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Abstract

This paper proposes a novel hybrid algorithm, named Multi-Strategy Hybrid Harris Hawks

Tunicate Swarm Optimization Algorithm (MSHHOTSA). The primary objective of

MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include

slow optimization speed, low accuracy, and premature convergence when dealing with com-

plex problems. Firstly, inspired by the idea of the neighborhood and thermal distribution

map, the hyperbolic tangent domain is introduced to modify the position of new tunicate indi-

viduals, which can not only effectively enhance the convergence performance of the algo-

rithm but also ensure that the data generated between the unknown parameters and the old

parameters have a similar distribution. Secondly, the nonlinear convergence factor is con-

structed to replace the original random factor c1 to coordinate the algorithm’s local exploita-

tion and global exploration performance, which effectively improves the ability of the

algorithm to escape extreme values and fast convergence. Finally, the swarm update mech-

anism of the HHO algorithm is introduced into the position update of the TSA algorithm,

which further balances the local exploitation and global exploration performance of the

MSHHOTSA. The proposed algorithm was evaluated on eight standard benchmark func-

tions, CEC2019 benchmark functions, four engineering design problems, and a PID param-

eter optimization problem. It was compared with seven recently proposed metaheuristic

algorithms, including HHO and TSA. The results were analyzed and discussed using statisti-

cal indicators such as mean, standard deviation, Wilcoxon’s rank sum test, and average run-

ning time. Experimental results demonstrate that the improved algorithm (MSHHOTSA)

exhibits higher local convergence, global exploration, robustness, and universality than

BOA, GWO, MVO, HHO, TSA, ASO, and WOA algorithms under the same experimental

conditions.

1. Introduction

With science and technology’s continuous development and progress, we face increasingly

complex engineering problems characterized by non-convexity, multimodality, and high-
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dimensional variability [1, 2]. The complexity of these problems renders traditional optimiza-

tion methods based on gradient descent ineffective [3]. However, solving these intricate engi-

neering problems is crucial to advancing national development and promoting scientific and

technological advancements. Therefore, it is imperative to conduct in-depth research and

explore the development of novel optimization algorithms and techniques.

In recent years, many scholars have proposed a series of metaheuristic algorithms based on

biological evolution, animal social behavior, and natural physical phenomena to address these

complex engineering constraint problems. For example, Genetic Algorithm (GA) [4, 5], Ant

Colony Optimization (ACO) [6], Artificial Rabbits Optimization (ARO) [7], Grey Wolf Opti-

mizer (GWO) [8], Grasshopper Optimization Algorithm (GOA) [9], Multi-verse Optimizer

(MVO) [10], Butterfly Optimization Algorithm (BOA) [11], Harris Hawks Optimization

(HHO) [12], Atom search optimization (ASO) [13], Whale Optimization Algorithm (WOA)

[14], among others.

These metaheuristic algorithms solve complex engineering constraints by simulating natu-

ral organisms’ population behavior and survival hunting strategies. They do not rely on the

specific form and characteristics of the problem, making them applicable to various complex

engineering problems. The strengths of these algorithms lie in their broad applicability and the

fact that they do not require specific formalization or prior knowledge about the situation. As

a result, they can achieve excellent optimization results for a wide range of practical complex

engineering problems. For instance, scholars like Altan have applied various metaheuristic

algorithms to address challenges in UAV path planning and tracking [15, 16], real-time detec-

tion of agricultural plant diseases [17], cryptocurrency forecasting [18], crude oil time series

prediction [19, 20], and wind speed prediction [21]. Additionally, GA and its variants have

been employed in production scheduling [22, 23], allocation optimization [24], search and

localization tasks [25, 26], and neural network optimization [27–29]. Furthermore, other meta-

heuristic algorithms, such as ASO, GWO, WOA, HHO, and their variations, have also been

widely applied to address complex optimization problems in fields such as battery modeling

[30, 31], feature selection [1, 32–37] and path optimization [38–41].

Although these metaheuristic algorithms have been applied to solve complex engineering

constraint problems, according to the No Free Lunch Theorem, no single optimization algo-

rithm can be universally effective for solving all optimization problems [42]. Therefore, when

dealing with complex engineering constraint problems, selecting an appropriate optimization

algorithm is crucial. Scholars such as Kaur S have proposed a Tunicate Swarm Algorithm

(TSA) [43], which simulates the hunting and population behavior of tunicate swarms and

applies it to solve various engineering constraints. For example, in image segmentation, Hous-

sein and other scholars combined TSA with the local escaping operator (LEO) to propose the

TSA-LEO algorithm, which was successfully applied to image segmentation [44]. Awari and

colleagues integrated deep learning methods with the TSA algorithm and successfully applied

them to three-dimensional dental image segmentation and classification [45]. Akdağ improved

tunicates’ updating strategy and collective behavior in engineering optimization, proposing

the Modified Tunicate Swarm Algorithm (M-TSA), which achieved successful applications in

multiple engineering optimization problems [46]. Similarly, Rizk-Allah and others introduced

the Enhanced Tunicate Swarm Algorithm (ETSA) to solve large-scale nonlinear optimization

problems [47]. Besides, the TSA algorithm and its various variants have also received extensive

attention in economic scheduling [48], distribution network optimization [49, 50], disease pre-

diction [51, 52], and other domains. The TSA algorithm and its variants have shown signifi-

cant effectiveness in solving complex engineering problems, demonstrating their potential

advantages and applications. These excellent improvement mechanisms can be mainly catego-

rized into three types:
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(1) Population Diversity Enhancement Mechanism

For metaheuristic algorithms, the quality of optimization results is often closely related to

population diversity. The richer the population diversity, the more likely the algorithm can

escape from local optima and approach the global optimum through iterative optimization.

Therefore, in the improvement mechanisms of the TSA algorithm, enhancing population

diversity remains one of the main methods to improve its convergence and optimization per-

formance. Among them, the typical approaches include chaotic initialization and reverse

learning mechanisms. For example, Tent mapping [53, 54] and Halton sequence [55] have

been used to enhance the population diversity of TSA with good optimization performance;

meanwhile, Abhishek Sharma [56], Essam H. Houssein [57] and Jianzhou Wang [58] have

applied the backward learning mechanism to TSA algorithm, which not only enhances the

This mechanism not only enhances the population diversity but also improves the conver-

gence performance of the TSA algorithm.

(2) Swarm Behavior and Individual Position Update Mechanism

In TSA, tunicate individuals’ position updates and swarm behaviors’ selection play a crucial

role in the algorithm’s global exploration and convergence speed. To address this, researchers

have employed nonlinear parameter adjustment mechanisms and dynamic adaptive position

update mechanisms to improve the optimization performance of TSA. For instance, In terms of

nonlinear parameter correction, researchers have used nonlinear functions such as exponential

functions [58], Levy flight functions [53, 54, 59], cosine functions [55] and simple polynomial

functions [60] instead of linear functions in TSA, which significantly improve the convergence

performance of TSA in search of the best. As for dynamic adaptive position updating, Rizk-

Allah et al. effectively enhanced the convergence speed of the algorithm by introducing an

ingestion parameter to dynamically adjust the search step of the tunicate individual [47]. ARA-

BALI et al. proposed an adaptive TSA algorithm (ATSA) by changing the search between the

candidate and optimal solutions of the tunicate swarm. They applied it successfully to expand

the base optimization [61]. Besides, Lévy distribution [62], Cauchy distribution [62], Gaussian

distribution [62], adaptive competitive window [63], adaptive distribution [64] and adaptive

parameters [44] are also used for the dynamic adaptive update of the tunicate position.

(3) Multi-Algorithm Fusion Mechanism

By integrating different metaheuristic algorithms, we can effectively leverage their respec-

tive strengths and mitigate their weaknesses, thereby improving the overall optimization per-

formance of the fused algorithms. For example, HOUSSEIN et al. proposed a TSA-LEO

algorithm by fusing TSA with a local escape operator (LEO) to enhance TSA’s convergence

speed and local search performance. They applied it successfully to solve the image segmenta-

tion problem [44]. Chouhan et al. fused TSA with the GWO algorithm and successfully solved

the multi-path routing protocol problem [65]. Doraiswami et al. fused TSA with the Jaya algo-

rithm and used it for the GAN network, proposed Jaya-TSA based GAN prediction method,

and used it successfully for patient prediction of COVID-19 [66]. In addition, the fusion of

TSA with the BOA algorithm [67] and TSA with the FPA algorithm [68] can also effectively

enhance the superior performance of each other, indicating that the combination of the

respective search advantages of different algorithms can effectively balance the global explora-

tion and local exploitation capabilities of the algorithms.

The above studies have strengths, as they have significantly improved and applied to the

TSA algorithm in different periods and domains. These improvements mainly focus on popu-

lation initialization, nonlinear convergence factor, and hybrid algorithms. Building on these
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improvement strategies, we propose a hybrid algorithm known as the Multi-Strategy Hybrid

Harris Hawks Tunicate Swarm Optimization Algorithm (MSHHOTSA). Specifically, the main

contributions of this paper are as follows:

1. Inspired by neighborhood thinking and the principles of thermographic distribution, we

developed a hyperbolic tangent domain and nonlinear fast convergence factors, which are

used to update the population positions and behaviors in the TSA algorithm. These new

update strategies help improve the algorithm’s convergence accuracy and better balance

global exploration and local exploitation abilities.

2. Inspired by hybrid algorithm mechanisms, we introduce the population behavior of the

Harris Hawks Optimization (HHO) algorithm into the TSA algorithm to enhance the pop-

ulation diversity of TSA. By introducing new behavioral strategies, the algorithm can better

explore the search space and thus have a higher chance of finding global optima.

3. We integrate the hyperbolic tangent domain, nonlinear fast convergence factor, and hybrid

mechanisms to propose the Multi-Strategy Hybrid Harris Hawks Tunicate Swarm Optimi-

zation Algorithm (MSHHOTSA). By synergistically utilizing the advantages of different

strategies, we further improve the algorithm’s optimization performance and robustness.

