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Abstract

The Omicron SARS-CoV-2 variant continues to strain healthcare systems. Developing tools

that facilitate the identification of patients at highest risk of adverse outcomes is a priority.

The study objectives are to develop population-scale predictive models that: 1) identify pre-

dictors of adverse outcomes with Omicron surge SARS-CoV-2 infections, and 2) predict the

impact of prioritized vaccination of high-risk groups for said outcome. We prepared a retro-

spective longitudinal observational study of a national cohort of 172,814 patients in the U.S.

Veteran Health Administration who tested positive for SARS-CoV-2 from January 15 to

August 15, 2022. We utilized sociodemographic characteristics, comorbidities, and vaccina-

tion status, at time of testing positive for SARS-CoV-2 to predict hospitalization, escalation

of care (high-flow oxygen, mechanical ventilation, vasopressor use, dialysis, or extracorpo-

real membrane oxygenation), and death within 30 days. Machine learning models demon-

strated that advanced age, high comorbidity burden, lower body mass index, unvaccinated

status, and oral anticoagulant use were the important predictors of hospitalization and esca-

lation of care. Similar factors predicted death. However, anticoagulant use did not predict

mortality risk. The all-cause death model showed the highest discrimination (Area Under the

Curve (AUC) = 0.903, 95% Confidence Interval (CI): 0.895, 0.911) followed by hospitaliza-

tion (AUC = 0.822, CI: 0.818, 0.826), then escalation of care (AUC = 0.793, CI: 0.784,

0.805). Assuming a vaccine efficacy range of 70.8 to 78.7%, our simulations projected that

targeted prevention in the highest risk group may have reduced 30-day hospitalization and

death in more than 2 of 5 unvaccinated patients.
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Introduction

The World Health Organization (WHO) estimates that the COVID-19 pandemic has resulted

in over 521 million infections and 6.2 million deaths globally [1]. High mutation rates and the

relatively rapid emergence of SARS-CoV-2 variants led to multiple surges that have strained

healthcare systems worldwide. The Omicron (B.1.1.529) variant became the predominant

cause of SARS-CoV-2 infections in the U.S. by January 2022 [2, 3], after identification in

South Africa in November 2021 [4, 5]. Although Omicron variants and sub-variants have been

linked to lower rates of hospitalization and death, [3, 6–8] Omicron-driven surges continued

to challenge healthcare systems due to higher infectivity, partial vaccine escape, and antibody

resistance [3, 7].

Predictive modeling during the pandemic has provided crucial insight into clinical out-

comes with COVID-19 infections; however, to date, these risk prediction tools have largely not

included data for Omicron variants and have inconsistently incorporated important clinical

factors such as vaccination status [9–12]. In this study, we first applied machine learning (ML)

models to identify baseline patient characteristics that predict risk for hospitalization, escala-

tion of care, and mortality among SARS-CoV-2 positive US Veterans during a recent seven-

month observation period (January 15 –August 15, 2022) when Omicron variants predomi-

nated. Our models incorporated previously under-utilized factors including vaccination status.

Then, we extended our models to quantify the predicted impact of a mitigating strategy such

as prioritized vaccination of high-risk groups on reducing the short-term risk of hospitaliza-

tion, escalation of care, and death during the observation period. To do this, we utilized a well-

characterized cohort of U.S. Veterans with SARS-CoV-2 infection in a national Veteran Health

Administration (VHA) database.

Materials and methods

Study cohort

Our study cohort consisted of all 172,814 Veterans who first tested positive for COVID-19

between January 15 and August 15, 2022, as captured by the VHA’s COVID-19 Shared Data

Resource with data curation within the VHA’s Corporate Data Warehouse (CDW). No new

data were collected, and no direct patient (or participant) contact took place. Patients’ curated

electronic health records in the VHA’s CDW were analyzed behind the VHA secured firewall

as part of the VHA research data initiative, Leveraging Electronic Health Information to

Advance Precision medicine (LEAP, CSP#2012), which has been approved by VHA’s Central

Institutional Review Board and Research & Development Committees at 3 VA Medical Cen-

ters (Salt Lake City, Palo Alto, and West Haven). The VHA’s CIRB approved a waiver of

requirement to obtain informed consent. The date of the first positive test is defined as the

index date. For the selected cohort within the data resource, there were no missing data for the

selected fields and unknown covariates were indicated as such. Patients outside the age range

of 18 to 100, outside the Body Mass Index (BMI) range of 15 to 100, or who experienced rein-

fection during the 8-month observation period were excluded from the analysis.

