 5.59 0.005
MID 0.220 0.100 1.23 6.22 0.217 0.100 1.21 5.89 0.003
HIGH 0.160 0.070 1.19 5.98 0.150 0.070 1.15 5.74 0.010

Dominant Undercosting

REPLICATION ORIGINAL
cp’ M SD Skew-ness Kurtosis M SD Skew-ness Kurtosis |A| M
1 0.384 0.090 -0.08 2.92 0.385 0.090 0.00 2.76 0.001
20 0.2 0.11 -0.212 341 0.19 0.11 -0.11 3.19 0.010
40 0.014 0.1 1.1 4.9 0.014 0.1 1.1 4.88 0.000

CP = Number of cost pools; DENS = Degree of resource sharing M = Arithmetic mean of MAPE, SD = Standard Deviation of MAPE, |A| M = absolute difference
between the means of REPLICATION and ORIGINAL.

'For the values in this table, the number of cost pools CP is set to 20.

*For the values in this table, the degree of resource sharing DENS is set to MID.

https://doi.org/10.1371/journal.pone.0290370.t004
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information in most cases [7] because resource consumptions and their costs are more accu-
rately recognized and allocated [7,56]. The absolute differences between the average MAPE of
both models are very low for all design points (i.e., different number of cost pools). We under-
stand that both the original model and the replicated model compute statistically comparable
results for this pattern.

Second, for the Degree of Resource Sharing pattern, we increase the parameter DENS,
which specifies the density of the resource consumption matrix (RES_CONS_PAT) and
therein also determines the diversity in resource consumption along the product portfolio
[14]. That is, given a higher degree of resource sharing, cost objects in the portfolio consume
resources in similar magnitudes (e.g., marketing efforts are relatively equal for different prod-
ucts). This decreases with a lower degree of resource sharing (e.g., in a job shop environment).
In its extreme, no resource sharing would reflect completely unique products, which aggra-
vates accurate cost allocations. Overall, prior research noted that the product diversity created
by less resource sharing decreases cost accuracy [14]. Table 4 and Fig 2 show that there are
again no larger differences between the original and replication model regarding the Degree of
Resource Sharing Pattern. More precisely, the absolute difference between the means for each
design point is equal to or less than 1%. Overall, both models reproduce the Degree of
Resource Sharing pattern described by prior studies [34,52,54,55].

Third, the Dominant Undercosting pattern included in our replication relates to an effect
occurring at the product level when costs are incorrectly allocated to individual products [63].
Prior empirical research and numerical experiments observe that most products are slightly
undercosted, while only a few products are largely overcosted [e.g., 7,36]. Please note that a
specific form of undercosting of products can also be a deliberate decision, such as when a
firm decides not to assign companywide overhead costs to individual products or in a break-
even analysis [63]. However, this study focuses on a costing system that aims to allocate all
costs to individual products.

To assess the Dominant Undercosting pattern, we follow Labro and Vanhoucke [9] and
measure the share of products that are materially undercosted or overcosted and subtract the
latter from the former, to construct the measure BE_AB. If BE_AB is greater than zero, most
products are materially undercosted, and the model reproduces the pattern. This measure only
considers relevant derivations from true costs, that is, it neglects costing errors below the mate-
riality threshold of errors smaller than 5% [7,65]. The simulation experiment results show that,
on average BE_AB is greater than zero (see Fig 2), with only a few outliers where BE_AB is
below zero. More importantly, we again find that both models compute near-similar results
for BE_AB at each design point, which are supported by the moments of the distribution of
BE_AB in Table 4.

Opverall, we conclude that both models behave similarly for all three investigated patterns.
We document that our replicated model achieves distributional equivalence to the original
model. Hence, in addition to relational equivalence (see Table 2), we consider our replication
to be as successful in terms of distributional equivalence for the three patterns.

Investigation of the pattern of product cost cross-subsidization
Test of reproducibility in the unchanged computational model

As the second objective of this study, we investigate whether the replicated model can repro-
duce the pattern of product cost cross-subsidization (hereafter the pattern) observed empiri-
cally for volume-based costing systems [27] and, in addition, examine the required
mechanism that ensures the occurrence of this pattern. The pattern shows that, in volume-
based costing systems, high-volume products are overcosted while low-volume products are
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undercosted [63]. Because of the lesser effort required and costs of implementing ABC sys-
tems, organizations still use volume-based costing systems [34] (i.e., a single cost driver type
and a single cost pool) wherefore the pattern is still likely in these organizations and hence
widely shared. The pattern is often depicted as an S-Curve of error, when sorting cost objects
along their production volumes (see Fig 3) [66]. Consequently, this pattern negatively affects
profits—assuming cost-based pricing-as the demand for the too-expensive products decreases
while the demand for the too-cheap products increases [59].