4. The MSHHOTSA algorithm is applied to 18 benchmark functions and five engineering

optimization problems with constraints. Experimental results demonstrate that our algo-

rithm exhibits significant performance when solving these problems.

5. We conduct an in-depth analysis of the shortcomings of the MSHHOTSA algorithm, pro-

viding a reference for improving or proposing new metaheuristic algorithms.

The main structure of this article is as follows: In Section 2, the standard Tunicate Swarm Opti-

mization algorithm is introduced, including its principles and basic process. In Section 3, the pro-

posed MSHHOTSA algorithm is described. Specifically, Subsection 3.1.1 introduces the

construction process of the hyperbolic tangent domain, and Subsection 3.1.2 describes the con-

struction process of the nonlinear fast convergence factor. Section 3.2 discusses the hybrid

approach of the Harris Hawks Optimization (HHO) algorithm and the Tunicate Swarm Optimi-

zation (TSA) algorithm. Furthermore, Section 3.4 analyzes the complexity of the proposed

MSHHOTSA algorithm. In Section 4, through multiple sets of experiments, the advantages and

disadvantages of the MSHHOTSA algorithm are thoroughly researched and discussed. In Section

5, we apply the MSHHOTSA algorithm to solve five complex engineering optimization problems.

Finally, Section 6 summarizes the current work and outlines potential future research directions.

2. Tunicate swarm algorithm (TSA)

The tunicate swarm algorithm is a metaheuristic algorithm proposed by Kaur S et al. [43],

inspired by the swarm foraging behavior of tunicate animals in the ocean, which simulates the

jet propulsion and swarm behavior of tunicate animals in the foraging process. The algorithm

focuses on finding the optimal solution in the solution space by the following four conditions.

(1) Avoid conflicts between tunicate individuals

In order to avoid conflicts among tunicate individuals, the individual position of the new

tunicate is calculated using A
!

, that is,

A
!
¼

G
!

M!
ð1Þ

PLOS ONE MSHHOTSA

PLOS ONE | https://doi.org/10.1371/journal.pone.0290117 August 11, 2023 4 / 38

https://doi.org/10.1371/journal.pone.0290117


G
!
¼ c2 þ c3 � F! ð2Þ

F!¼ 2c1 ð3Þ

M!¼ bPmin þ c1ðPmax � PminÞc ð4Þ

Where A
!

is the position of the new tunicate individual; G
!

is the gravitational force; M! is the

social force between tunicate individuals; F! is the deep-sea current advection; Pmin = 1 and

Pmax = 4 represent the initial velocity and auxiliary velocity of the tunicate individual for social

interaction, respectively; variables c1, c2 and c3 are random numbers between [0,1].

(2) Move to the optimal neighbor

After avoiding the search conflict among tunicate individuals, the tunicate individuals in

the tunicate population all move to the optimal neighbor, and this behavior can be expressed

as:

PD�! ¼ j FS
�!
� rand � ppðxÞ

���!
j ð5Þ

Where PD�! denotes the distance between the food source and the tunicate individual, FS
�!

is

the location of the food source, PPðxÞ
���!

is the current location of the tunicate individual, x is the

number of current iterations, rand2[0,1].

(3) Converge to the position of the optimal tunicate individual

When the above conditions are satisfied, each tunicate individual eventually approaches the

optimal position, and the process is described as:

PPðx
∗Þ

���!
¼

FS
�!
þ A
!
� PD�!; if rand � 0:5

FS
�!
� A
!
� PD�!; if rand < 0:5

ð6Þ

8
<

:

Where PPðx
∗Þ

���!
represents the updated tunicate individual position.

(4) Swarm Behavior of Tunicates

The tunicate swarm algorithm first saves the first two optimal solutions, and then updates

the remaining tunicate individual positions according to the best tunicate individual positions,

that is:

PPðxþ 1Þ
������!

¼
PPðxÞ
���!

þ PPðxþ 1Þ
������!

2þ c1

ð7Þ

In summary, the specific flow of the TSA algorithm can be obtained as shown in Fig 1.

3. The MSHHOTSA algorithm

In the Tunicate Swarm Algorithm (TSA), jet propulsion behavior primarily serves to approxi-

mate the optimal value in the solution space rapidly. In contrast, swarm behavior aims to

ensure quick convergence of the algorithm and enhance its global exploration capability. To

enhance TSA’s optimization performance in the solution space, this paper proposes two
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improvements: updating tunicate individuals’ position parameters and updating their swarm

behavior.

3.1 Update the position parameters of the tunicate individual

3.1.1 Hyperbolic tangent domain modification parameters. From Eq (6), it is evident

that the position of the new tunicate animal (parameter A
!

) generated by the TSA algorithm

during jet propulsion behavior determines the location of the following tunicate individual.

The algorithm can be considered to have converged to the optimal solution in the solution

space when there is no significant change in the position of consecutive tunicate individuals.

In conjunction with Eq (1), parameter A
!

primarily wanders randomly within a space defined

Fig 1. Flowchart of TSA [43].

https://doi.org/10.1371/journal.pone.0290117.g001
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by three random numbers. A larger magnitude of jA
!
j indicates that the current tunicate indi-

vidual is farther from the current optimal tunicate, increasing the probability of finding a bet-

ter individual and enhancing TSA’s global exploration performance. Conversely, as jA
!
j0, the

current tunicate individual approaches the current optimal tunicate, accelerating the discovery

of a better individual and increasing TSA’s local exploitation performance.

Therefore, to improve the superior performance of TSA, we drew inspiration from the

neighborhood and heat map distribution concepts. The aim is to increase the value of the

parameter jA
!
j while biasing the distribution of A

!
towards 0. This approach enhances the

algorithm’s global exploration capability while accelerating its convergence speed. In this

study, we introduced the hyperbolic tangent function to construct a hyperbolic tangent A
!

row

domain based on the hyperbolic tangent function (see Fig 2 for details).

In Fig 2, the blue-green region represents the random traversal space of the original param-

eter A
!

, referred to as the original A
!

row domain. The light red region represents the perturba-

tion space added by the hyperbolic tangent function, known as the hyperbolic tangent

domain. The random traversal space of the modified parameter A
!

is the combination of the

hyperbolic tangent domain and the original A
!

row domain, forming the hyperbolic tangent

A
!

row domain. The mathematical model of the hyperbolic tangent A
!

row domain

Fig 2. Hyperbolic tangent A
!

row domain.

https://doi.org/10.1371/journal.pone.0290117.g002
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constructed based on Fig 2 is expressed as follows:

A
!
¼

G
!

M!
þ 2ThdðxÞ ð8Þ

where, in order to ensure that the perturbation of the hyperbolic tangent function to the

parameter A
!

remains within the unit circle, let

ThdðxÞ ¼
� tanhðxÞ r � 0:5

tanhðxÞ r > 0:5
ð9Þ

(

where Thd(1) = 0.5, and x is the number of current iterations, r is a random number between

[0,1], tanh(x) is a hyperbolic tangent function, and the equation is:

tanhðxÞ ¼
ex � e� x

ex þ e� x
ð10Þ

To sum up, according to Eq 8–Eq 10, the numerical distribution images of the original A
!

row domain and the hyperbolic tangent A
!

row domain are respectively generated under 1000

iterations, as shown in Figs 3 and 4.

From the comparison between Figs 3 and 4, significant changes in the data distribution of

parameter A
!

can be observed with and without the hyperbolic tangent domain perturbation.

Firstly, the data distribution of parameter A
!

transformed from a spiky truncated tail to a

rounded trailing bottom. This shift indicates that the interval range (i.e., random wandering

range) of parameter A
!

expanded and became more concentrated around the 0 intervals after

the perturbation. As a result, the tunicate individuals were not only encouraged to explore

Fig 3. Numerical distribution of parameter A!without parameter perturbation.

https://doi.org/10.1371/journal.pone.0290117.g003
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better values in a larger space (due to the increased interval range) but also were able to

approach the optimal neighbors more rapidly (due to the data concentration around the 0

intervals). Secondly, despite the changes in the parameter data distribution after introducing

perturbation, the overall distribution still exhibited similarity, ensuring the uniformity of data

information effectively.

In summary, the modified hyperbolic tangent A
!

row domain not only effectively preserves

the similarity in data distribution with the original A
!

row domain but also allows for adjusting

the random walking space. This adjustment effectively balances the algorithm’s global explora-

tion and local exploitation capabilities.

3.1.2 Nonlinear convergence factor update mechanism for tunicate swarm behavior.

In TSA, it is observed from the population behavior of the tunicate organisms (Eq (7)) that the

location of the best tunicate individual is influenced by its place and the location of the previ-

ous tunicate individual. The algorithm reaches the extreme value when the site of the last tuni-

cate individual is the same as the best tunicate location. Therefore, in Eq (7), the random

parameter c1 plays a crucial role in determining whether the algorithm can escape local opti-

mal solutions and reach global optimal solutions. However, the randomness of the parameter

c1 during the continuous iterations of the algorithm (see Fig 5) significantly impacts the algo-

rithm’s convergence, leading to an imbalance between global exploration and local exploita-

tion. To enhance the TSA search performance more effectively, this paper introduces a

deterministic nonlinear convergence factor to replace the random parameter c1 in Eq (7) (Eq

(3) remains unchanged). The modified Eq (7) is expressed as:

PPðxþ 1Þ
������!

¼
PPðxÞ
���!

þ PPðxþ 1Þ
������!

2þ wðxÞ
ð11Þ

Fig 4. Added the numerical distribution of the parameter A
!

perturbed in the hyperbolic tangent domain.

https://doi.org/10.1371/journal.pone.0290117.g004
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where, the equation of the introduced nonlinear convergence factor is:

wðxÞ ¼ cos
2px
xmax

� �

� sin
px
xmax

� �

� log
x
2

� �
ð12Þ

Where x represents the current number of iterations, and xmax is the maximum number of

iterations. In Eq (12), sine and cosine functions control the algorithm’s fluctuation during iter-

ations, crucially contributing to the algorithm’s global exploration performance. The negative

logarithm function ensures a systematic decrease in the algorithm as iterations progress, which

is pivotal in enhancing the algorithm’s local exploitation performance. To ensure that the con-

vergence factor and the interval range of the random factor c1 are identical, w(x) is normalized.

