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Abstract

Monkeypox is a double-stranded DNA virus with an envelope and is a member of the Poxvir-

idae family’s Orthopoxvirus genus. This virus can transmit from human to human through

direct contact with respiratory secretions, infected animals and humans, or contaminated

objects and causing mutations in the human body. In May 2022, several monkeypox

affected cases were found in many countries. Because of its transmitting characteristics, on

July 23, 2022, a nationwide public health emergency was proclaimed by WHO due to the

monkeypox virus. This study analyzed the gene mutation rate that is collected from the most

recent NCBI monkeypox dataset. The collected data is prepared to independently identify

the nucleotide and codon mutation. Additionally, depending on the size and availability of

the gene dataset, the computed mutation rate is split into three categories: Canada, Ger-

many, and the rest of the world. In this study, the genome mutation rate of the monkeypox

virus is predicted using a deep learning-based Long Short-Term Memory (LSTM) model and

compared with Gated Recurrent Unit (GRU) model. The LSTM model shows “Root Mean

Square Error” (RMSE) values of 0.09 and 0.08 for testing and training, respectively. Using

this time series analysis method, the prospective mutation rate of the 50th patient has been

predicted. Note that this is a new report on the monkeypox gene mutation. It is found that

the nucleotide mutation rates are decreasing, and the balance between bi-directional rates

are maintained.
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Introduction

The monkeypox virus (MPV) is a smallpox-related orthopox DNA virus from the Poxviridae

family [1–3]. It is currently causing worry on a global scale. In Central and West Africa, two

distinct genetic subtypes are recognized to be disease-causing. Compared to the Central Afri-

can subtype, the disease is less acute in the West African subtype [4]. The natural reservoirs are

probably different African rodents and primates [5]. The monkeypox virus (MPV) can be

transmitted to anyone by close, direct, and frequent skin-to-skin contact in several ways.

Human-to-human transmission may result from close physical contact with an infected per-

son or animal through respiratory droplets, bodily fluids, lesions, and contaminated objects

like bedding [5, 6]. Direct contact with infected animals through scratches and bites zoonosis

spread. Rather than monkeys, rodents like mice, rats, and squirrels carry the disease, which is

then passed on to humans [4]. The invasion period of monkeypox lasts between 0–5 days, the

affected people usually experience viral symptoms like fever, tiredness, headaches, general ach-

iness followed by developing a rash, while some other affected people experience them after

the rash appears. Until the rash is entirely gone and a new layer of skin has formed on the sick

person, monkeypox is communicable from the time when the symptoms start to manifest. It

usually lasts typically 2 to 4 weeks [4–6]. Recently, the patient mortality rate ranged from

3–6%. In contrast to COVID-19, this virus doesn’t travel from person to person effectively. It

is also much simpler to isolate affected people and stop the transmission. Through the pla-

centa, a pregnant individual can transmit the virus to their unborn child, which is too danger-

ous for the child. Not only this, air travelers are crucial in the spread of sickness [7, 8].

Monkeypox was initially detected in colonies of monkeys held for research in 1958 follow-

ing two outbreaks of a condition resembling pox [9, 10]. The disease monkeypox virus was

first discovered in a human being in 1970. Infection outbreaks have been observed sporadically

in Africa, usually due to interaction with wildlife reservoirs (mainly rodents) [11]. Nearly all

occurrences of monkeypox infection in people outside of Africa before the 2022 outbreak were

connected to either imported animals or international travel to countries [9]. In 2003, the

monkeypox outbreak was reported for the first time outside of Africa, where pet prairie dogs

were infected because those dogs were housed with dormice imported from Ghana and Gam-

bian pouched rats [6, 11]. Along with this, the United States confirmed more than 70 cases of

monkeypox in the same year. Travelers reported numerous instances of monkeypox from

Nigeria to other nations, including the United Kingdom (UK) in 2018–19, 2021–22, Israel in

2018, Singapore in 2019, and the United States (US) in 2021 [6]. In Nigeria, 76 cases were

reported in 2018, of which 37 are confirmed, one is likely, and two have resulted in death [12].