According to Cooper and Kaplan [28], the pattern occurs when the employed cost driver
inaccurately reflects true resource consumption by focusing only on unit-level resource con-
sumption (or production volumes). More specifically, such cost drivers do not capture
resource consumption that is decoupled from production volumes. For instance, imagine two
people having dinner at a restaurant. Person A orders two main dishes, while Person B orders
only one. They also decide to share a bottle of wine that costs $30. Person A drinks about one-
third of the bottle, while Person B drinks two-thirds. The number of dishes reflects the unit-
level resource consumption, while the wine consumption is the non-unit-level resource usage.
Note that the wine consumption is decoupled from the number of dishes ordered and even
negatively correlates. Nevertheless, a volume-based cost driver might allocate costs for the bot-
tle of wine based on the number of dishes ordered (i.e., unit-level consumption). Conse-
quently, two-thirds of the wine cost ($20) is allocated to Person A and one-third ($10) to
Person B because Person A orders two main dishes, while Person B orders only one main dish.
Thus, Person A is overcosted (20$>10$), and Person B is undercosted ($10 < 20$). The vol-
ume-based cost driver hence ignores non-unit-level resource consumption (i.e., the amount of
wine consumed). A solution would be to refine the costing system and to allocate additional
costs based on the resource consumption at the other tiers of the cost hierarchy (in
manufacturing firms, batch-level, product-sustaining-level, or facility-sustaining-level). In
other words, additional cost drivers that measure non-unit-level resource consumption are
required, such as the number of glasses of wine consumed.

This discussion suggests that two relevant components are required to ensure the emer-
gence of a product cost cross-subsidization pattern. First, at least some proportions of overall
costs must be decoupled from volume, meaning that they have a zero or negative correlation
to volume. These costs are termed non-unit-level costs, while those that are strongly linked to
volumes are termed unit-level costs. Hence, in the first step, we simplify the four-tier cost hier-
archy [31] by converting it into these two segments and argue that non-unit-level costs are
necessary for the pattern to occur.

Second, the example also illustrates the requirement that the cost driver of the employed
costing system allocates costs based on volumes [27]. A cost driver that additionally considers
non-unit-level resource consumption will diminish the pattern [27,56]. More generally, a
refined costing system employing cost drivers that allocate costs based on resource consump-
tion, which reflects all present levels in the firm’s cost hierarchy, should prevent the occurrence
of the pattern [67]. This conception led to the development of ABC [62], where the cost drivers
in the costing system ideally measure resource consumption on all tiers of the cost hierarchy.
Case studies on firms observe that ABC shifts reported costs of high-volume products down-
ward and costs of low-volume products upward [4,57], indicating the reduction of the product
cost cross-subsidization pattern. Still, the pattern and its mechanism remain uninvestigated in
settings that exceed the limit of numerical examples or single cases.

For the replicated model, we expect that the pattern of product cost cross-subsidization will
not emerge, because (1) the model currently only computes resource consumption that is
highly correlated with production volume (see S3 Appendix) and further employs an activity-
based cost driver that would considers non-unit-level resource consumption [14]. To test this
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assumption, we recreate the S-Curve in Fig 3°s conceptual illustration with the data generated
by the replicated model. For each run, we group all products into deciles based on their pro-
duction volumes and calculate the percentage error PE for each product. According to the pat-
tern, the lowest-volume (highest-volume) deciles should have a negative (positive) percentage
error. Fig 4 shows that, for the replicated model, there is no systematic distortion along the
rank-ordered products, suggesting that the pattern cannot be reproduced.

Extension of the computational model to reproduce the pattern

To reproduce the pattern, we implement the two components as suggested: the volume-based
cost driver and non-unit-level costs. First, for the volume-based cost driver, we use production
volumes (i.e., MXQ) as the allocation base for a product’s overall resource consumption. We
recognize that other cost drivers, such as direct labor and machine hours, exist for volume-
based costing systems, which are also related to production volumes or production-linked
activities [59]. However, in our modeling approach, we have opted for simplicity and used pro-
duction volumes as the sole cost driver type. An exploratory analysis conducted in Mertens
[64] indicates high similarity between different volume-based drivers, further justifying our
approach.