The corresponding function expression and graph are illustrated in Eq (13) and Fig 6, respec-

tively.

oðxÞ ¼
wðxÞ � wmin

wmax � wmin
ð13Þ

So, Eq (11) can be redefined as:

PPðxþ 1Þ
������!

¼
PPðxÞ
���!

þ PPðxþ 1Þ
������!

2þ oðxÞ
ð14Þ

After the introduction of the nonlinear fast convergence factor, the TSA iterative process

can be divided into three stages: the pre-iterative stage, the mid-iterative stage, and the post-

iterative stage by analyzing Eq (14) and Fig 6.

Fig 5. Random parameter factor.

https://doi.org/10.1371/journal.pone.0290117.g005
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3.1.2.1 Pre-iterative stage: Accelerate the convergence speed of the algorithm. At this

time, the nonlinear convergence factor ω(x) rapidly approaches 0, and the PPðxÞ
���!

also rapidly

approaches PPðxþ 1Þ
������!

, that is, the algorithm rapidly approaches the current optimal solution

in the solution space.

3.1.2.2 Mid-iterative stage: Enhance the ability of the algorithm to escape the local

extremum. The relationship between PPðxÞ
���!

and PPðxþ 1Þ
������!

becomes more and more distant as

ω(x) changes from fast approaching 0 to slowly increasing. This process represents the process

by which the algorithm jumps out of the local extremum to try to find if there is a better value

in the solution space.

3.1.2.3 Post-iterative stage: Improve the convergence speed of the algorithm. At this

time, ω(x) changes from gradually increasing to slowly decreasing, then PPðxÞ
���!

gradually

approximates PPðxþ 1Þ
������!

. This process represents the process of the algorithm approaching the

optimal solution again after jumping out of the local extremes.

In summary, introducing the deterministic nonlinear convergence factor instead of the ran-

dom factor addresses the uncertainty impact of randomness on the algorithm’s convergence.

It also achieves a more effective balance between global exploration and local exploitation

capabilities to a certain extent.

3.2 Tunicate swarm algorithm based on harris hawks optimization

In Section 3.1, we introduce the hyperbolic tangent domain and the nonlinear fast conver-

gence factor to modify the jet propulsion and swarm behavior of TSA, respectively. These

modifications somewhat improve TSA’s global exploration and local exploitation abilities.

However, upon considering the overall iterative process of the algorithm, we observe that

Fig 6. Nonlinear fast convergence factor.

https://doi.org/10.1371/journal.pone.0290117.g006
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these two improvement mechanisms mainly promote the local exploitation performance of

the algorithm. To better balance the algorithm’s global exploration and local exploitation capa-

bilities, we introduce the Harris Hawks Optimization to enhance TSA’s superior performance.

Harris hawks optimization is a meta-heuristic algorithm that simulates the collaborative

behavior of a swarm of harris hawks during hunting. The process of solving complex problems

using this algorithm can be divided into two stages: exploration and exploitation.

(1) Exploration stage (|E|�1)

When |E|�1, the Harris hawk randomly inhabits in the solution space and waits for an

opportunity to observe the prey. Under the perching strategy with equal probability 0.5, the

mathematical model of the Harris hawk hunting behavior is:

PPðxþ 1Þ
������!

¼
PrandðxÞ
����!

� r1jPrandðxÞ
����!

� 2r2PPðxÞ
���!

j; q � 0:5

ðPrabbiitðxÞ
�����!

� PmðxÞ
���!

Þ � r3ðlbþ r4ðub � lbÞÞ; q < 0:5

ð15Þ

8
<

:

Where PrabbitðxÞ
�����!

is the position of the prey rabbit at the x-th iteration; PmðxÞ
���!

is the center posi-

tion of the Harris hawk flock at the x-th iteration; PrandðxÞ
����!

is the random position of the Harris

hawk at the x-th iteration; r and q are random numbers between [0,1], and lb and ub are the

upper and lower bounds for solving the problem; E is the prey escape energy, and its equation

is:

E ¼ 2E0ð1 � x=xmaxÞ ð16Þ

Where x is the current number of iterations; xmax is the maximum number of iterations of the

algorithm; E0 is a random number between [–1,1], indicating the initialized energy value.

(2) Exploitation stage (|E|<1)

When |E|<1, HHO implements four strategies of ‘soft encirclement’, ‘hard encirclement’,

‘fast dive soft encirclement’ and ‘fast dive hard encirclemen’ through random numbers to real-

ize the Predation of prey rabbit.

1) Soft encirclement

When |E|�0.5 and the random number is greater than or equal to 0.5, the Harris hawk exe-

cutes the soft encirclement strategy, and its mathematical model is:

PPðxþ 1Þ
������!

¼ PrðxÞ
���!

� PPðxÞ
���!

� Ej BS
�!
j ð17Þ

Where PrðxÞ
���!

¼ PrabbitðxÞ
�����!

, BS
�!
¼ J � PrabbitðxÞ

�����!
� PPðxÞ
���!

; J is a random number between [0,2],

indicating the jumping ability of prey rabbits.

2) Hard encirclement

When |E|<0.5 and the random number is greater than or equal to 0.5, Harris hawk executes

a hard encirclement strategy, whose mathematical model is:

PPðxþ 1Þ
������!

¼ PrðxÞ
���!

� EjPrðxÞ
���!

� PPðxÞ
���!

j ð18Þ

Where PrðxÞ
���!

¼ PrabbitðxÞ
�����!

.

3) Fast dive soft encirclement

PLOS ONE MSHHOTSA

PLOS ONE | https://doi.org/10.1371/journal.pone.0290117 August 11, 2023 12 / 38

https://doi.org/10.1371/journal.pone.0290117


When |E|�0.5 and the random number is less than 0.5, that is, Harris Hawk raid failed, the

algorithm executes random walk Z
!

; that is, to perform a fast dive soft encirclement strategy

whose mathematical model is expressed as:

PPðxþ 1Þ
������!

¼ PrabbitðxÞ
�����!

� Ej BS
�!
j ð19Þ

Z
!
¼ PPðxþ 1Þ
������!

þ S
!
� LFðDÞ ð20Þ

Where BS
�!
¼ J � PrabbitðxÞ

�����!
� PPðxÞ
���!

; J is a random number between [0,2]; S
!

is a random vec-

tor; D is the problem dimension; LF is the Levy flight function.

4) Fast dive hard encirclement

When |E|<0.5 and the random number is less than 0.5, the Harris hawk performs a fast

dive hard encirclement strategy whose mathematical model is expressed as:

PPðxþ 1Þ
������!

¼ PrabbitðxÞ
�����!

� EjBM��!j ð21Þ

Where BM��! ¼ J � PrabbitðxÞ
�����!

� PmðxÞ
���!

; J is a random number between [0,2].

To enhance the tunicate individual’s ability to escape local optima while maintaining

improved convergence performance, the TSA algorithm incorporates the HHO algorithm.

After the TSA algorithm obtains the optimal tunicate position through the improved strategy

in Section 3.1, the HHO algorithm is introduced to further update the tunicate position, result-

ing in a better individual place. With the fusion of HHO and TSA algorithms, the

MSHHOTSA performs a hybrid search optimization process that consists of two stages: explo-

ration and exploitation.

1. During the exploration stage, i.e., when |E|�1, the TSA algorithm updates the optimal tuni-

cate position. This stage primarily facilitates the optimization process of the TSA algorithm

itself.

2. In the exploitation stage, i.e., when |E|<1, the HHO algorithm updates the optimal tunicate

position. Within this stage, the four strategies of the HHO algorithm are mainly employed

to enhance the process of the current tunicate individual approaching the optimal tunicate

individual.

In summary, the flowchart for the MSHHOTSA algorithm is presented in Fig 7.

3.3 Pseudo-code of the MSHHOTSA algorithm

Algorithm 1: Multi-Strategy Hybrid Harris Hawks Tunicate Swarm Optimi-
zation Algorithm (MSHHOTSA)
Input: Population size: N, Search space dimension: d, Maximum number
of iterations: xmax
, lb, ub, Pmin, Pmax, c1,c2,c3,r = rand()

Output: PPðx∗Þ
����!

1: Initializing population PPðxÞ
���!

2: Generate hyperbolic tangent domain function values according to Eq
(9) and Eq (10)
3: Generate the nonlinear convergence factor function values according
to Eq (12) and Eq (13)
4: Calculate the fitness of each tunicate individual and get the cur-

rent optimal tunicate individual PPðx∗Þ
����!

PLOS ONE MSHHOTSA

PLOS ONE | https://doi.org/10.1371/journal.pone.0290117 August 11, 2023 13 / 38

https://doi.org/10.1371/journal.pone.0290117


5: WHILE (x < xmax+1)

6: FOR1 i ¼ 1 : sizeðPPðxÞ
���!

; 1Þ

7: FOR2 j ¼ 1 : sizeðPPðxÞ
���!