More monkeypox cases were reported in many non-endemic nations in May 2022. Interest-

ingly, the monkeypox virus strain causing the current epidemic of the disease in nonendemic

states probably branched from the monkeypox virus that caused an outbreak in Nigeria in

2018–19 and has far more mutations than would be anticipated, some of which increase trans-

mission [13]. Since early May 2022, more than 50 countries across five regions have reported

over 3000 instances of the monkeypox virus infection [1]. The current monkeypox outbreak

was consequently classified as a “Public Health Emergency of International Concern” by the

"World Health Organization" (WHO) on 23rd July 2022 [14]. According to data from around

the world, most cases of the current monkeypox outbreak are among gays and bisexuals [15].

Mutation analysis has been a hot topic since the occurrence of COVID-19 in 2019, and now

whenever the outbreak of any potential pandemic capable disease happens, the first question

that come around to our mind is if it can change or evolve with time. This research also gets

the motivation from the adaptation characteristics of monkeypox. And we wanted to analyze

not only the past mutation rates but also the future rates with the help of machine learning. In
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this paper, we worked with the gene mutation which is almost new in regard to the monkeypox

gene mutation. Furthermore, we have processed big data which is not done for the recent pan-

demic such as COVID-19. This paper is mainly focused on the general readers so that people

with no background of mutation rate studies can understand how machine learning is used in

mutation analysis related tasks. The major contribution of this study is as follows:

1. We analyzed the genome sequence based on codon and nucleotide separately.

2. Analyzed the mutation rate with own designed algorithm and created a timeseries dataset

from that.

3. Trained LSTM and GRU model for future rate predictions.

This paper will analyze monkeypox’s genetic data to identify the gene mutation rate. Here,

"genetic data" refers to DNA and an organism’s genome, which is the terminology usually used

in bioinformatics. The rest of the paper is sectioned as literature review to discuss current

word in this filed, working procedure would explain the whole workflow and dataset process-

ing, gene mutation section would discuss the different kind of mutation rates, next section

would discuss the model analysis and predictions and finally we discussed the result and con-

cluded our work.

Literature review

Monkeypox was declared to have developed in 2022, posing a new global health disaster,

according to the WHO, after the global effects of COVID-19 in 2019 [16]. Despite it having

recently occurred, Monkeypox is not the subject at hand because there has been so little

research on gene mutation. The phrase "gene mutation" describes a change in one or more

genes that has the potential to lead to various diseases or disorders. Time series work or fore-

casting any disease or its gene mutation rate is one of the great works in the field of research.

In the recent past, much work has been done on COVID-19 forecasting. To predict the

COVID-19 virus’s future mutation rate, a LSTM model was used in ref. [16]. The nucleotide

mutation rate of the 400th patient was accurately predicted by this model, which had a RMSE

of 0.06 during testing and 0.04 during training. Five deep learning algorithms, including the

recurrent neural network (RNN), gated recurrent units (GRUs), variational autoencoder

(VAE), LSTM, and bidirectional LSTM (BiLSTM), were applied for the global forecasting of

COVID-19 cases [17]. The results show that the VAE outperformed all other models in terms

of forecasting performance. Besides, an extension of the RNN as an LSTM cell and its variants,

such as Bi-directional LSTM, Convolutional LSTM, and Stacked LSTM adopted to forecast the

Covid-19 cases for one month in the future [18]. In addition to monthly instances, LSTM

models are used to forecast the number of new COVID-19-positive cases for daily and weekly

purposes in all states of India [19]. The suggested strategy performed well, with errors for daily

predictions of about 3% and for weekly predictions of under 8%. In order to predict the risk

category, a shallow LSTM-based neural network was developed, where the trend data and

meteorological data were combinedly used as input for the prediction. [20]. In ref. [21],

authors proposed a deep learning-based LSTM approach to predict the trends and possible

stopping time of the current COVID-19 outbreak in Canada and worldwide. They also ana-

lyzed the COVID-19 virus’s transmission rates in a couple of countries such as Italy, Canada,

and the USA. The results demonstrated promising predicting abilities utilizing a time series

dataset.