Second, to model non-unit-level costs, we divide the resource consumption matrix
(RES_CONS_PAT) into unit-level and non-unit-level resources (the columns in the matrix).
As in the original model, the unit-level resource consumptions are multiplied by the produc-
tion volumes. This step results in highly correlated resource consumptions with production
volumes, defined as unit-level consumptions. S3 Appendix illustrates that when all resources
are multiplied by production volumes, the median correlation between resource consumption
(RES_CONS_PATp) and production volumes (MXQ) is above 0.75. This correlation decreases
with an increased share of non-unit-level costs, showing that the non-unit-level costs in the
model correlate less with MXQ. Based on the findings of Ittner, Larcker and Randall [39], who
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observe that roughly 40% of activities are not on the unit-level, we randomly set 20% to 60% of
all resources and costs to the non-unit level. For our experiment, we divide this simple cost
hierarchy into four specifications, depending on the share of non-unit-level resources—(1) all
resources are on the unit-level and their consumption correlates with production volumes (as
in the original model), (2) 20%-33% of all resources are non-unit-level (LOW), (3) 34%-46%
of all resources are non-unit-level (MID), and (4) 47%-60% of all resources are non-unit-level
(HIGH). We control for all possible costing system designs and production environment
parameters (as in the replication experiment presented in Table 1).

Fig 5 illustrates the results for the different settings of the numerical experiment with the
four specifications of the simple cost hierarchy and the two types of cost drivers (VOLUME
and ACTIVITY). Both a volume-based cost driver and non-unit-level costs are required to
reproduce the pattern. More specifically, in these treatments, low-volume products are likely
to be undercosted and high-volume products are likely to be overcosted, as described by the
pattern. Furthermore, a greater share of non-unit-level resources strengthens the pattern, as
shown in Fig 5. This corroborates that the expected mechanism is driving the pattern and that
the simple cost hierarchy containing two types of resource consumption (i.e., unit-level and
non-unit-level) is sufficient to reproduce the pattern. On a different note, our results highlight
that ABC systems are unaffected by the presence of non-unit-level resource consumption
regarding (1) the product cost cross-subsidization pattern and (2) overall accuracy of reported
product costs. Fig 5 illustrates that the percentage error PE for all products in the portfolio is
similar. Moreover, PE is close to zero in all settings (i.e., the size of the boxplots is small), indi-
cating a low overall error in reported product costs as well. This result underscores the superi-
ority claim of ABC advocates [4]. To quantify the pattern, we compute the variable
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VB_PATTERN. VB_PATTERN is the difference between the mean percentage error PE for the
products in the two highest and lowest production volume deciles. In other words, we calculate
the difference between the two extreme right-hand boxes and the two extreme left-hand boxes
in the boxplots of Fig 5. Hence, the greater the value for VB_PATTERN, the greater the differ-
ence between the two groups, and the greater the strength of the pattern (i.e., the steeper the
S-Curve). We observe that in volume-based costing systems VB_PATTERN increases as the
share of non-unit-level resources increases.

Case studies that observe the pattern report a usage of volume-based cost drivers [4,57,58],
which is in line with our suggested mechanism. Based on our literature review and the work of
Anderson and Sedatole [67], empirical research is still inconclusive about the existence of cost
hierarchies. Since non-unit-level resource consumption is required for the emergence of the
pattern-according to the identified mechanism-we argue that this hints at the existence of at
least one tier in the cost hierarchy (e.g., batch-level) in empirical production environments.

As an added analysis, we conduct a regression analysis to measure the effects of other vari-
ables on the variable VB_PATTERN. Table 5 depicts the direct and interaction effects of the
input variables on VB_PATTERN in an effect matrix [41]. The binary variable VolumeDriver
indicates whether the employed cost driver is based on production volumes (VolumeDriver = 1)
or activities (VolumeDriver = 0, BIGPOOL, see Table 1). The variable non_unit_size provides
the share of resources (i.e., columns in RES_CONS_PAT) that is not multiplied with produc-
tion quantities and hence are on the non-unit level (20% - 60%).
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Table 5. Effect matrix for VB_PATTERN.

Factors

Factors CcpP DISP1 DISP2 DENS COR1 COR2 Q_VAR Volume non_unit
Driver _size

cp -0.02** 0.00 0.00 0.00 0.00 0.00 -0.01** 0.02** 0.00
DISP1 0.00 -0.01** -0.01** 0.00 0.00 0.00 -0.01** -0.01**
DISP2 0.01** -0.01** 0.00 0.00 0.00 0.04** 0.03**
DENS -0.05* -0.01** -0.01** 0.00 -0.04** 0.01**
CORI1 0.01** 0.00 0.00 0.01** 0.00
COR2 0.01** 0.00 0.01** -0.01**
Q_VAR 0.12** 0.11** 0.12**
Volume Driver 0.38** 0.36**
non_unit_size 0.37**
R? = 457**
N =316,800

Dependent variable: VB_PATTERN; CP = Number of cost pools; DISP1 = Number of “big” resources; DISP2 = Share of costs that are assigned to “big” resources; DENS
= Degree of resource sharing; CORI = Correlation between volume resources; COR2 = Correlation between batch resources; Q_VAR = Disparity in production
volumes; VolumeDriver = Indicator variable for the usage of volume-based cost driver (1) or activity-based cost driver (0); non_unit_size = share of resources that are
non-unit-level; Presented B coefficients are standardized;

* indicates p < .05.