; 2Þ

8: Using Eq (8) and Eq (16) to calculate the parameters A
!

and E
9: IF1 (|E|�1)
10: IF2 (c3�0.5)
11: Using Eq (6)-1 to calculate the position of the tunicate
individual
12: ELSE
13: Using Eq (6)-2 to calculate the position of the tunicate
individual
14: END IF2
15: Using Eq (14) to calculate the new tunicate individual posi-
tion (TSA)
16: ELSEIF1 (|E|�0.5 and r�0.5)
17: Using Eq (17) to calculate the new tunicate individual posi-
tion (HHO)
18: ELSEIF1 (|E|�0.5 and r<0.5)
19: Using Eq (19) and Eq (20) to calculate the new tunic individ-
ual position (HHO)
20: ELSEIF1 (|E|<0.5 and r�0.5)
21: Using Eq (18) to calculate the new tunicate individual posi-
tion (HHO)
22: ELSEIF1 (|E|<0.5 and r<0.5)
23: Using Eq (21) to calculate the new tunicate individual posi-
tion (HHO)
24: END IF1
25: END FOR2
26: Checking and fix the boundaries
27: Calculate the fitness value of each tunicate individual
28: Determine who is the better captive individual generated by TSA
and HHO algorithms

Fig 7. Flowchart of MSHHOTSA.

https://doi.org/10.1371/journal.pone.0290117.g007
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29: Updating the optimal tunicate
30: END FOR1
31: x = x+1
32: END WHILE.

3.4 Computational complexity

This subsection primarily analyzes the time complexity and space complexity of the proposed

MSHHOTSA algorithm in this paper.

3.4.1 Time complexity. Similar to other population-based metaheuristic algorithms, the

MSHHOTSA algorithm’s population initialization has a time complexity of O(N×d). Including

the hyperbolic tangent domain and the non-linear convergence factor in MSHHOTSA neces-

sitates a separate calculation of their function values before each iteration. Consequently, the

time complexity for computing the fitness function of each individual in the population

becomes OðN � d � xmax þ xmax þ xmaxÞ. Where N represents the population size, d represents

the search space dimension, and xmax represents the maximum number of iterations.

In conclusion, the total time complexity of MSHHOTSA algorithm is

OðN � d � xmax þ xmax þ xmaxÞ.

3.4.2 Space complexity. Throughout the algorithm’s iterative process, the population ini-

tialization step in MSHHOTSA consumes the most significant amount of space. As a result,

the total space complexity of MSHHOTSA is O(N×d).

4. Experimental results and discussion

To assess the superior optimization performance of the proposed hybrid algorithm

(MSHHOTSA) in solving complex functions, we conduct simulations and comparisons with

seven other meta-heuristic algorithms (BOA, GWO, MVO, HHO, TSA, ASO, and WOA)

using eight standard benchmark functions and the CEC2019 benchmark functions, while

maintaining consistent basic parameters for each algorithm.

4.1 Experiments setup

(1) Algorithm experimental environment

Operating system: 64-bit Windows 11

CPU: 12th Gen Intel(R) Core(TM) i5-12500H 2.50 GHz Memory: 8G

(2) Parameter settings

In order to ensure the objective fairness of MSHHOTSA and other algorithms in compara-

tive experiments, the basic parameters of each algorithm are set as shown in Table 1.

(3) Benchmark functions

To demonstrate the superior performance of MSHHOTSA in solving complex functions,

we conduct simulation experiments using 18 benchmark functions. The details of these bench-

mark functions can be found in Tables 2 and 3. Table 2 presents eight standard benchmark

functions, while Table 3 lists the CEC2019 benchmark functions.

4.2 Result analysis of 8 benchmark functions

To evaluate the superior convergence and global search performance of MSHHOTSA, we

selected four unimodal functions and four multimodal functions, subjecting them to the same

conditions for analyzing the algorithm’s local exploitation and global exploration capabilities.
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The optimization results of the eight metaheuristics for the eight benchmark functions are pre-

sented in Table 4.

From Table 4, it is evident that under the same constraints:

1. Considering the overall optimization results of the algorithm on eight benchmark func-

tions, MSHHOTSA exhibits a more minor mean and standard deviation in most cases.

This indicates that the improved algorithm demonstrates better convergence and optimiza-

tion performance than other algorithms.

Table 1. Parameter settings.

Algorithm Parameter Value

All algorithms Population size 50

Maximum iterations 1000

Number of experiments 30

ASO Depth weight α 50

Multiplier weight β 0.2

Attractive upper limit hmax 1.1

Attractive lower limit hmin 1.24

BOA Probability switch p 0.8

Power exponent parameter a 0.1

Sensory modality c 0.01

MVO WEPmax 1

WEPmin 0.2

GWO Convergence factor a 2!0

r1, r2 Random

WOA Convergence factor a 2!0

r1, r2 Random

HHO Convergence factor E1 2!0

Initial state of its energy E0 [–1, 1]

Levy factor β 1.5

TSA The initial speed 1

The subordinate speed 4

MSHHOTSA Convergence factor E1 2!0

Initial state of its energy E0 [–1, 1]

The initial speed Pmin 1

The subordinate speed Pmax 4

c1, c2, c3 Random

https://doi.org/10.1371/journal.pone.0290117.t001

Table 2. Eight commonly used benchmark functions.

Index Function name Unimodal or Multimodal lb ub

F1 Bent Cigar Unimodal -100 100

F2 High Conditioned Elliptic Unimodal -100 100

F3 Stepint Unimodal -5.12 5.12

F4 Brown Unimodal -1 4

F5 Expanded Schaffer Multimodal -100 100

F6 Alpine N.1 Multimodal -10 10

F7 Periodic Multimodal -10 10

F8 Trignometric 2 Multimodal -500 500

https://doi.org/10.1371/journal.pone.0290117.t002
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2. Judging from the optimization results of the algorithm for unimodal functions (F1~F4):

Compared to the other seven metaheuristic algorithms, MSHHOTSA achieves the best per-

formance metrics (most minor mean and standard deviation) on three unimodal bench-

mark functions (F1, F2, and F4). Additionally, for the mean metric on F3, MSHHOTSA

ranks fourth. However, there is no significant difference compared to the top-ranking algo-

rithm, and MSHHOTSA exhibits better stability with a minor standard deviation. This

indicates that MSHHOTSA has superior performance and stability. The experimental

results of MSHHOTSA on the unimodal functions indicate its superior performance in

local development.

3. Judging from the optimization results of the algorithm for multimodal functions (F5~F8): It

is evident that except for F8, where the optimization results of MSHHOTSA are not the

best. The outcomes of the three functions (F5~F7) are significantly superior to those

achieved by the other seven comparison algorithms. While the optimization result of the

improved algorithm on F8 is only ranked 4th, an analysis of the optimization results of

TSA, HHO, and MSAHHOTSA algorithms reveals that MSHHOTSA falls between HHO

Table 3. CEC2019 benchmark functions.

Index Function name F(x*) Search space

cec01 Storn’s Chebyshev Polynomial Fitting Problem 1 [–8192, 8192]

cec02 Inverse Hilbert Matrix Problem 1 [–16384, 16384]

cec03 Lennard-Jones Minimum Energy Cluster 1 [–4, 4]

cec04 Rastrigin’s Function 1 [–100, 100]

cec05 Griewangk’s Function 1 [–100, 100]

cec06 Weierstrass Function 1 [–100, 100]

cec07 Modified Schwefel’s Function 1 [–100, 100]

cec08 Expanded Schaffer’s F6 Function 1 [–100, 100]

cec09 Happy Cat Function 1 [–100, 100]

cec10 Ackley Function 1 [–100, 100]

https://doi.org/10.1371/journal.pone.0290117.t003

Table 4. The optimization results of each algorithm for the 8 benchmark functions.

Func. Index BOA GWO MVO HHO TSA ASO WOA MSHHOTSA

F1 Mean 1.90E-14 4.33E-64 1.49E+05 2.63E-189 2.83E-46 1.79E+03 1.28E-165 2.02E-203

Std 7.69E-16 1.29E-63 4.16E+04 0.00E+00 6.57E-46 2.18E+03 0.00E+00 0.00E+00

F2 Mean 1.80E-14 1.05E-67 5.02E+06 2.30E-189 1.14E-48 7.50E+03 7.23E-168 1.47E-205

Std 1.07E-15 1.71E-67 1.63E+06 0.00E+00 2.66E-48 4.51E+03 0.00E+00 0.00E+00

F3 Mean -3.23E+01 -1.40E+02 -1.45E+02 -1.55E+02 -8.06E+01 -1.19E+02 -1.55E+02 -1.55E+02

Std 6.69E+00 6.38E+00 3.49E+00 0.00E+00 1.04E+01 3.33E+00 0.00E+00 0.00E+00

F4 Mean 1.44E-14 9.34E-73 4.46E-04 8.89E-196 2.10E-54 4.65E-21 3.38E-175 1.97E-218

Std 1.30E-15 3.89E-72 1.15E-04 0.00E+00 8.81E-54 6.64E-21 0.00E+00 0.00E+00

F5 Mean 1.06E+01 5.08E+00 1.12E+01 0.00E+00 1.18E+01 9.82E+00 1.47E+00 0.00E+00

Std 5.40E-01 1.72E+00 7.19E-01 0.00E+00 6.98E-01 6.68E-01 2.95E+00 0.00E+00

F6 Mean 1.24E-14 6.06E-06 3.15E+00 1.31E-06 2.49E+01 5.79E-11 9.11E-111 3.58E-112

Std 2.16E-14 1.26E-05 1.71E+00 6.90E-06 5.81E+00 5.50E-11 3.92E-110 1.24E-111

F7 Mean 7.53E+00 1.39E+00 1.00E+00 9.00E-01 3.60E+00 1.00E+00 1.00E+00 9.00E-01

Std 6.64E-01 1.01E+00 4.54E-04 4.52E-16 7.86E-01 5.83E-17 1.36E-01 4.52E-16

F8 Mean 8.10E+01 2.24E+01 1.71E+02 1.00E+00 1.02E+02 1.35E+01 5.07E+01 3.40E+01

Std 7.78E+00 4.29E+00 3.09E+01 1.31E-04 2.36E+01 7.42E+00 1.85E+01 1.65E+01

https://doi.org/10.1371/journal.pone.0290117.t004
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and TSA. This suggests that the performance adjustment using HHO optimization is effec-

tive for TSA. Consequently, considering the overall performance indicators of the four mul-

timodal functions, MSHHOTSA demonstrates higher global exploration capabilities than

the comparison algorithms.