Study outcomes

We predicted the risk of developing one of the following three distinct, non-mutually exclusive

clinical outcomes representing SARS-CoV-2 severity within 30 days of infection: (i) hospitali-

zation, (ii) escalation of care (defined as the need for high-flow supplemental oxygen, mechan-

ical ventilation, vasopressors, renal replacement therapy [with no prior dialysis in the

preceding two years], or extracorporeal membrane oxygenation [ECMO]), and (iii) all-cause
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mortality. Patients who tested positive for SARS-CoV-2 were deemed to have ‘mild’ infection

if they did not experience any of the three outcomes of interest within 30 days of infection.

The Upset plot was generated using the UpsetR package [13].

Clinical features

A total of 159 patient characteristics including medical comorbidities, demographic data, vac-

cination status, and comorbidity indices were available for each patient prior to feature selec-

tion. The medical history included pre-existing conditions, procedures, and medications. All

medical history values were classified using a Boolean system for presence or absence of the

specific medical condition within two years prior to the current COVID-19 infection. Demo-

graphic and clinical data employed in the modeling included age, sex, race/ethnicity, blood

type, BMI, veteran status, whether overweight at index date, rurality of current residence, and

veteran priority status (a surrogate for income status and benefits eligibility). These covariates

were multimodal (float, categorical and Boolean). Vaccination status was represented as a cate-

gorical score from 0 to 5 as follows: 0 = no vaccination, 1 = partial-mRNA vaccination, 2 = full

vaccination (two doses of mRNA or a single dose of viral vector-based vaccine) > 5 months

from index date, 3 = fully-vaccinated and boosted >5 months prior to the index date,

4 = fully-vaccinated <5 months prior to the index date, 5 = fully-vaccinated and boosted <5

months prior to the index date. Vaccines given outside of the VHA were available in the VHA

COVID-19 Shared Data Resource and reflected in our dataset. Vaccination status accounted

for a two-week efficacy window. Medical comorbidity burden was assessed by Charlson

Comorbidity Index (CCI) [14] and Elixhauser Index [15] scores for the two years prior to

infection. An overall CCI and Elixhauser index score was also determined. A complete list of

covariates is included in S1 Table.

Model development and performance

For each of the 3 main outcomes of interest, we developed a distinct binary model that incorpo-

rated 159 unique covariate features using gradient boosting automated machine learning meth-

ods. A recursive feature elimination approach was used to find the most parsimonious models.

Our data was split chronologically with training/validation data from January 15, 2022 to April

15, 2022 and our test data from April 16, 2022 to August 15, 2022. Covariates with variance lower

than 1% within the training set were removed, and non-binary values were scaled from 0 to 1.

Model training and optimization were performed on the training and validation sets. The

H2O AI package for automated machine learning was used to train each model and the valida-

tion set was used for benchmarking the optimization process [16]. An initial heuristic search

through available modeling methods using this package identified gradient boosting machines

as the highest performers (S2 Table). Stacked models were not considered due to low interpret-

ability to performance tradeoff. All subsequent modeling was done using gradient boosting

machines. Class imbalance within this study is a bias towards patients not having a severity

outcome, and this was overcome by oversampling of the minority class where patients did

have a severity outcome in training of the models to allow for higher predictive performance.

The binary threshold for the models was calculated by finding the threshold with the max geo-

metric mean for specificity and sensitivity on the test set. The 95% confidence intervals for the

performance metrics were determined using the stat_util python package and its bootstrap-

ping method with 100 iterations [17].

All reported performance metrics were generated on the set aside test set. Receiver operator

characteristic (ROC) and precision recall curves and their respective area under curve (AUC)
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were calculated using the scikit-learn metrics package [18]. The precision recall curves were

normalized by using sample weights.

Model interpretation and applications

Feature importance values were extracted from the H2O generated models [16]. Relative

importance is calculated as the decrease in mean squared error weighted by the number of

samples passing through a given node for all trees. The percentage reported here is the fraction

of a given feature against all other feature relative importance values.

Shapley Additive exPlanations (SHAP) values were generated on the test set using the

SHAP python package and a tree-based explainer [19]. SHAP values were calculated on ran-

dom sampling of 1,000 patients from the test set. Summary plots were generated by plotting

the SHAP values in a bee swarm fashion.

For simulating the impact of targeted vaccinations, we selected the unvaccinated subset of

our cohort from our test set. For each strategy scenario, we projected the potential reduction

in outcomes if the patients were fully vaccinated (4 score in our vaccination status). The pro-

jection required two steps. The first was to project how many symptomatic infections would

be prevented and thus prevent the outcome. To accomplish this, we randomly sampled and

removed patients from our target group based on a published vaccine efficacy 95% CI range of

0.708 to 0.787 which we sampled from in a uniform fashion [20]. The second was to project

for the remaining patients in our target group whether being fully vaccinated would have pre-

vented the outcome. For this we used our model and determined if their predicted outcome

changed when we altered the vaccination status score from 0 to 4. We then summed the

remaining outcomes in our target group to determine the reduction. The 95% confidence

intervals for the projections were determined using the stat_util python package and its boot-

strapping method with 100 iterations [17].