** indicates p < .01.

https://doi.org/10.1371/journal.pone.0290370.t005

Intuitively, the presence of a volume-based cost driver (VolumeDriver) and an increase in
non-unit-level costs (non_unit_size) have the greatest effect on the emergence and strength of
the pattern (0.38** and 0.37**, respectively). Additionally, the interaction effect between these
two variables is substantial (0.36**), indicating the importance of the interplay of the two
model components to reproduce the pattern. Moreover, Table 5 reports that the disparity in
production volumes within the product portfolio, measured by Q_VAR, has a strong positive
effect on VB_PATTERN. This also aligns with our explanation of the pattern’s mechanism.
The greater disparity in production volumes results in a volume-based cost driver that more
strongly overestimates (underestimates) the non-unit-level resource consumption of high-vol-
ume (low-volume) products. Returning to our restaurant example, this means that Person A
would eat four dishes while Person B would eat only one. Consequently, products with
extremely high or low production volumes are significantly more affected by cross-subsidiza-
tion when a volume-based cost driver is used.

Summarizing our results, we can now depict the mechanism behind the pattern of product
cost cross-subsidization. Fig 6 shows the main effect of the share of non-unit-level resource
consumption on the pattern (VB_PATTERN) and the moderating effects of using a volume-
based cost driver and disparity in production volumes.

A split of the sample into costing systems with and without volume-based drivers (see S1
Fig) shows that a strong relationship between the share of non-unit-level resource consump-
tion and the pattern of product cost cross-subsidization (0.60** vs 0.03**) is only apparent in
costing systems with volume-based cost drivers. Similarly, the interaction effect of the disparity
of production volumes is much stronger in volume-based costing systems (0.18** vs 0.03**).
This analysis further supports the identified mechanism.
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Extension of the computational model by an ABC cost hierarchy

Although the implementation of non-unit-level costs that do not vary with production quanti-
ties suffices as a simple cost hierarchy to reproduce and explain the mechanism behind the pat-
tern of product cost cross-subsidization, it does not represent a full ABC cost hierarchy as
theoretically proposed [31]. In a full ABC cost hierarchy, a distinction is made between unit-
level, batch-level, product-sustaining-level, and facility-sustaining-level costs. In our current
modeling approach, we model resource consumption that varies with production volumes
(unit-level) and non-unit-level consumption that varies randomly. In the following experi-
ment, we investigate whether a further separation of non-unit-level costs into batch-level,
product-sustaining-level, and facility-sustaining-level costs affects the emergence and strength
of the product cost cross-subsidization pattern.

Based on the literature, we first argue that our approach of modeling non-unit-level costs
most likely represents facility-sustaining activities, such as plant management [31], because
there is no significant link to unit-level production activities. Second, batch-level costs vary
with batch-related activities, such as the number of batch setups or setup time [67], and are,
according to economic-order-quantity theory (EOQ), negatively associated with production
quantities [68]. That is, batch sizes increase with greater production quantities, which reduces
batch-level activities per production unit [69]. Batch-level resource consumption, therefore,
negatively correlates with unit-level resource consumption and production volume. Finally,
product-sustaining resource consumption is linked with activities that depend upon product
variety, complexity, and resulting production process activities, such as process design [31,67].
Product-sustaining activities ought to correlate slightly with production quantities [39], as
product-sustaining activities are linked with variable production depending on the type of
employed manufacturing technology (e.g., Advanced Manufacturing Technology vs Work-
shop Production) [67].

In addition to the theoretical construction of the ABC cost hierarchy provided by the litera-
ture, we draw on the empirical stream of accounting research that provides empirical evidence
on cost hierarchies and the linkages between different tiers of the cost hierarchy. The empirical
observations differ from the theoretical predictions. Therefore, we distinguish between empiri-
cal and theoretical in our modeling approach, with the former indicating the results that are
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Table 6. Empirical evidence on correlations between different tiers of the ABC cost hierarchy.