To vividly compare and analyze the superiority of MSHHOTSA over the seven meta-heu-

ristic algorithms, we selected two unimodal and two multimodal functions to plot the optimal

convergence curves of each algorithm under 1000 iterations, as depicted in Fig 8. The results

from Fig 8 indicate that MSHHOTSA exhibits a faster convergence speed and higher conver-

gence accuracy compared to the five comparison algorithms in the optimization iteration pro-

cess for both unimodal and multimodal functions. This optimization iteration curve verifies

the improved algorithm’s superior optimization performance in solving complex functions.

4.3 Result analysis of CEC2019 benchmark functions

To further validate MSHHOTSA’s superior generalization performance in tackling complex

functions, we conducted a comparative analysis of the optimized results using the CEC2019

benchmark functions with the same constraints. Table 5 shows the optimization results of

each algorithm on CEC2019 benchmark functions.

From Table 5, under the same experimental conditions:

For MSHHOTSA, as a hybrid algorithm, its performance in terms of mean and standard

deviation indicators is significantly superior to that of the HHO and TSA algorithms. This sug-

gests that the hybrid algorithm effectively combines the advantages of HHO and TSA algo-

rithms, leading to an overall performance enhancement.

Regarding the mean value indicators, MSHHOTSA demonstrates optimal performance on

cec01, cec03, cec09, and cec10, ranking 3rd on cec02 and 4th on the remaining five benchmark

functions. Similarly, concerning standard deviation indicators, the ranking of the

MSHHOTSA algorithm on CEC2019 benchmark functions could be further improved. This

indicates that no single algorithm can address all optimization problems. Therefore, when

dealing with different optimization problems, one should consider the specific requirements

and conduct comparative experiments to select a more suitable algorithm for solving them.

In conclusion, although the performance of the MSHHOTSA algorithm may require

enhancement on certain benchmark functions, considering the overall ranking based on

Fig 8. Iterative optimization convergence curve of each algorithm.

https://doi.org/10.1371/journal.pone.0290117.g008
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average value indicators, the MSHHOTSA algorithm still exhibits superior performance. This

scalability implies that the algorithm has broader potential for application and can achieve

excellent results in handling various optimization problems.

Fig 9 shows the convergence curves of eight algorithms on CEC2019 benchmark functions

aimed at analyzing and exploring the convergence performance of the MSHHOTSA algorithm

and other algorithms.

From Fig 9, under the same experimental conditions:

The MSHHOTSA algorithm achieved the best convergence accuracy on cec01, cec03,

cec09, and cec10. The ASO algorithm performed best on cec02, cec05, and cec06. The GWO

algorithm performed best on cec07 and cec08.

However, despite achieving the best convergence accuracy on specific functions, the

MSHHOTSA algorithm does not exhibit the fastest overall convergence speed. This can be

attributed to two main factors: (1) the MSHHOTSA algorithm is a hybrid of HHO and TSA

algorithms, and it tends to emphasize global exploration in the early stages of the iteration,

leading to slower algorithm convergence speed. (2) The complexity analysis in Subsection

Table 5. The optimization results of each algorithm for the CEC2019 benchmark functions.

Function Index BOA GWO MVO HHO TSA ASO WOA MSHHOTSA

cec01 Mean 1.00E+00 1.58E+01 4.59E+01 1.00E+00 1.06E+02 1.76E+02 3.99E+03 1.00E+00

Rank 3 5 8 2 4 6 7 1

Std 0.00E+00 2.59E+01 8.96E+01 0.00E+00 1.87E+02 1.77E+02 5.62E+03 2.48E-14

cec02 Mean 5.00E+00 5.47E+00 5.68E+00 4.97E+00 7.64E+00 3.11E+00 1.06E+01 5.00E+00

Rank 4 5 6 2 7 1 8 3

Std 2.91E-03 9.48E-01 9.00E-01 8.04E-02 1.86E+00 3.26E-01 7.54E+00 0.00E+00

cec03 Mean 6.34E+00 1.23E+01 1.24E+01 4.49E+00 1.27E+01 1.26E+01 1.19E+01 4.32E+00

Rank 3 5 6 2 8 7 4 1

Std 1.03E+00 8.09E-01 5.96E-01 1.98E+00 7.61E-04 3.65E-01 9.95E-01 2.24E+00

cec04 Mean 7.24E+01 1.39E+01 1.81E+01 4.65E+01 4.80E+01 2.01E+01 5.42E+01 2.94E+01

Rank 8 1 2 5 6 3 7 4

Std 1.09E+01 5.50E+00 7.23E+00 1.37E+01 1.49E+01 9.23E+00 1.72E+01 1.89E+01

cec05 Mean 1.02E+02 1.69E+00 1.31E+00 1.95E+00 2.52E+01 1.00E+00 1.97E+00 1.36E+00

Rank 2 5 3 6 8 1 7 4

Std 3.13E+01 5.67E-01 1.26E-01 2.62E-01 2.04E+01 4.10E-03 3.70E-01 2.80E+00

cec06 Mean 7.74E+00 2.50E+00 3.33E+00 7.39E+00 7.57E+00 1.55E+00 8.74E+00 5.28E+00

Rank 7 2 3 5 6 1 8 4

Std 7.73E-01 1.02E+00 1.73E+00 1.76E+00 1.99E+00 9.05E-01 1.72E+00 1.55E+00

cec07 Mean 1.76E+03 6.42E+02 6.85E+02 1.17E+03 1.17E+03 8.91E+02 1.25E+03 8.92E+02

Rank 8 1 2 6 5 3 7 4

Std 1.37E+02 4.13E+02 2.36E+02 2.37E+02 3.11E+02 2.51E+02 3.70E+02 2.80E+02

cec08 Mean 4.64E+00 3.48E+00 3.64E+00 4.60E+00 4.49E+00 3.90E+00 4.52E+00 4.04E+00

Rank 8 1 2 7 5 3 6 4

Std 2.21E-01 4.78E-01 5.89E-01 2.84E-01 4.14E-01 5.63E-01 3.54E-01 3.08E-01

cec09 Mean 3.88E+00 1.16E+00 1.21E+00 1.38E+00 1.77E+00 1.12E+00 1.40E+00 1.02E+00

Rank 8 3 4 5 7 2 6 1

Std 7.13E-01 7.06E-02 6.00E-02 1.56E-01 8.49E-01 7.14E-02 2.53E-01 1.50E-01

cec10 Mean 2.13E+01 2.10E+01 2.10E+01 2.11E+01 2.14E+01 2.10E+01 2.11E+01 2.10E+01

Rank 7 4 3 6 8 2 5 1

Std 5.64E-01 1.96E+00 4.05E-02 6.43E-02 9.01E-02 1.43E-03 1.07E-01 1.72E-01

Total Rank 5.90 3.30 4.00 4.70 6.50 3.00 5.80 2.80

https://doi.org/10.1371/journal.pone.0290117.t005
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3.4.1 reveals that the MSHHOTSA algorithm has a relatively higher time complexity than spe-

cific individual metaheuristic algorithms, leading to a slower convergence speed.

From Fig 9, it can also be observed that the performance of the MSHHOTSA algorithm

shows minimal changes after 100 iterations. This phenomenon can be attributed to the follow-

ing reasons: (1) The algorithm has already converged to the global optimum, leading to stable

performance, as evident in the case of the cec01 function. (2) The global exploration capability

of the algorithm is limited, causing it to get trapped in local optima. As a result, no larger step

sizes facilitate escaping from the current local optima, as observed in cec02, cec06, and cec08.

(3) The inherent complexity of the problem requires a more significant number of iterations

for extensive global search in the solution space and gradual approximation towards the global

optimum, as seen in cec03, cec05, cec09, and cec10.

In addition, Fig 9 illustrates that the optimization performance of the MSHHOTSA algo-

rithm before the 100th iteration is suboptimal. This can be attributed to the following reasons:

1. The initial population is not well-distributed. The effectiveness of any optimization algo-

rithm, including MSHHOTSA, to a large extent, depends on the initial distribution of the

population. When the initial population of MSHHOTSA is not well-distributed, the algo-

rithm may become trapped in local optima and struggle to escape, thereby limiting its

global search capability during the early iterations. Consequently, suboptimal performance

is observed before the 100th iteration.

2. The hybrid algorithm emphasizes more on global exploration in the early stages.

MSHHOTSA combines different search strategies, so it tends to explore globally during the

initial iterations to search for more potential solutions in the search space. However, this

extensive global exploration hinders the algorithm from rapidly converging to the optimal

solution.

3. The hyperbolic tangent domain restricts the step size change of the algorithm, and the non-

linear fast convergence factor drives the algorithm to converge quickly. The hyperbolic tan-

gent domain is used to correct the individual tunicate position and imposes a rule

restriction on the step size change of the algorithm. This restriction causes the MSHHOTSA

Fig 9. Iterative convergence curves of each algorithm for the CEC2019 benchmark functions.

https://doi.org/10.1371/journal.pone.0290117.g009
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algorithm to move slowly in the search space. At the same time, the nonlinear fast conver-

gence factor decreases rapidly, and the driving algorithm tends to develop locally, eventu-

ally leading to poor optimization performance of the MSHHOTSA algorithm in the early

stage.

In the later stages of iteration, the nonlinear fast convergence factor shows the nonlinear

increase and decrease fluctuations. Meanwhile, the hybrid algorithm and hyperbolic tangent

domain continuously update new populations, improving the diversity of the population.

Therefore, through cooperation and competition among the three improvement strategies, the

MSHHOTSA algorithm can adjust its behavior at different stages, thus enhancing its overall

optimization performance.

4.4 Result analysis of the algorithm running time

In assessing the algorithm’s performance, it demonstrates improved accuracy and faster con-

vergence in the curve. These outcomes signify superior optimization performance within

numerical theory when addressing the problem. However, it is essential to note that as any

algorithm’s complexity increases, its optimization performance may also be somewhat

enhanced. Therefore, it is significant to investigate the algorithm’s specific running time when

tackling complex problems to evaluate its practical applicability effectively.