Results

Patient population and clinical predictors of COVID-19 infection severity

In a national VHA cohort of 172,814 Veterans who first tested positive for SARS-CoV-2 during

a period in which the Omicron variant predominated (January 15-August 15, 2022), the

median age was 62 years and 84% were men (Table 1). The racial/ethnic composition of the

cohort was typical for a US Veteran population; 65.5% of the patients were white, 19% were

black, and 9.4% were Hispanic. Asian, Native Hawaiian or Pacific Islander, and American

Indian or Alaskan Native Veterans each represented approximately 1% of the cohort. (Table 1).

Baseline characteristics of study cohort of U.S. Veterans who tested positive for SARS-CoV-2.

Overall, 89.5% of Veterans had mild SARS-CoV-2 infections. Among Veterans who tested

positive for SARS-CoV-2, 9.2% required hospitalization, 2.2% needed escalation of care, and

1.5% died (Table 1 and Fig 1). In the subset of hospitalized infected patients, a higher percent-

age required escalation of care (18%) and died (7%) compared to the overall cohort (Fig 1).

Patients who died or required hospitalization and/or escalation of care were older and more

likely to be male. Conversely, patients who had mild infections had a higher body mass index

(BMI) than those who did not (Table 1). A higher percentage of patients who died were white,

compared to the overall cohort (78.1% vs 65.5%). In contrast, a lower percentage of patients

who died were black, compared to those in the overall cohort (11.3% vs. 19%) (Table 1).

Patients with non-mild infections had higher prevalence of diabetes, congestive heart fail-

ure, cerebrovascular disease, chronic kidney disease, and cirrhosis. Dementia was also more

prevalent among patients who required hospitalization, required escalation of care, or died

within 30 days after testing positive. While chronic lung disease also was more prevalent,
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diagnoses of asthma and bronchitis in the 2 years prior to infection was similar among mild

and non-mild infections.

Our study included detailed vaccination data (Table 1). Over 29.1% of the overall cohort

were unvaccinated (neither partially or fully vaccinated). Moreover, unvaccinated Veterans

accounted for a disproportionately greater percentage of deaths (41.4%) compared to fully

vaccinated and recently boosted (< 5 months) Veterans, who accounted for only 14.7% of the

overall cohort and 11.8% of deaths. The more advanced the patients’ vaccination status, the

lower their contribution to deaths (Table 1). Similar trends were observed by vaccination

status for the patient groups who required hospitalization or escalation of care (Table 1).

Table 1. 30-day outcomes after a positive SARS-CoV-2 test.

Mild Hospitalized Escalation Mortality Overall

Characteristics n = 154,740 (89.5%) n = 15,831 (9.2%) n = 3,723 (2.2%) n = 2,578 (1.5%) n = 172,814

Age (median [IQR]) 61 [47, 72] 72 [64, 78] 72 [64, 77] 77 [72, 85] 62 [49, 73]

BMI, mean (SD) 30.3 (6.2) 28.1 (6.9) 28.4 (7.0) 26.7 (6.7) 30.1 (6.3)

Men, No. (%) 127,997 (82.7) 14,962 (94.5) 3,515 (94.4) 2,529 (98.1) 145,093 (84.0)

Race, No. (%)

White 100,477 (64.9) 10,941 (69.1) 2,706 (72.7) 2,013 (78.1) 113,156 (65.5)

Black 29,132 (18.8) 3,379 (21.3) 640 (17.2) 291 (11.3) 32,762 (19.0)

Asian 2,514 (1.6) 94 (0.6) 26 (0.7) 16 (0.6) 2,626 (1.5)

Native American/Alaska Native 1,274 (0.8) 133 (0.8) 30 (0.8) 21 (0.8) 1,423 (0.8)

Native Hawaiian/Other Pacific Islander 1,694 (1.1) 104 (0.7) 40 (1.1) 24 (0.9) 1,825 (1.1)

Unknown 19,649 (12.7) 1,180 (7.5) 281 (7.5) 213 (8.3) 21,022 (12.2)

Hispanic or Latino, No. (%) 14787 (9.6) 1254 (7.9) 319 (8.6) 166 (6.4) 16184 (9.4)

Vaccination Status, No (%)

0-Unvaccinated 44,893 (29.0) 4,500 (28.4) 1,211 (32.5) 1,067 (41.4) 50,263 (29.1)