The number of confirmed COVID-19 cases was frequently predicted by research using dif-

ferent time-series techniques, such as the Auto-Regressive Integrated Moving Average

(ARIMA) [22]. For forecasting, statistical and artificial intelligence (AI) models were
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developed to forecast the daily Covid-19 cases in Egypt [23]. Prediction models have been cre-

ated using ARIMA and nonlinear autoregressive artificial neural networks (NARANN), where

NARANN has a 5% forecasting error. In ref. [24], the COVID-19 outbreak in India has been

analyzed, and its patterns have been predicted using classic ARIMA modeling and exponential

smoothing techniques. Chintalapudi et al. [25] applied the ARIMA model to forecast regis-

tered and recovered COVID-19 cases after 60 days of lockdown in Italy. According to their

projection, it will be possible for recovered cases to increase by 66% and registered cases to

decrease by around 35%.

Along with other methods, classical machine learning (ML) techniques also work well in

time series forecasting. In the study referenced in [26], an enhanced model based on machine

learning has been used to forecast the possible threat of COVID-19 in nations worldwide.

Moreover, this proposed model is implemented in a cloud computing platform for more pre-

cise and immediate forecasting of the epidemic’s growth pattern. Furthermore, different

supervised machine learning models such as linear regression, support vector machine (SVM),

LASSO regression, and exponential smoothing (ES) are utilized in other work to predict the

COVID-19 future [27]. Related to those covid works, several AI techniques using mathemati-

cal and statistical methods have been employed in the forecast of the monkeypox virus. In ref.

[28], the time series analysis model ARIMA and Neural Networks were utilized to predict the

cumulative cases of monkeypox virus for the 10 days. For confirmed cases, nine different fore-

casting models Holt–Winter’s model, Polynomial Regression, Holt’s Linear model, AR, SAR-

IMA, MA, ARIMA, SVR, and Prophet have been utilized in [9]. The study showed that the

Prophet model is the most reliable compared to the other used model where RMSE, MSE,

MAE, MAPE, and the R2 score are used as the performance indicator. In ref. [29], a novel

technique based on LSTM was used to predict the monkeypox infection. To improve the

LSTM model’s performance and boost forecast accuracy, the BER optimization algorithm is

used that optimize the parameters of the model.

Recently, due to the availability of much widely distributed datasets, researchers are now

doing classifications, prognosis analysis, mutation analysis etc. The fastest way to identify

monkeypox infection is via skin lesions. A PoxNet22 model has been fine-tuned to classify

monkeypox from 3192 images with a precision rate of 100% [30]. Another work has been

done where authors used a mobile application interface to detect monkeypox by simply cap-

turing photos of skin lesion [31]. In the background of this mobile application, they used pre-

trained EfficientNetb0 and MobileNetv2. Another broad statistical and regression analysis has

been done using nine different forecasting models with global monkeypox cases dataset [10].

They find out that Spain is in a bad and Europe is in a dangerous situation. Also, they used

timeseries models to predict the cases which was incremental till august 2022. So far, one

mutation analysis has been found for monkeypox which worked with GenBank dataset and

figured out the 2022 substitution mutation rate as 38.63 worldwide [32]. Though we have

observed a significant number of studies in this field, the amount of work to analyze the mon-

keypox data compared with COVID-19 is pretty low.

The major gap we noticed throughout the literature is that, researchers are using daily affir-

mative cases of monkeypox or COVID-19 to predict future case rate. On the other hand,

genetic researchers are analyzing the mutation rates for past confirmed cases. So, the future

mutation calculation is missing in this scene which we addressed and analyzed in this paper.