To verify whether MSHHOTSA exhibits a faster runtime and better optimization perfor-

mance, the runtimes of each algorithm were recorded while solving 18 benchmark functions

in 30 experiments. The corresponding average runtimes of the algorithms are illustrated in Fig

10. Specifically, Fig 10(A) represents the average running time of each algorithm on the eight

benchmark functions. At the same time, Fig 10(B) displays the average running time of each

algorithm on the CEC2019 benchmark functions.

Fig 10(A) shows that when solving the F1 benchmark function, all eight metaheuristic algo-

rithms exhibit the shortest runtime when solving other benchmark functions. Additionally,

the ASO algorithm performs the worst among these eight algorithms, while the WOA algo-

rithm demonstrates the best performance. Notably, our proposed MSHHOTSA algorithm

ranks third in runtime among the eight algorithms. Similarly, when considering the CEC2019

benchmark functions, the ASO algorithm still performs poorly, and the WOA algorithm

remains the best. Our proposed MSHHOTSA algorithm ranks fifth in runtime among the

eight algorithms.

From the above results, it can be observed that the MSHHOTSA algorithm does not show

significant differences in runtime when solving the 18 benchmark functions. This can be

attributed to the integration of the three improvement strategies. Despite improving the algo-

rithm’s accuracy, these strategies contribute to its increased computational complexity, result-

ing in longer runtime. Nevertheless, the superior performance of MSHHOTSA over other

algorithms on certain benchmark functions may be influenced by the computer’s operating

conditions and random numbers. It is worth noting that, compared to the ASO algorithm, the

MSHHOTSA algorithm exhibits faster runtime.

4.5 Result analysis of the Wilcoxon’s rank sum test

The mean and standard deviation obtained by solving the benchmark function through 30

independent experiments can confirm the improved algorithm’s overall better optimization

performance. However, it cannot determine the significance of the running results for each

algorithm. To comprehensively showcase the superior performance of MSHHOTSA, Wilcox-

on’s rank sum test is conducted at a 5% significance level from a statistical perspective [69, 70],
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and the p-value is calculated. The test results are presented in Table 6, where MSHHOTSA is

compared with other algorithms. The symbols “+”, “-”, and “=” indicate that the improved

algorithm performs better than, worse than, or equivalently to the comparison algorithm,

respectively. “N/A” denotes “not applicable”, signifying no significant performance difference

is observed between the two algorithms.

Table 6 shows that MSHHOTSA has more “+” occurrences than other metaheuristic algo-

rithms, indicating statistically significant differences between MSHHOTSA and all competing

algorithms. Furthermore, MSHHOTSA performs better on benchmark functions marked with

Fig 10. Comparison of average running time of each algorithm.

https://doi.org/10.1371/journal.pone.0290117.g010
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“+”. Conversely, there are more “=” when comparing MSHHOTSA with the BOA algorithm,

suggesting no statistically significant difference between the two algorithms on benchmark

functions marked with “=“. In particular, on the cec09 benchmark function, MSHHOTSA

exhibits “-” when compared to the MVO algorithm, indicating inferior performance on cec09

compared to MVO. However, considering the overall performance, MSHHOTSA consistently

displays better results. Hence, from a statistical standpoint, the MSHHOTSA algorithm dem-

onstrates better statistical significance than other algorithms, highlighting its superior optimi-

zation convergence and robustness.

4.6 Discussion

Based on the experimental results from Sections 4.2 to 4.5, we can conclude that, overall, the

MSHHOTSA algorithm demonstrates better optimization performance in solving eight stan-

dard benchmark functions and CEC2019 benchmark functions. This is reflected in smaller

average values, standard deviations, and higher overall ranking indicators. It indicates that the

MSHHOTSA algorithm performs well in solving multiple optimization problems, and its

advantages are consistently demonstrated. Furthermore, smaller Wilcoxon rank sum test p-

values also validate the superior statistical performance of MSHHOTSA.

However, it is worth noting that when we analyze the performance of the MSHHOTSA

algorithm separately for each benchmark function, we find that the algorithm does not consis-

tently achieve the best performance on every benchmark function. Below, we will provide a

detailed analysis of the main reasons leading to the suboptimal performance of the

MSHHOTSA algorithm on certain benchmark functions. In future research, readers can use

these shortcomings to improve the algorithm’s performance.

1. Adding the hyperbolic tangent domain and the nonlinear fast convergence factor has

increased algorithm complexity, decreasing the algorithm’s convergence speed. While these

Table 6. Wilcoxon’s rank sum test results.

Function MSHHOTSA vs.

BOA

MSHHOTSA vs.

GWO

MSHHOTSA vs.

MVO

MSHHOTSA vs.

HHO

MSHHOTSA vs.

TSA

MSHHOTSA vs.

ASO

MSHHOTSA vs.

WOA

F1 6.50E-218 9.47E-100 7.51E-314 9.20E-46 3.64E-178 8.42E-300 1.39E-56

F2 4.42E-231 9.68E-91 1.22E-314 2.88E-43 1.16E-171 5.97E-303 4.32E-50

F3 N/A N/A N/A 2.72E-17 N/A N/A 9.73E-17

F4 1.42E-266 8.08E-98 2.87E-316 3.62E-49 5.57E-183 2.02E-287 2.13E-53

F5 N/A 1.72E-306 N/A 1.75E-02 N/A 1.45E-317 8.10E-264

F6 4.57E-253 2.41E-263 6.58E-321 6.03E-256 1.30E-322 3.49E-284 7.19E-39

F7 N/A 1.79E-303 3.97E-308 7.04E-03 2.13E-312 1.17E-246 1.82E-219

F8 1.43E-280 2.45E-07 6.56E-315 2.99E-303 1.22E-294 1.76E-23 2.46E-186

cec01 6.45E-204 5.85E-210 3.34E-245 1.28E-79 1.40E-212 9.55E-232 2.15E-295

cec02 4.62E-160 5.58E-292 5.57E-300 1.84E-136 3.62E-292 2.90E-142 1.01E-300

cec03 1.79E-297 N/A N/A 9.88E-85 N/A N/A N/A

cec04 N/A 7.82E-95 5.51E-21 1.75E-294 2.70E-258 1.75E-148 2.89E-294

cec05 N/A 1.66E-128 1.83E-116 7.04E-21 8.24E-297 5.09E-176 1.86E-199

cec06 N/A 1.62E-200 4.40E-08 N/A N/A 3.58E-164 N/A

cec07 N/A 4.85E-04 3.29E-15 1.85E-283 1.61E-249 1.80E-85 2.92E-270

cec08 N/A 2.44E-104 7.02E-42 N/A 2.39E-321 3.81E-87 1.31E-320

cec09 6.90E-323 4.98E-14 5.78E-02 2.09E-10 4.65E-71 1.33E-37 4.72E-04

cec10 2.33E-210 4.45E-05 4.82E-207 2.10E-38 1.31E-268 2.00E-52 9.42E-40

+/ = /- 10/8/0 16/2/0 14/3/1 16/2/0 14/4/0 16/2/0 16/2/0

https://doi.org/10.1371/journal.pone.0290117.t006
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three new improvement strategies enable the MSHHOTSA algorithm to achieve better con-

vergence accuracy on certain benchmark functions, they also come at the cost of increased

algorithm complexity, leading to a decrease in the convergence speed of MSHHOTSA.

2. The two TSA and HHO algorithms are mixed, making the hybrid algorithm more inclined

to global exploration. The MSHHOTSA algorithm introduces the population update mech-

anism of the HHO algorithm into the TSA algorithm, which increases the diversity of the

new population and promotes the algorithm to explore further solutions, but also limits the

local mining performance of MSHHOTSA.

3. The nonlinear fast convergence factor prevents the algorithm from quickly converging

towards local exploitation in the later iteration stages. As observed from Fig 6, our proposed

nonlinear fast convergence factor exhibits fluctuations in the middle and later stages of

algorithm iteration. This behavior causes the algorithm to continue jumping around the

global optimal solution even after finding it, leading to a suboptimal convergence speed of

MSHHOTSA in the later stages.

4. The combined effect of the hyperbolic tangent domain and the nonlinear fast-convergence

factor makes it challenging for MSHHOTSA to escape local optima in the early stages of

iteration. Introducing the hyperbolic tangent domain restricts the step size change of the

MSHHOTSA algorithm, leading to slow movement in the search space. Simultaneously,

the rapid decrease of our proposed nonlinear fast-convergence factor drives the algorithm

towards local exploitation, ultimately causing MSHHOTSA to struggle in escaping local

optima in the early stages of iteration.

Although the proposed MSHHOTSA algorithm still has many deficiencies, the coin has

two sides, and scientific research is no exception. For the MSHHOTSA algorithm, if we

unthinkingly pursue the excellent performance of the experimental results, we can also choose

multiple sets of benchmark functions for experiments and finally select functions with good

optimization results and put them in the paper’s experimental results. However, it is unfair

and unscientific to select functions with good optimization results unthinkingly and put them

in the experimental results. This also enlightens us that when researching algorithms, we

should not only focus on the shortcomings of the algorithm but also discover the shining

points of the algorithm. Whether it is the advantages or disadvantages of the algorithm, as long

as we conduct a thorough analysis and discussion, we can slowly eliminate its shortcomings in

the following research and promote the spiral performance of the algorithm we propose.

In conclusion, although the MSHHOTSA algorithm still has certain limitations when solv-

ing specific problems, it successfully addresses certain targeted issues. This indicates that our

proposed three improvement strategies possess unique merits in enhancing algorithm perfor-

mance. Thus, when refining other metaheuristic algorithms, these strategies can serve as valu-

able references for improvement.

Furthermore, when solving real-world optimization problems, conducting experiments

with multiple comparative algorithms is essential. Doing so allows us to select the most suitable

parameters and identify the algorithm that yields the best results for the given problem. This

comprehensive approach will contribute to achieving optimal solutions in practical optimiza-

tion scenarios.