1-Parital mRNA (1 dose) 2,641 (1.7) 333 (2.1) 70 (1.9) 60 (2.3) 3,018 (1.7)

2-Fully Vaccinated > 5 months prior 38,675 (25.0) 4099 (25.9) 948 (25.5) 725 (28.1) 43,376 (25.1)

3-Fully Vaccinated with Booster > 5 months prior 42,526 (27.5) 4,263 (26.9) 899 (24.1) 387 (15.0) 47,195 (27.3)

4-Fully Vaccinated < = 5 months prior 3,256 (2.1) 305 (1.9) 68 (1.8) 36 (1.4) 3,598 (2.1)

5-Fully Vaccinated with Booster < = 5 months prior 22,749 (14.7) 2,331 (14.7) 527 (14.2) 303 (11.8) 25,364 (14.7)

Comorbidities (2 years prior), No. (%)

Asthma 11,229 (7.3) 1,026 (6.5) 250 (6.7) 101 (3.9) 12,394 (7.2)

Bronchitis 5,820 (3.8) 884 (5.6) 205 (5.5) 115 (4.5) 6,785 (3.9)

Cardiomyopathy 4,128 (2.7) 1,374 (8.7) 319 (8.6) 222 (8.6) 5,662 (3.3)

Cancer 19,938 (12.9) 4,146 (26.2) 991 (26.6) 828 (32.1) 24,693 (14.3)

Cerebrovascular Disease 2,508 (1.6) 874 (5.5) 194 (5.2) 132 (5.1) 3,472 (2.0)

Congestive Heart Failure 8,616 (5.6) 3,668 (23.2) 909 (24.4) 657 (25.5) 12,749 (7.4)

Cirrhosis 2,583 (1.7) 849 (5.4) 228 (6.1) 163 (6.3) 3,534 (2.0)

CKD 16,723 (10.8) 4,753 (30.0) 1,192 (32.0) 967 (37.5) 22,182 (12.8)

Chronic Lung Disease 41,082 (26.5) 6,986 (44.1) 1,710 (45.9) 1,120 (43.4) 49,005 (28.4)

Cardiovascular Disease 43,506 (28.1) 9,236 (58.3) 2,197 (59.0) 1,593 (61.8) 53,997 (31.2)

Dementia 4,901 (3.2) 2,220 (14.0) 417 (11.2) 558 (21.6) 7,479 (4.3)

Diabetes 43,357 (28.0) 7,320 (46.2) 1,751 (47.0) 1,224 (47.5) 51,671 (29.9)

Comorbidity Indices, mean (SD)

CCI within 2yrs 1.4 (1.9) 3.4 (2.9) 3.5 (2.9) 3.8 (2.9) 1.6 (2.1)

CCI, ever 2.4 (2.7) 5.1 (3.5) 5.2 (3.6) 5.6 (3.5) 2.7 (2.9)

Elixhauser within 2 yrs 0.3 (8.3) 8.5 (13.6) 9.3 (13.8) 11.0 (13.8) 1.1 (9.3)

Elixhauser, ever 1.8 (11.7) 13.2 (16.4) 13.7 (16.9) 16.5 (16.4) 2.9 (12.8)

https://doi.org/10.1371/journal.pone.0290221.t001
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Model performance

After recursive feature selection evaluated the importance of 159 covariates, hospitalization

had 25 relevant covariates, escalation of care had 75 relevant covariates, and mortality had 25

relevant covariates. The binary ML models predicted all 3 outcomes with good discrimination;

all models had thresholds that maximized balance in performance, with sensitivity, specificity,

and precision greater than 72% (Table 2). Consistent with its deterministic nature, death was

predicted with better discrimination than the other outcomes, based on AUCs for both the

receiver operator characteristic (ROC) (AUC = 0.903 95% CI [0.895, 0.911]) and normalized

precision recall curves (AUC = 0.889 95% CI [0.879, 0.897]) (Fig 2). The model predicting

Fig 1. Upset plot of non-exclusive 30-day outcomes of interest in US Veterans. A dot in each row represents patients experiencing that outcome

at any time within 30 days after testing positive. The vertical line connecting two (or more) dots represents patients who experienced two or more of

the outcomes at any time within 30 days after testing positive.

https://doi.org/10.1371/journal.pone.0290221.g001

Table 2. Performance of machine learning models for predicting hospitalization, escalation of care, and death

within 30 days after SARS-CoV-2 infection.