Tier/Tier Unit-level Batch-level Product-sustaining-level Facility-sustaining-level
Unit-level 1 - 0; + 0
Batch-level 0.07 [39] 1 0; - 0

0.02-0.82**[70]

0.05-0.10 [71]
Product-sustaining-level 0.19 [39] -0.41**[39] 1 0

0.43ﬁ- 0.78ﬁ[70] 0.30ﬁ- 0.93ﬁ[70]

0.12*[72]

Facility-sustaining-level 0.57* [73] 0.28"*[72] 0.69"*[72] 1

0.08-0.20 [71] -0.17 [73] 0.44* [73]

-0.30"*- 0.20 [71]

* indicates p < .05.
** indicates p < .01, as found by the original studies.

https://doi.org/10.1371/journal.pone.0290370.t006

more likely to be observed in practical settings. Table 6 provides the described theoretical pre-
dictions of links between the different tiers of the ABC cost hierarchy (-;0;+) in the upper diag-
onal cells and depicts the empirically reported Pearson correlations between tiers in the lower
diagonal cells. As described, the empirical observations are inconclusive and display a wide
range of observed correlations. For instance, the correlation of resource consumption between
unit-level and batch-level activities ranges from insignificant (e.g., 0.07 [39]) to significantly
high (e.g., 0.82** [70]).

We select the following modeling approach to insert the two types of the ABC cost hierar-
chy (theoretical and empirical) into the resource consumption matrix (RES_CONS_PAT).
First, we continue modeling unit-level costs as in the original model and the model with the
simple cost hierarchy in the previous experiment by multiplying randomly drawn resource con-
sumption A with production volumes g to generate highly correlated unit-level costs y. Second,
to model batch-level resource consumption for the theoretical ABC cost hierarchy, we divide
the randomly drawn normal distributed resource consumption A for each batch-level resource
and product by the production quantities g of the respective product. Hence, greater produc-
tion quantities result in larger batch sizes and decreased batch-level costs y per produced unit
(i.e., negative correlation). Third, to reflect the empirical ABC cost hierarchy, we model a weak
positive correlation between unit-level and batch-level resource consumption by multiplying
the random resource consumption 4 with the respective production quantities g and a random
number fdrawn from a normal distribution with mean = 1 and standard deviation = 0.25.

Next, the product-sustaining-level resource consumption is modeled by multiplying the
product of random resource consumption A and production quantities g with the factor r
drawn from a normal distribution with mean = 1 and standard deviation = 0.25. The random
value r can be seen as the type of manufacturing technology that either couples or decouples
product-sustaining activities from unit-level activities (e.g., Advanced Manufacturing Tech-
nology vs Workshop Production) [67] and thus decreases or increases its linkage and correla-
tion. Moreover, in the theoretical setting, a positive correlation between unit-level and
product-sustaining-level resource consumption results in a negative correlation between
batch-level and product-sustaining-level resource consumption, as posited by Ittner et al. [39].
Opverall, for product-sustaining-level resource consumption, we do not distinguish between a
theoretical and empirical modeling approach, as observations and theoretical predictions align.

Finally, in the simple cost hierarchy (prior section), we generated the facility-level costs y for
each product and respective resource solely from a random resource consumption A. This
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Fig 7. Exemplary visualization of resource consumption patterns with different types of cost hierarchies. Each row in the matrix reflects the relative
resource consumption of the respective product. Each column in the matrix reflects how one resource is consumed by all products (rows).
NUMB_PRO = Number of products in the firm’s portfolio (50). NUMB_RES = Number of resources consumed (50).

https://doi.org/10.1371/journal.pone.0290370.9007

resulted in resource consumption without a significant correlation between facility-level
resource consumption and other tiers of the ABC cost hierarchy. This also reflects the theoreti-
cal intuition concerning facility-level costs [31]. However, empirical accounting research also
observes strong positive (and some negative) correlations between facility-level costs and all
other tiers of the ABC cost hierarchy. Hence, to relax the strict decoupling from other tiers of
the ABC hierarchy, we multiply the randomly drawn resource consumption A for the facility-
level resources with one of the respective weighting factors (i.e., g, , or f) of the other tiers. We
randomly select which factor A is multiplied to provide a basis for all possible scenarios. Fig 7
exemplarily illustrates how the resource consumption matrix (RES_CONS_PAT) contains dif-
ferent tiers of resource consumption when the simple cost hierarchy or the theoretical ABC cost
hierarchy is introduced, compared to the original model. Resource consumption is less homo-
geneous among all resources because it does not solely correlate with production quantities.