5. MSHHOTSA for engineering optimization problems

Engineering optimization problems are objective optimization models commonly used in sci-

entific and engineering applications to address real-world engineering challenges. Due to their
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nonlinear and strongly constrained characteristics, finding effective solutions becomes crucial

in evaluating algorithm performance in practical scenarios. To assess the feasibility and appli-

cability of the MSHHOTSA algorithm in solving engineering optimization problems, we con-

sider three optimization problems [3, 8, 71, 72]: the tension/compression spring design

problem, the pressure vessel design problem, the gear train design problem, the speed reducer

design problem, and the parameters optimization of the proportional-integral-derivative

(PID) controller. The algorithm’s performance is thoroughly investigated in these cases. Each

algorithm is tested with a population size of 30, a maximum of 1000 iterations, and each set of

experiments is conducted independently 30 times.

5.1 Tension/Compression spring design problem

The optimization objective of the extension/compression spring design problem is to mini-

mize the spring mass [8, 71]. The topology of the problem is shown in Fig 11. In this problem,

the depreciation of the spring mass, i.e., the optimization objective of the problem, is con-

strained by the minimum deviation, shear stress, impact frequency, outer diameter limit, and

three decision variables: the average coil diameter D, the wire diameter d, and the number of

active coils P.

Let x!¼ ½x1; x2; x3� ¼ ½d;D; P�, f ð x
!Þ is the mass of the spring, then the mathematical

model of the extension/compression spring design problem can be described as follows.

min f ð x!Þ ¼ ðx3 þ 2Þx2x
2

1
ð22Þ

s:t:

g1ð x
!Þ ¼ 1 �

x3
2
x3

71785x4
1

� 0

g2ð x
!Þ ¼

4x2
2
� x1x2

12566ðx2x3
1 � x4

1
Þ
þ

1

5108x2
1

� 1 � 0

g3ð x
!Þ ¼ 1 �

140:45x1

x2
2
x3

� 0

g4ð x
!Þ ¼

x1 þ x2

1:5
� 1 � 0

ð23Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Where x12[0.05,2], x22[0.25,1.3], x32[2,15].

Table 7 and Fig 12 show the best-finding results of the six meta-heuristic algorithms for the

extension/compression spring design problem under 30 independent experiments and the

convergence curves of the finding for each algorithm in solving the problem, respectively.

From Table 7, the optimal solution of MSHHOTSA for the same constraints is ½x1; x2; x3� ¼

½0:052; 0:354; 11:476� with the optimal value of f ð x!Þ ¼ 0:012666, which shows that

Fig 11. Tension/compression spring design problem.

https://doi.org/10.1371/journal.pone.0290117.g011

PLOS ONE MSHHOTSA

PLOS ONE | https://doi.org/10.1371/journal.pone.0290117 August 11, 2023 25 / 38

https://doi.org/10.1371/journal.pone.0290117.g011
https://doi.org/10.1371/journal.pone.0290117


MSHHOTSA is the best solution for reducing the mass of the extension/compression spring

compared to the other compared algorithms. It is also clear from the analysis in Fig 12 that

MSHHOTSA has a better optimization performance and a faster convergence rate when solv-

ing the tension/compression spring design problem.

5.2 Pressure vessel design problem

The optimization objective of the pressure vessel design problem is to minimize the total cost

of fabricating the pressure vessel (materials, shaping, and welding) [8, 71]. The structural

topology of the problem is shown in Fig 13. In this problem, the minimization of the fabrica-

tion cost, i.e., the optimization objective of the problem, is jointly influenced by four decision

variables: the length of the interface of the cylindrical section L, the radius of entry R, the thick-

ness of the shell Ts, and the thickness of the head Th.

Table 7. Optimal results of the different algorithms on the tension/compression spring design problem.

Algorithm d D P f ð x!Þ
BOA 0.076 0.858 5.675 0.037658

GWO 0.052 0.360 11.101 0.012669

MVO 0.050 0.316 14.165 0.012786

HHO 0.052 0.367 10.689 0.012670

TSA 0.052 0.366 10.790 0.012680

MSHHOTSA 0.052 0.354 11.476 0.012666

https://doi.org/10.1371/journal.pone.0290117.t007

Fig 12. Convergence curves for each algorithm to solve the tension/compression spring design problem.

https://doi.org/10.1371/journal.pone.0290117.g012
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Let x!¼ ½x1; x2; x3; x4� ¼ ½Ts;Th;R; L�, f ð x
!Þ is the total cost of making the pressure vessel,

then the mathematical model of the pressure vessel design problem is described as:

min f ð x!Þ ¼ 0:6224x1x3x4 þ 1:7781x2x
2

3
þ 3:1661x2

1
x4 þ 19:84x2

1
x3 ð24Þ

s:t:

g1ð x
!Þ ¼ � x1 þ 0:0193x3 � 0

g2ð x
!Þ ¼ � x3 þ 0:00954x3 � 0

g3ð x
!Þ ¼ � px2

3
x4 �

4

3
px3

3
þ 1296000 � 0

g4ð x
!Þ ¼ x4 � 240 � 0

ð25Þ

8
>>>>>><

>>>>>>:

Where x12[0,99], x22[0,99], x32[10,200], x42[10,200].

Table 8 and Fig 14 show the best-finding results of the six metaheuristic algorithms for the

pressure vessel design problem under 30 independent experiments and the convergence curves

of the finding for each algorithm in solving the problem, respectively.

As shown in Table 8, under the same conditions, the MSHHOTSA achieves a smaller pres-

sure vessel design production cost than the other five compared algorithms; also, the conver-

gence curve in Fig 14 shows that the improved algorithm has a faster convergence speed and

the ability to escape local extremes in solving pressure vessel design problems, which again

shows the superior performance of MSHHOTSA in solving engineering problems. This again

shows the superior performance of MSHHOTSA in solving engineering problems.

Fig 13. Pressure vessel design problem.

https://doi.org/10.1371/journal.pone.0290117.g013

Table 8. Optimal results of the different algorithms on the pressure vessel design problem.

Algorithm Ts Th R L f ð x!Þ
BOA 1.13 1.59 57.07 57.07 13167.6336

GWO 0.82 0.40 42.28 174.47 5956.1007

MVO 0.85 0.42 43.99 155.49 6057.8781

HHO 0.83 0.41 42.28 174.42 6049.4608

TSA 0.78 0.39 40.35 200.00 5913.9777

MSHHOTSA 0.78 0.39 40.32 200.00 5889.7831

https://doi.org/10.1371/journal.pone.0290117.t008
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5.3 Gear train design problem

The optimization objective of the gear train design problem is to minimize the gear transmis-

sion ratio. The corresponding topological diagram for this problem is shown in Fig 15 [8]. In

this context, Ta, Tb, Td, and Tf represent the number of teeth on four distinct gears, serving as

the four significant decision variables that determine the gear transmission ratio. The gear

ratio is given as Tb/Ta�Td/Tf.

Fig 14. Convergence curves for each algorithm to solve the pressure vessel design problem.

https://doi.org/10.1371/journal.pone.0290117.g014

Fig 15. Gear train design problem.

https://doi.org/10.1371/journal.pone.0290117.g015
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Let x!¼ ½x1; x2; x3; x4� ¼ ½Ta;Tb;Td;Tf �, f ð x
!Þ represents the optimal performance of the

transmission ratio. Then the mathematical model of the gear train design problem is described

as:

min f ð x!Þ ¼
1

6:931
�

x3x2

x1x4

� �2

ð26Þ

Where x12[12,60], x22[12,60], x32[12,60], x42[12,60].

Table 9 presents the optimization results of the gear train design problem using six meta-

heuristic algorithms, including MSHHOTSA. According to the table, both MSHHOTSA and

HHO have achieved the optimal gear transmission ratio with an objective function value of

f ð x!Þ ¼ 0:00Eþ 00. However, the optimal design parameters obtained by these two algo-

rithms differ. MSHHOTSA identifies the optimal design parameter as

x!¼ ½35:5638; 21:2577; 13:7114; 56:8048�, whereas HHO identifies

x!¼ ½53:3478; 17:2429; 16:6616; 37:3257�. This discrepancy implies that various gear combi-

nations can lead to the best gear transmission ratio. Consequently, in practical engineering

problems, it becomes essential not only to consider optimizing the transmission ratio but also

to select an appropriate gear combination based on the actual cost of each gear.

5.4 Speed reducer design problem

The primary optimization objective of the speed reducer design problem is the minimization

of the total weight of the speed reducer. The corresponding topological diagram depicting the

system’s configuration is presented in Fig 16 [72]. In this particular problem, seven essential

decision variables play a crucial role in determining the overall weight of the speed reducer.

These variables encompass the gear face width, denoted as b, the gear module, represented by

m, the number of teeth on the pinion gear, denoted as p, the length of the first shaft between

bearings, designated as l1, the length of the second shaft between bearings, denoted as l2, the

diameter of the first shaft, specified as d1, and the diameter of the second shaft, identified as d2.

Collectively, these variables are succinctly represented as the vector

x!¼ ½x1; x2; x3; x4; x5; x6; x7� ¼ ½b;m; p; l1; l2; d1; d2�. Moreover, the function f ð x!Þ signifies the

total weight of the speed reducer, thereby encapsulating the overall essence of the design opti-

mization. The mathematical model that governs the speed reducer design problem can be

explicitly expressed through Eqs (27) and (28).

min f ð x!Þ ¼ 0:7854x1x2
2
ð3:3333x2

3
þ 14:9334x3 � 43:0934Þ

� 1:508x1ðx2
6
þ x2

7
Þ þ 7:4777ðx3

6
þ x3

7
Þ þ 0:7854ðx4x2

6
þ x5x2

7
Þ

ð27Þ

Table 9. Optimal results of the different algorithms on the gear train design problem.