Outcome Specificity [95% CI] Sensitivity [95% CI] Precision [95% CI]

Hospitalization 0.74 [0.73,0.74] 0.76 [0.75,0.77] 0.74 [0.74,0.75]

Escalation of care 0.72 [0.71,0.72]) 0.75 [0.73,0.77] 0.73 [0.72,0.73]

Mortality 0.83 [0.83,0.83] 0.82 [0.79,0.85] 0.83 [0.82,0.83]

https://doi.org/10.1371/journal.pone.0290221.t002
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hospitalization had better discrimination than the model for the need for escalation of care

(hospitalization: AUC = 0.822 95% CI [0.818, 0.826]; escalated hospital care: AUC = 0.793 95%

CI [0.784, 0.805]) (Fig 2).

Fig 2. Classification performance curves with respective area under curve (AUC) and 95% confidence intervals.

(A) Receiver Operating Characteristic (ROC) curve for each model with respective false positive and true positive rates

at the classification thresholds indicated by black dots. (B) Normalized precision recall curve for each 30-day outcome.

https://doi.org/10.1371/journal.pone.0290221.g002
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Model interpretation

We evaluated the covariates that most predicted risks of hospitalization, escalation of care, and

mortality within 30 days of a SARS-CoV-2 positive test during the observation period. Feature

importance was measured as the fraction of total error reduction for a given covariate (Fig 3).

We generated SHAP summary plots to show the impact of covariate values on predictive

output (S1 Fig). Advanced age was the second most predictive covariate for hospitalization

(Fig 3A and S1A Fig). It was also the most predictive covariate for escalation of care (Fig 3B

and S1B Fig) and mortality, accounting for more than 50% of relative importance (Fig 3C and

S1C Fig).

Weighted indices of comorbid illnesses, the Charlson Comorbidity index (CCI) [14] and

Elixhauser index [15], were more robust predictors of the adverse outcomes than individual

cardiometabolic, renal, and respiratory conditions (Fig 3). BMI was highly predictive of the

outcomes; BMI was inversely proportional to predicted risk, based upon SHAP analysis (Fig 3

and S1 Fig). Veterans taking an oral anticoagulant at any time in the two years prior to testing

positive for SARS-CoV-2 had higher risks of hospitalization and need for escalation of care

(Fig 3A, 3B and S1A, S1B Fig). Patients who had been prescribed vasopressors at any time in

the prior two years had a higher predicted risk for escalation of care, while patients on the

diuretic, furosemide, had higher predicted risk for mortality (Fig 3B, 3C and S1B, S1C Fig).

Fully vaccinated and boosted patients had lower predicted risks of hospitalization, escala-

tion of care, and death at 30 days. Additionally, unknown blood type and alternative insurance

were among the most significant predictors of a lower risk for hospitalization, while residing

in non-rural areas and being male were among the most important predictors of mortality risk

(Fig 3A, 3C and S1A, S1C Fig).

Projected impact of risk-prioritized vaccination strategies

To project the impact of targeted vaccination on adverse outcomes using the prediction mod-

els, we examined the unvaccinated subset (n = 22,082) from the test cohort (n = 92,080). We

projected the number of adverse outcomes for three in silica scenarios: (1) vaccination of all

Veterans within the unvaccinated subset, (2) random vaccination of 20% of the unvaccinated

Veterans, and (3) vaccination of only the Veterans in the top quintile of predicted risk for

adverse outcomes (Table 3). Using sensitivity tradeoff curves (S2 Fig), we observed a step-up

of predicted risk at the top quintile. Therefore, we selected the cut-off to be the top quintile of

the population. In turn, our modeling projected the optimum impact of risk-prioritized vacci-

nation strategy. Full vaccination of the entire unvaccinated population in our test set was pre-

dicted to reduce hospitalizations by 82.1% (from 1,698 to 304), escalations of care by 82.9%

(from 351 to 60), and deaths by 84.4% (from 179 to 28.1). When a random 20% of the unvacci-

nated population was vaccinated in the projection modeling, hospitalizations were reduced

from 1,698 to 1,504 (11.4% reduction), escalations of care from 351 to 313 (10.8%), and deaths

from 179 to 161 (10.1%). When vaccinating the patients in the top quintile (20%) of the highest

risk for adverse outcomes, hospitalizations were reduced from 1,698 to 1,017 (40.1%), escala-

tions of care from 351 to 233 (33.6%), and deaths from 179 to 101 (43.6%).