Working procedure

This paper is designed to represent the mutation rate analysis from a pure computer science

point of view. We have collected the gene data from NCBI public database and filtered with
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some custom parameters (described in next section) to get the suitable genes. Next, we analyzed

the missense, nonsense and silent mutations. Also, we have calculated the nucleotide mutation

and codon mutation rates considering the protean transformation. From the nucleotide muta-

tion rates, we prepared a timeseries dataset considering 12 set as 1 target value, and trained with

LSTM as it is popular for its capability such as memorizing the data for a longer period in layers.

We selected 12 sets, because we have 12 nucleotide transformations. The whole process is visual-

ized in Fig 1 and each step of this process is discussed in detail in the following sections.

Dataset preprocessing and insights

A sufficient number of related gene datasets are publicly available in the NCBI GenBank, which

contains the entire genome sequence of monkeypox. We have filtered a large number of entities

using the gene sequence, sample nation, and collection date till: 24th July 2022. All genes were

taken from the monkeypox-affected human body. Although there are genes from almost 33 dif-

ferent countries, Canada and Germany have a substantial amount of patient data. To cover as

many regions as possible, we have included these countries and others with low patient gene

sequences available in GenBank. The details of the gene dataset are displayed in Fig 2.

Fig 1. Summary illustration of whole process.

https://doi.org/10.1371/journal.pone.0290045.g001

Fig 2. The number of patients in 33 countries.

https://doi.org/10.1371/journal.pone.0290045.g002
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Table 1. Nucleotide conversion using the codon indexing sequence.

T C A G

T 1. “TTT” 5. “TCT” 9. “TAT” 13. “TGT” T

2. “TTC” 6. “TCC” 10. “TAC” 14. “TGC” C

3. “TTA” 7. “TCA” 11. “TAA” 15. “TGA” A

4. “TTG” 8. “TCG” 12. “TAG” 16. “TGG” G

C 17. “CTT” 21. “CCT” 25. “CAT” 29. “CGT” T

18. “CTC” 22. “CCC” 26. “CAC” 30. “CGC” C

19. “CTA” 23. “CCA” 27. “CAA” 31. “CGA” A

20. “CTG” 24. “CCG” 28. “CAG” 32. “CGG” G

A 33. “ATT” 37. “ACT” 41. “AAT” 45. “AGT” T

34. “ATC” 38. “ACC” 42. “AAC” 46. “AGC” C

35. “ATA” 39. “ACA” 43. “AAA” 47. “AGA” A

36. “ATG” 40. “ACG” 44. “AAG” 48. “AGG” G

G 49. “GTT” 53. “GCT” 57. “GAT” 61. “GGT” T

50. “GTC” 54. “GCC” 58. “GAC” 62. “GGC” C

51. “GTA” 55. “GCA” 59. “GAA” 63. “GGA” A

52. “GTG” 56. “GCG” 60. “GAG” 64. “GGG” G

https://doi.org/10.1371/journal.pone.0290045.t001

Fig 3. Indexing from nucleotide to the codon.

https://doi.org/10.1371/journal.pone.0290045.g003

Fig 4. Substitution mutation rate.

https://doi.org/10.1371/journal.pone.0290045.g004
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There are a few partial genes in this collected dataset. Therefore, we filtered them and only

kept those that had the “complete” genome status including the reference gene sequence with

a length of 197209. Finally, the dataset was reduced using a minimum gene length of 190083

and a maximum gene length of 206372. As a result, overall patient numbers drop from 757 to

512. The size of the filtered dataset resulted in the division of the mutation rates computations

into three groups: Canada, Germany, and the rest of the world. Moreover, the dataset is orga-

nized in a way that makes it possible to calculate the “nucleotide mutation” and “codon muta-

tion” separately. The nucleotide mutation rate is determined using the first filtered dataset.