To define the share of resources and costs that fall within the respective tier of the cost hier-
archy, we rely on our modeling for the simple cost hierarchy and set 20-60% as non-unit-level
costs (i.e., batch-level, product-sustaining-level, and facility-sustaining-level costs). Moreover,
in their case study, Cooper and Kaplan [31] find that about 20% of the associated costs are
batch-level costs, 18% are product-sustaining costs, and 7% are facility-sustaining costs. We
orientate along these observations and model the following shares of tiers in the ABC cost hier-
archy to add up to 100%: unit-level = 40%- 70%, batch-level = 10%- 32%, product-sustaining-
level = 10%- 24%, and facility-sustaining-level = 5%- 15%. Table 7 reports the Pearson corre-
lations for resource consumption between the different tiers of the four modeled cost hierar-
chies. Overall, we pursue the approach to model a variety of cost hierarchies to cover different
industry settings, strategic orientations, and production technologies to increase generality of
our results. For instance, Advanced Manufacturing Technologies can shift resource consump-
tion from batch-level and product-sustaining-level toward unit-level or facility-sustaining-
level [67]. Supply chain design (i.e., distance to supplier or sales markets) may determine logis-
tics efforts, thus increasing batch-level costs [2]. A firm’s strategic orientation affects research
and development efforts [74] or product design [75] and may shift costs toward facility-
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Table 7. Pearson correlations (and standard deviations in brackets) for the resource consumptions between the different tiers of the implemented cost hierarchies.

ORIGINAL MODEL
Tier Modeling Unit-level Batch-level Product-sustaining-level Facility-sustaining-level
Unit y=2q 1
Batch y=2q 46! 1
[0.22]
Product-sustaining - - - 1
Facility-sustaining - - - - 1
SIMPLE COST HIERARCHY
Unit y=2q 1
Batch - - 1
Product-sustaining - - - 1
Facility-sustaining y=A 15 - - 1
[0.22]
THEORETICAL ABC COST HIERARCHY
Unit y=2Aq 1 - -
Batch y=AMq -.53 1
[0.23]
Product-sustaining y=Aqr 43 -.38 1 -
[0.23] [0.21]
Facility-sustaining y=A .00 .00 .00 1
[0.15] [0.14] [0.13]
EMPIRICAL ABC COST HIERARCHY
Unit y=2q 1 -
Batch y=2qf .44 1
[0.21]
Product-sustaining y=Aqr 42 32 1 -
[0.19] [0.17]
Facility-sustaining y=2Alq][r][f] .00 .09 .09 1
[0.14] [0.20] [0.23]

All correlations are significant with p < 0.01. N = 240,000 observations. Standard deviations are reported in square brackets.

y = cost consumption; A = random resource consumption drawn from a normal distribution with mean = 1 and standard deviation = 0.25; r = normal distribution with
mean = 1 and standard deviation = 0.25; f = normal distribution with mean = 1 and standard deviation = 0.25.

'Note that in the original model, Anand et al. (2019) generate one section of the resource consumption matrix to reflect batch-level resources by employing the input
variables CORI and COR2. However, all resource consumptions A are multiplied by production quantities.

*In the simple cost hierarchy modeled in the previous section, the non-unit-level costs are modeled without linkage to production quantities, wherefore we classify them
here as facility-level costs.

https://doi.org/10.1371/journal.pone.0290370.t007

sustaining- or product-sustaining-level costs. Anderson and Dekker [2] and Banker et al. [76]
review prior findings on how such factors influence costs and resource consumption.

According to the reasoning behind the ABC cost hierarchy, negative correlations should be
a stronger driver of the pattern than no correlations because the former reflects anti-propor-
tional resource consumptions that contradict the costs reported by employed cost drivers [56],
as in our restaurant example. Hence, we assume that the theoretical ABC cost hierarchy pro-
duces the strongest product cost cross-subsidization pattern. The results of our third simula-
tion experiment support this assumption. Fig 8 illustrates the product cost cross-subsidization
pattern for firms with theoretical and empirical ABC cost hierarchies. The pattern does not
emerge as pronounced in empirical ABC cost hierarchies, although there is a small overcosting
bias toward high-volume products. However, as expected, the cross-subsidization is strongest
in the theoretical ABC cost hierarchy.
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Fig 8. Product cost cross-subsidization pattern in the theoretical and empirical ABC cost hierarchy.

PE = Percentage Error between reported product costs (PCH) and true benchmark product costs (PCB). For the
volume-based driver, the mean values for VB_PATTERN in the two ABC cost hierarchies are: Theoretical = 0.40;
empirical = 0.14.

https://doi.org/10.1371/journal.pone.0290370.g008

This strengthens our argument and theoretical predictions [37] that the correlations
between the different tiers’ resource consumption are critical for the pattern to emerge. Conse-
quently, as the empirical ABC cost hierarchy contains relatively high positive correlations, the
cross-subsidization is weak, whereas in the theoretical ABC cost hierarchy, resource consump-
tion can be negatively correlated, and the cross-subsidization is strongest. This may hint at a
divergence between theoretically expected and empirically observed cost hierarchies and
resulting product cost cross-subsidization. Despite this, we argue that empirically it is difficult
to attain correlations between different resource consumptions. A reason is that the true
resource consumption pattern is not empirically measurable [10]. Researchers must rely on
employed cost drivers containing aggregation, specification, and measurement errors [64].
Additionally, Cooper and Kaplan [31] posit that when non-unit-level resource consumption is
divided by unit-level cost drivers, the impression of high correlation can arise. Finally, we
again employ the variable VB_PATTERN to quantify the drivers of product cost cross-subsidi-
zation. Table 8 reports the regression results for the four different cost hierarchies.