Discussion

In a national cohort of 172,814 US Veterans who tested positive for SARS-CoV-2 during the

Omicron surge, we demonstrated the most robust prediction discrimination to date for 30-day

risk for hospitalization, escalation of care, and mortality after COVID-19 infection, using ML

methods. Our ML models leveraged data including detailed vaccination status during the

Omicron surge. We identified predictors for, and projected subgroups of, high-risk individuals
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Fig 3. Clinical feature importance plot. (A) hospitalization, (B) escalation of care, and (C) mortality. Feature

importance values for each of the three outcomes of interest are presented as a percentage, which is indicative of the

fraction of error reduction that a given feature contributed to the model.

https://doi.org/10.1371/journal.pone.0290221.g003
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who stand to benefit the most from advancing vaccination status. Prioritizing vaccination of

individuals in the highest quintile of predicted risk for hospitalization or death was projected

to produce greater than 3.5-fold projected reductions in hospitalization and death, compared

to randomly vaccinating 20% of the population.

Previous prediction models, including those developed in the VHA, utilized data collected

prior to the emergence of the Omicron SARS-CoV-2 variant [9–12]. A large retrospective

analysis of over 1.5 million vaccinated patients in the VHA showed relatively low rates of

breakthrough infections and related complications such as pneumonia and death [21]. This

statistically powerful investigation excluded unvaccinated individuals and anyone with a prior

history of COVID-19 infection, and risk prediction modeling was not a primary focus of that

report. Although a prior smaller study incorporated vaccination into ML risk prediction

modeling for COVID-19 [22], our study incorporated stratified vaccination status, which

reflects degree of protection through number and timing of primary and booster vaccines in

an ML-driven risk prediction model.

Compared to recent studies, ML models in the present study demonstrated more robust

discrimination by AUC in predicting 30-day risk for hospitalization (AUC 0.822), escalation

of care (AUC 0.793), and mortality (AUC 0.903) with COVID-19 infection. Two prior stud-

ies derived from cohorts of ~4,500 patients each demonstrated lower AUCs (0.804 and

0.813) for predicting hospitalization [23, 24]. A previous model developed from a large

VHA cohort of 7,635,064 (both infected and non-infected) with an observation window

from May 21 to November 2, 2020 predicted 30-day mortality with a validation AUC of

0.836 (95% CI, 82.0%-85.3%) [9]. In addition, a recent study of 1,201 patients who con-

tracted SARS-CoV-2 in Spain in 2020 predicted 30-day mortality with an AUC of 0.872

[25]. Commonly identified covariates in prior studies, advanced age and higher medical co-

morbidity indices, were associated with higher risks for the adverse outcomes of interest in

our models [9–11]. Our models identified a general inverse association between BMI and

predicted risk for adverse outcomes. This contrasts a prior meta-analysis that demonstrated

that higher BMI (and visceral adiposity) correlates with a higher risk of hospitalization, mor-

tality, and other adverse outcomes such as admission to ICU and need for mechanical venti-

lation [26].

Consistent with prior vaccine trials [27], our study indicated that vaccination reduces

hospitalizations, escalation of care, and deaths. Individuals who were fully vaccinated and

boosted within 5 months from testing SARS-CoV-2 positive had the greatest projected

protection. Use of oral anticoagulants in the two years prior to current infection strongly

predicted 30-day hospitalization and escalation of care. The biological basis of this obser-

vation may be related to the underlying medical conditions that warranted anticoagulation

or to specific effects of the anticoagulants themselves. Notably, baseline furosemide use

was associated with a higher risk of death, suggesting that underlying heart failure or vol-

ume-expanded states are important determinants of infection severity in Omicron

infections.

Table 3. Observations and projections for occurrences for hospitalization, escalation of care, and mortality, for three vaccination scenarios.

Observed Projections (boostrap = 100)

Outcome (30-day

Risk)

Unvaccinated

(n = 22,082)

Vaccination of All Unvaccinated

[95% CI]

Vaccination of Random 20%

[95% CI]

Vaccination in Top Quintile (20th %ile)

Risk [95% CI]

Hospitalization 1,698 304.05 [303.39, 304.71] 1,504.19 [1503.63, 1504.75] 1,017.14 [1016.64, 1017.63]

Escalation of Care 351 59.56 [59.27, 59.85] 313.03 [312.77, 313.28] 233.13 [232.9, 233.36]

Mortality 179 28.07 [27.87, 28.27] 161.13 [160.96, 161.3] 101.36 [101.17, 101.54]

https://doi.org/10.1371/journal.pone.0290221.t003

PLOS ONE Predicting clinical outcomes of SARS-CoV-2 infection during the Omicron wave

PLOS ONE | https://doi.org/10.1371/journal.pone.0290221 April 25, 2024 10 / 14

https://doi.org/10.1371/journal.pone.0290221.t003
https://doi.org/10.1371/journal.pone.0290221


Limitations

The present findings in this national study of US Veterans may not be broadly applicable to

the general population. Consistent with the US Veteran population, our study cohort was pre-

dominantly male and white with greater medical comorbidity and lower socioeconomic status

than the general US population. The relevance of the models remains limited for racial/ethnic

minority communities who have borne a disproportionate burden during the pandemic. How-

ever, the methodology used here can be applied and adapted to other populations or health

care systems. Additionally, while some recent work has sought to remove confounding effects

from machine learning models in imaging [28, 29], these statistical approaches can lead to

biases in estimating predictive modeling performances [30, 31]. While statistical analysis is

best suited for estimating the causality of features on outcome, here we sought to optimize

robust predictive performance through machine learning and highlight predictive features.