Algorithm Ta Tb Td Tf f ð x!Þ
BOA 51.9365 24.4399 12.0000 39.1382 4.43E-13

GWO 55.1753 13.3309 35.8167 59.9787 3.53E-18

MVO 55.6405 24.0358 15.7152 47.0526 1.07E-15

HHO 53.3478 17.2429 16.6616 37.3257 0.00E+00

TSA 54.0750 18.1623 20.5854 47.9214 5.82E-16

MSHHOTSA 35.5638 21.2577 13.7114 56.8048 0.00E+00

https://doi.org/10.1371/journal.pone.0290117.t009
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s:t:

g1ð x
!Þ ¼

27

x1x2
2
x3

� 1 � 0

g2ð x
!Þ ¼

397:5

x1x2
2
x2

3

� 1 � 0

g3ð x
!Þ ¼

1:93x3
4

x2x3x4
6

� 1 � 0

g4ð x
!Þ ¼

1:93x3
5

x2x3x4
7

� 1 � 0

g5ð x
!Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð745x4=x2x3Þ
2
þ 16:9� 106

q

110:0x3
6

� 1 � 0

g6ð x
!Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð745x5=x2x3Þ
2
þ 157:5� 106

q

85:0x3
6

� 1 � 0

g7ð x
!Þ ¼

x2x3

40
� 1 � 0

g8ð x
!Þ ¼

5x2

x1

� 1 � 0

g9ð x
!Þ ¼

x1

12x2

� 1 � 0

g10ð x
!Þ ¼

1:5x6 þ 1:9

x4

� 1 � 0

g11ð x
!Þ ¼

1:1x7 þ 1:9

x5

� 1 � 0

ð28Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><
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Where x12[2.6,3.6], x22[0.7,0.8], x32[17,28], x42[7.3,8.3]. x52[7.8,8.3], x62[2.9,3.9],

x72[5.0,5.5].

Table 10 presents the optimal solutions obtained through the utilization of six metaheuristic

algorithms, which include MSHHOTSA, to address the speed reducer design problem. As per

the data showcased in Table 10, within the confines of the same experimental conditions, the

MSHHOTSA algorithm has successfully attained the optimal design solution, leading to the

minimization of the total weight of the speed reducer. The associated optimal design parame-

ters are denoted as x!¼ ½3:5; 0:7; 17; 7:3; 7:7153; 3:3502; 5:2867�, and the corresponding

optimal objective function value stands at f ð x!Þ ¼ 2994:4711. This significant achievement

Fig 16. Speed reducer design problem.

https://doi.org/10.1371/journal.pone.0290117.g016
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points towards the MSHHOTSA algorithm’s remarkable optimization capability when it

comes to addressing the speed reducer design problem, underscoring its superior effectiveness

in identifying the optimal solution.

5.5 Parameters optimization of proportion integral derivative controller

In general, a PID controller consists of three main units: the proportional unit (P), the integral

unit (I), and the differential unit (D). Its primary objective is to devise a control strategy based

on the deviation between the actual value of the controlled object and the desired value. Subse-

quently, the controller stabilizes the closed-loop control system through parameter optimiza-

tion, thereby achieving the ultimate control objective [3, 15]. Fig 17 illustrates the execution

principle of the PID controller.

In the figure, rin(t) is the system input signal, yout(t) is the system output signal, and e(t) is

the system error. From Fig 16, the transfer function of the PID controller is expressed as:

uðtÞ ¼ Kp � eðtÞ þ Ki �

Z 1

0

eðtÞ þ Kd �
dðeðtÞÞ
dt

ð29Þ

Where Kp is the proportion factor, Ki is the integration factor, Kd is the derivative factor, and e
(t) is the systematic error.

To verify the optimization performance of MSHHOTSA for PID parameters, the second-

order delay system in the literature [3] was used as a simulation example and numerical experi-

ments were conducted.

GðsÞ ¼
50

4:23s2 þ 19:1801sþ 1
ð30Þ

where G(s) is the transfer function and s represents the continuous system. Then the objective

Table 10. Optimal results of the different algorithms on the speed design reducer problem.

Algorithm b m p l1 l2 d1 d2 f ð x!Þ
BOA 3.5420 0.7099 17.0952 7.7471 7.8751 3.8716 5.2801 1.87E+10

GWO 3.5027 0.7000 17.0000 7.3695 7.7790 3.3509 5.2868 2997.8368

MVO 3.5008 0.7000 17.0000 7.4931 7.9720 3.3715 5.2874 3008.0690

HHO 3.5008 0.7000 17.0000 7.3307 7.7936 3.3671 5.2867 3001.1165

TSA 3.5194 0.7000 17.0000 7.5551 7.8778 3.3844 5.2903 3019.0513

MSHHOTSA 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867 2994.4711

https://doi.org/10.1371/journal.pone.0290117.t010

Fig 17. The proportion integral derivative controller.

https://doi.org/10.1371/journal.pone.0290117.g017
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function is expressed as:

FP ¼

Z 1

0

ðo1jeðtÞj þ o2u
2ðtÞÞ þ o3jeðtÞjdt ð31Þ

where e(t)<0 represents the error between the system input and output; u(t) represents the

system output signal, ω3|e(t)| is the overshoot item; ω1, ω2, ω3 is the weight value, the range is

between [0, 1], and ω3>>ω1.

To optimize the PID controller, we set the initial population size of the algorithm to 30, and

the maximum number of iterations is 500. The input signal is a unit step signal, and the sam-

pling time is 0.001s. Additionally, the search range for the PID parameters Kp, Ki, and Kd is

defined as [0,50]. With these settings, we obtained the parameter optimization results for each

algorithm, as illustrated in Figs 18 and 19.

From the iterative convergence curves of the six algorithms, it is evident that MSHHOTSA

exhibits faster convergence compared to the other five comparative algorithms. This observa-

tion signifies that MSHHOTSA demonstrates superior convergence performance in finding

the best solution. Additionally, the step response signal output curves in Fig 18 show that

MSHHOTSA has smaller overshoot and adjustment time when compared to the comparison

algorithms. This further supports the conclusion that MSHHOTSA outperforms the compari-

son algorithms in terms of system stability.

5.6 Discussion

In this section, we conducted tests on five practical engineering applications to evaluate the

optimization performance of the MSHHOTSA algorithm and obtained experimental results.

These experimental results demonstrate that MSHHOTSA achieved the best optimization for

all five practical engineering applications under the same experimental conditions. This

Fig 18. Curve of step response signal of 6 algorithms.

https://doi.org/10.1371/journal.pone.0290117.g018
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further validates the stronger practicality and superiority of MSHHOTSA in addressing real-

world engineering optimization problems, showcasing its robustness.

The experimental results strongly support the successful application of the MSHHOTSA algo-

rithm in practical engineering scenarios. However, it was observed during the experiments that

excellent initial values remain crucial in ensuring the rapid convergence of the MSHHOTSA algo-

rithm. For specific engineering optimization problems, MSHHOTSA tends to gradually approach

the optimal solution from the boundary conditions, resulting in slower convergence speed in the

early iterations. Different combinations of parameters in various metaheuristic algorithms may

lead to the same optimal results when solving real-world engineering problems.

Therefore, when using the MSHHOTSA algorithm to solve engineering optimization prob-

lems, it is beneficial to employ some simple methods to obtain initial values for the problem.

This approach can effectively improve the convergence performance of the MSHHOTSA algo-

rithm. Additionally, when different parameter combinations yield the same optimal results in

practical engineering applications, it is essential to introduce additional constraints based on

the specific problem to select the most suitable algorithm.

In conclusion, despite limitations, the MSHHOTSA algorithm’s outstanding performance

in solving the five engineering optimization problems offers valuable insights for enhancing

and optimizing other metaheuristic algorithms. In practical applications, we can leverage the

strengths of the MSHHOTSA algorithm and combine them with other improvement measures

to further enhance its performance and applicability.

6. Conclusion and future works

This paper proposes a novel hybrid algorithm called “Multi-Strategy Tunicate Swarm Algo-

rithm with Hybrid Harris Optimization” (MSHHOTSA). The inspiration for this method

Fig 19. Convergence curves for each algorithm to solve pressure vessel design problem.

https://doi.org/10.1371/journal.pone.0290117.g019
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comes from observing the positional movements of tunicate swarms and Harris hawks during

their cooperative hunting in nature. Also, we drew inspiration from the neighborhood and

heat map distribution concepts. In this study, we employed various improvement strategies.

These strategies involved hyperbolic tangent domain modification for individual positions

within the tunicate swarm, updating the non-linear convergence factor to influence the collec-

tive behavior of the swarm, and integrating a hybrid Harris Hawks optimization algorithm to

update the population’s positions. To evaluate the optimization performance of MSHHOTSA,

we used eight standard benchmark functions and the CEC2019 benchmark functions and

compared it against seven well-known metaheuristic benchmark functions. Additionally, we

tested the applicability of MSHHOTSA on five real-world engineering problems and con-

ducted comprehensive evaluations by comparing its performance against five other metaheur-

istic algorithms.

MSHHOTSA exhibits superior optimization performance when solving benchmark func-

tions under the same experimental conditions, as indicated by smaller means, standard devia-

tions, and higher overall rankings. Moreover, the convergence curves of MSHHOTSA for 18

benchmark functions further validate its ability to escape local optima and display improved

convergence performance during the iterative process. The algorithm’s runtime results also

confirm the faster convergence speed of MSHHOTSA. The statistical significance of

MSHHOTSA has been verified through the Wilcoxon rank-sum test. Finally, the application

results on five real-world engineering problems demonstrate MSHHOTSA’s superior conver-

gence accuracy and global optimization ability. Compared to other experimental algorithms in

this paper, MSHHOTSA showcases higher competitiveness.

In the future, we intend to develop specific single-objective optimization frameworks using

the improved algorithm and utilize them to address challenges in feature selection and image

segmentation. Moreover, we will strive to introduce novel multi-objective optimization algo-

rithms based on the enhanced algorithm to tackle complex multi-objective optimization prob-

lems. These investigations will significantly broaden the application scope of our algorithm

across various domains while also elevating its overall effectiveness and performance.
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