The R’ is highest for the theoretical ABC cost hierarchy because resource consumption fol-
lows systematic rules in that setting; therefore, the resource consumption matrix (RES_CON-
S_PAT) is the most structured. In turn, the regression models of the original model and the
empirical ABC cost hierarchy can only explain smaller fractions of the variation of VB_PAT-
TERN because resource consumption is more randomly generated (see Fig 7 as an example).
Interestingly, due to structuring the resource consumption matrix into more than two tiers
(i.e., for the theoretical and empirical ABC cost hierarchies), the parameters DISP2 and DENS,
in particular, become more relevant for cross-subsidization. DISP2 primarily defines the het-
erogeneity of resource costs. Hence, in a more structured matrix where some resource con-
sumptions are not proportional to production quantities, heterogeneous resource costs can be
a lever to increase the cross-subsidization when production quantities are employed as a cost
driver. In other words, allocating costs based on production volume is especially detrimental
(with high cross-subsidization) when a few non-unit-level resources contain a large share of
costs. This principle also applies to DENS, which determines the degree of resource sharing.
The greater the degree of resource sharing, the more homogeneous the resource consumption
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Table 8. Regression analysis for VB_PATTERN in the four cost hierarchy models.
Predictor | ORIGINAL MODEL | SIMPLE COST HIERARCHY | THEORETICAL ABC COST HIERARCHY | EMPIRICAL ABC COST HIERARCHY

Production Environment

DISP1 -0.03** -0.03** -0.05** -0.07**
DISP2 -0.02** 0.01** 0.12%* 0.12%*
CORI1 -0.01** -0.01** 0.00 0.00
COR2 0.02** -0.01** 0.00 0.00
DENS -0.03** -0.01** -0.11** -0.10**
Q_VAR 0.05** 0.23** 0.24** 0.16**
bl_size 0.00 - 0.08** 0.02**
pl_size - - 0.02 0.01**
fl_size - 0.12** 0.04** 0.10**
Costing System
CP -0.01** -0.01** 0.00 -0.00
Volume Driver 0.03** 0.53** 0.56™* 0.32%*
R .006** 350%* A12%* 170**
Mean 0.02 0.23 0.40 0.14

Dependent Variable = VB_PATTERN; CP = Number of cost pools; DISPI = Number of “big” resources; DISP2 = Share of costs that are assigned to “big” resources;
DENS = Degree of resource sharing; CORI = Correlation between volume resources; COR2 = Correlation between batch resources; Q_VAR = Disparity in production
volumes; VolumeDriver = Indicator variable for the usage of a volume-based cost driver (1) or activity-based cost driver (0); bl_size = share of resources that are batch-
level; pl_size = share of resources that are product-sustaining-level; fl_size = share of resources that are facility-sustaining-level; Presented B coefficients are standardized;
* indicates p < .05.

** indicates p < .01.

https://doi.org/10.1371/journal.pone.0290370.t008

along different hierarchy tiers, resulting in a less pronounced pattern. Collectively, these results
suggest that distinguishing between different levels and types of the cost hierarchy further con-
tributes to a better understanding of the pattern.

Conclusion and discussion

In this paper, we investigated the mechanism behind the pattern of product cost cross-subsidi-
zation in a large-scale simulation experiment based on a replication of the computational
model developed by Anand, Balakrishnan, and Labro (1). To ensure the accuracy of our repli-
cation, we followed the best practices of computational replications, including building on the
conceptual model underpinning the original model and detecting potential implementation
and programming errors. We also employed a pattern-oriented modeling strategy to guide
our more detailed analyses within the original and replicated models and their behavior [17].
We selected three well-documented empirical patterns to test the distributional and numerical
equivalence of the models’ outcomes. We compared the statistical moments of the distribu-
tions of interest to assess their likeness. We propose this approach as it is more straightforward
and robust than the traditional statistical tests used to test distributional equivalence (e.g., t-
tests or Kolmogorov-Smirnov-test), which are deemed problematic considering the large sam-
ple sizes typical for simulation experiments. While numerical equivalence was not achieved (as
expected for models with several stochastic components), we found distributional equivalence
for all patterns. In sum, our results verified relational and distributional equivalence between
the original and replicated models, thus confirming replication success.