For vaccine projections, all outcomes of interest were assumed to be the result of SARS-CoV-2

infection. While the VHA COVID-19 Shared Data Resource database captures all deaths, it

does not capture hospitalizations and care received outside the VA. This may explain why hav-

ing other non-VHA insurance was associated with lower rates of 30-day hospitalization given

that patients with non-VHA insurance may have sought care outside the VA. The VHA

COVID-19 Shared Data Resource database also does not establish whether SARS-CoV-2/

COVID-19 is the reason for hospitalization, escalation of care, or death. Determining this is

challenging. Our modeling also does not include laboratory or imaging data; these data have

been shown to have robust predictive value post index date [32–35]. Finally, the model results

were most relevant to Omicron variants and sub-variants and may not be relevant to other

pathogenetic SARS-CoV-2 variants.

Conclusions

Our ML risk prediction modeling approach provides robust discrimination in predicting

hospitalization, escalated hospital care and death within 30 days of testing positive for

SARS-CoV-2 infection during a recent observation period in which Omicron variants are the

major cause of COVID-19. It can inform health care system vaccination and resource alloca-

tion decisions by characterizing individuals and subpopulations at low-to-high risk for 30-day

hospitalization, escalated hospital care or death, and identifying those who might benefit least-

to-most from preventive intervention. While this modeling was developed specifically for the

Omicron variant surge, analogous modeling can be developed and implementable rapidly in

real-time to guide vaccination strategies and resource allocation during future COVID-19

surges.

Supporting information

S1 Table. Covariates used in predictive modeling. A table of all potential covariates that were

investigated with a brief definition.

(XLSX)

S2 Table. Comparison of modeling approaches. A table of the performance metrics given

here as ROCAUC for different machine learning algorithms for each severity outcome.

(XLSX)

S1 Fig. SHAP summary plots for 30-day outcomes of interest. (A) hospitalization, (B) esca-

lation of care, and (C) mortality. Covariates are listed in order of highest to lowest impact

(based on absolute mean SHAP value) along the y-axis. Each blue or red point represents a

patient’s specified covariate value; that value is color coded in a heat map fashion per the
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legend. The x-axis is the SHAP value for the specific covariate, with SHAP values greater than

0 indicating higher predicted risk contribution and values less than 0 indicating lower pre-

dicted risk contribution for the given outcome.

(TIF)

S2 Fig. Sensitivity tradeoff curve. A plot of the percentile of a target outcome as it relates to

the risk percentile for our test population.

(TIF)
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11. Jung C, Excoffier J-B, Raphaël-Rousseau M, Salaün-Penquer N, Ortala M, Chouaid C. Evolution of

hospitalized patient characteristics through the first three COVID-19 waves in Paris area using machine

learning analysis. PloS One. 2022; 17: e0263266. https://doi.org/10.1371/journal.pone.0263266 PMID:

35192649

12. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and Validation of a Clinical Risk

Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA Intern

Med. 2020; 180: 1081–1089. https://doi.org/10.1001/jamainternmed.2020.2033 PMID: 32396163

13. UpSetR: an R package for the visualization of intersecting sets and their properties | Bioinformatics |

Oxford Academic. [cited 14 Jul 2022]. Available: https://academic.oup.com/bioinformatics/article/33/18/

2938/3884387

14. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity

in longitudinal studies: development and validation. J Chronic Dis. 1987; 40: 373–383. https://doi.org/

10.1016/0021-9681(87)90171-8 PMID: 3558716

15. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity Measures for Use with Administrative

Data. Med Care. 1998; 36: 8–27. https://doi.org/10.1097/00005650-199801000-00004 PMID: 9431328

16. LeDell E, Poirier S. H2O AutoML: Scalable Automatic Machine Learning. 7th ICML Workshop Autom

Mach Learn AutoML. 2020. Available: https://www.automl.org/wp-content/uploads/2020/07/AutoML_

2020_paper_61.pdf

17. mateuszbuda. Machine Learning Statistical Utils. 2022. Available: https://github.com/mateuszbuda/ml-

stat-util

18. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. J Mach Learn Res. 2011; 12: 2825–2830.

19. Lundberg S, Lee S-I. A Unified Approach to Interpreting Model Predictions. arXiv; 2017 Nov. Report

No.: arXiv:1705.07874. https://doi.org/10.48550/arXiv.1705.07874

20. Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 Vaccine Effective-

ness against the Omicron (B.1.1.529) Variant. N Engl J Med. 2022; 386: 1532–1546. https://doi.org/10.

1056/NEJMoa2119451 PMID: 35249272

21. Kelly JD, Leonard S, Hoggatt KJ, Boscardin WJ, Lum EN, Moss-Vazquez TA, et al. Incidence of

Severe COVID-19 Illness Following Vaccination and Booster With BNT162b2, mRNA-1273, and

Ad26.COV2.S Vaccines. JAMA. 2022; 328: 1427–1437. https://doi.org/10.1001/jama.2022.17985

PMID: 36156706

22. Ong SWX, Tham SM, Koh LP, Dugan C, Khoo BY, Ren D, et al. External validation of the PRIORITY

model in predicting COVID-19 critical illness in vaccinated and unvaccinated patients. Clin Microbiol

Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2022; 28: 884.e1–884.e3. https://doi.org/10.1016/j.cmi.

2022.01.031 PMID: 35150879

PLOS ONE Predicting clinical outcomes of SARS-CoV-2 infection during the Omicron wave

PLOS ONE | https://doi.org/10.1371/journal.pone.0290221 April 25, 2024 13 / 14

https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern
https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern
https://doi.org/10.1038/s41591-021-01678-y
http://www.ncbi.nlm.nih.gov/pubmed/35046573
https://doi.org/10.1016/j.ijid.2021.12.357
https://doi.org/10.1016/j.ijid.2021.12.357
http://www.ncbi.nlm.nih.gov/pubmed/34971823
https://doi.org/10.1021/acs.jcim.1c01451
https://doi.org/10.1021/acs.jcim.1c01451
http://www.ncbi.nlm.nih.gov/pubmed/34989238
https://doi.org/10.1016/S0140-6736%2822%2900462-7
https://doi.org/10.1016/S0140-6736%2822%2900462-7
http://www.ncbi.nlm.nih.gov/pubmed/35305296
https://doi.org/10.1001/jamanetworkopen.2021.4347
https://doi.org/10.1001/jamanetworkopen.2021.4347
http://www.ncbi.nlm.nih.gov/pubmed/33822066
https://doi.org/10.1093/cid/ciaa414
http://www.ncbi.nlm.nih.gov/pubmed/32271369
https://doi.org/10.1371/journal.pone.0263266
http://www.ncbi.nlm.nih.gov/pubmed/35192649
https://doi.org/10.1001/jamainternmed.2020.2033
http://www.ncbi.nlm.nih.gov/pubmed/32396163
https://academic.oup.com/bioinformatics/article/33/18/2938/3884387
https://academic.oup.com/bioinformatics/article/33/18/2938/3884387
https://doi.org/10.1016/0021-9681%2887%2990171-8
https://doi.org/10.1016/0021-9681%2887%2990171-8
http://www.ncbi.nlm.nih.gov/pubmed/3558716
https://doi.org/10.1097/00005650-199801000-00004
http://www.ncbi.nlm.nih.gov/pubmed/9431328
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://github.com/mateuszbuda/ml-stat-util
https://github.com/mateuszbuda/ml-stat-util
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1056/NEJMoa2119451
https://doi.org/10.1056/NEJMoa2119451
http://www.ncbi.nlm.nih.gov/pubmed/35249272
https://doi.org/10.1001/jama.2022.17985
http://www.ncbi.nlm.nih.gov/pubmed/36156706
https://doi.org/10.1016/j.cmi.2022.01.031
https://doi.org/10.1016/j.cmi.2022.01.031
http://www.ncbi.nlm.nih.gov/pubmed/35150879
https://doi.org/10.1371/journal.pone.0290221


23. Jehi L, Ji X, Milinovich A, Erzurum S, Merlino A, Gordon S, et al. Development and validation of a model

for individualized prediction of hospitalization risk in 4,536 patients with COVID-19. PLOS ONE. 2020;

15: e0237419. https://doi.org/10.1371/journal.pone.0237419 PMID: 32780765

24. Willette AA, Willette SA, Wang Q, Pappas C, Klinedinst BS, Le S, et al. Using machine learning to pre-

dict COVID-19 infection and severity risk among 4510 aged adults: a UK Biobank cohort study. Sci

Rep. 2022; 12: 7736. https://doi.org/10.1038/s41598-022-07307-z PMID: 35545624

25. Reina Reina A, Barrera JM, Valdivieso B, Gas M-E, Maté A, Trujillo JC. Machine learning model from a
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