Next, we used the replicated model to investigate the mechanism behind the pattern of
product cost cross-subsidization in volume-based costing systems. The original model was not
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designed to reproduce this pattern, and the initially implemented production environment
only created unit-level costs that correlated highly with production quantities. To reproduce
the observed pattern, we extended the model by adding two new components: a volume-based
cost driver and non-unit-level costs. Our findings revealed that both components must be
incorporated to successfully reproduce the pattern, suggesting that a more diverse production
environment, including non-unit-level costs, is required for product cost cross-subsidization
in volume-based costing systems. By using a large-scale simulation experiment, we were able
to analyze the mechanism underlying the pattern in detail, identify the key variables involved,
and quantify their relationships. Our results showed that dispersed production quantities and
a high share of non-unit-level costs increase the pattern’s strength in volume-based costing
systems. Therefore, in such settings, the managers of firms should exercise prudence while
making decisions based on costs.

To better differentiate the impact of non-unit-level costs, we extended our model in a sec-
ond way by implementing two complete four-tier ABC cost hierarchies. This allowed us to
explore the impact of different cost hierarchies on the pattern of product cost cross-subsidiza-
tion, thereby gaining a more detailed understanding of how the pattern emerges in different
production environments. Our approach to investigate the full effect of the four-tier ABC cost
hierarchy on the pattern of product cost cross-subsidization is based on empirical observations
and theoretical predictions. We derive a pattern-orientated modeling approach to achieve this.
The results show that the pattern diminishes when batch-level, product-sustaining-level, or
facility-sustaining-level resource consumption does not have a zero or negative correlation
with unit-level cost drivers, corroborating the identified mechanism. While the pattern of
cross-subsidization has been observed in several case studies [12,77], our identified mecha-
nism suggests that both empirical and theoretical ABC cost hierarchies can produce the pat-
tern. However, our findings indicate that the theoretical hierarchies with negative correlations
are especially critical in generating this pattern and may exist in the production environments
of certain firms for which the pattern has been reported [4,12].

Our study makes two significant contributions to the literature. First, we contribute to sim-
ulation-based and analytical accounting research on costing system design and accuracy by
successfully replicating the ABL framework and extending it with a volume-based cost driver
and different cost hierarchies. By doing so, we complement investigations that were limited to
a few examples [37] or that focused on the product cost cross-subsidization pattern of ABC
systems [7]. Our study also contributes to the discussion of volume-based costing, which is still
widely used in practice [34]. Additionally, our modeling approach can be useful when investi-
gating decisions and practices that require more detailed cost hierarchies, such as customer or
product profitability analysis. Such insights can be particularly relevant and add a new dimen-
sion to existing studies. This underscores the importance of measuring the cost hierarchy in
practice when investigating cost-based decision-making. Overall, our study contributes to the
discussion on costing system design and provides useful insights into cost accuracy and errors
in reported product costs.

Second, our study also contributes to the discussion of cost hierarchies in accounting
research [67]. Specifically, we synthesize empirical observations with theoretical predictions
about resource consumption correlation to develop a modeling approach for different cost
hierarchies. By linking simulation-based research on costing system design with empirical
research on ABC cost hierarchies [39], we leverage the advantages of simulation modeling to
examine the conditions under which cost hierarchies are less likely to result in product cost
cross-subsidization in volume-based costing systems. This information can be valuable when
estimating the potential occurrence of product cost cross-subsidization in practice. In addi-
tion, our research offers a fresh perspective on cost driver research [78] by investigating the
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emergence of the pattern of product cost cross-subsidization in both theoretical and empirical
ABC cost hierarchies. We detail this understanding by reviewing prior empirical findings of
cost hierarchy characteristics and allow for a more explicit linkage to specific types of cost hier-
archies and their effect on the pattern of product cost cross-subsidization.

On a different note, our investigation does not come without limitations. First and fore-
most, we scrutinize the mechanism behind the pattern of product cost cross-subsidization in a
simplified simulation model. Our approach may neglect confounding factors present in empir-
ical studies, as well as how managerial action influences how resources are consumed over
time. Hence, it is important to consider the impact of managerial action and the resulting
timely perspective on cost hierarchies, as other theories on cost behavior suggest [76]. We,
therefore, encourage future research to investigate the effect of such characteristics on the pat-
tern of product cost cross-subsidization. Furthermore, because empirical proof of the existence
of a cost hierarchy is limited [70], contemporary cost accounting argues that the traditional
fixed and variable cost structure may be more accurate [67]. Since we did not incorporate this
in our investigation, further research is needed to better understand the relationship between
activities and overhead costs. Nevertheless, we believe that our findings will provide a solid
stepping-stone for such considerations and guide future empirical and simulation-based
research on this topic.
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