After that, we changed the four unprocessed nucleotides (A = adenine, T = thymine,

C = cytosine, and G = guanine) into a codon set, which is a three-nucleotide unit of genetic

code found in DNA or RNA. The information in Table 1 has been used in this context to trans-

form the gene sequence by its sequence number. For example, "TTT" will be translated to 1,

"GCT" will be 53, and so on. Fig 3 illustrates the conversion process. This conversion process is

essential to understanding the monkeypox codon sequence mutation. Additionally, it helps to

reduce computing complexity.

Gene mutation

Numerous factors can cause a gene to mutate. When RNA attempts to duplicate genetic infor-

mation from DNA, errors may occur that lead to mutation. Additionally, the mutation is

brought on by errors in DNA recombination, replication, and chemical damage to DNA or

RNA. Basically, there are three different kinds of mutations: “base substitutions”, “deletions”,

and “insertions”. We can determine the three types of substitution mutation present in this

dataset: silent, missense, and nonsense. Silent mutations are codon changes where the resultant

amino acid is left unchanged. A missense mutation is said to have occurred if the ensuing

amino acid has changed. Moreover, it is referred to as a nonsense mutation when a codon

changes, resulting in the gene translation being stopped, leading to an inoperable protein. The

three different substitution mutation types found in the dataset are shown in Fig 4, with

Fig 5. Algorithm for calculating nucleotide mutation rate.

https://doi.org/10.1371/journal.pone.0290045.g005
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missense mutation rates of 40.8803%, nonsense mutation rates of 6.3667%, and silent mutation

rates of 0.9602%.

Mutation in nucleotides

When the type of mutation is missense, the nucleotide changes affect protein synthesis and

could change the virus’s behavior. Moreover, finding the cure’s gene sequence is quite tricky.

The missense nucleotide mutation rate has been established using the algorithm shown in Fig

5. After applying this algorithm, the values were converted into percentages using Eq (1).

MutationRate ¼
mutation
lg∗gs

� �

∗100 ð1Þ

The final output array in this case is called "MutationRate," the output array "mutation" is

of size 44 and contains the raw values received after performing the method, and the term, lg is

Fig 6. Mutation rate of nucleotide for (a) Canada, (b) Germany, and (c) the Rest of the Countries.

https://doi.org/10.1371/journal.pone.0290045.g006
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the dataset length, which in this dataset is 512 for the total dataset, 105 for Canada, and 186 for

Germany. The term gs is the length of the reference gene sequence, which in this dataset is

197209 in length. We have computed the nucleotide mutation rate for the prepared dataset in

this step. The mutation rate for Canada is shown in Fig 6(a). Germany in (b) and all in (c)

explain that a considerable percentage of thymine (T) and Adenine (A) is converting into

other nucleotides compared with Cytosine (C) and Guanine (G). But the amount of nucleo-

tides mutate to other types, and mutate back to their own class, which may explain why the

virus is stable till now and does not have a large variety in its behavior. In comparison to Can-

ada and Germany, the mutation rate of the overall dataset is high. Moreover, the dataset from

the rest of the countries shows some variations in T, C, A, and G. Based on the availability of

data from other countries, these values change.

Codon mutation

The codon mutation rate was calculated using the second processed and converted dataset cre-

ated previously, as shown in Fig 7. Modifications to the codon set result from nucleotide

Fig 7. Processed mutation rate of codon for the full dataset. X and Y axis ticks are numbered following the sequence shown in Table 1.

https://doi.org/10.1371/journal.pone.0290045.g007
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changes and ultimately have an immediate impact on the protein. To determine the codon

mutation rate, we applied the same algorithm displayed in Fig 5. The receiving array has seen a

small change, going from a nucleotide array size of 4 × 4 to a codon mutation array of 64×64.

Following the codon mutations’ discovery, the percentage rates were obtained using Eq (2).

CodonMutation ¼
mutation
lg∗gs

� �

∗100 ð2Þ

Here, “CodonMutation” is the final output array, “mutation” is the output array with a size

of 64×64 that contains original values after the algorithm is applied, lg is the dataset length,

which in this converted dataset is 521, and gs is the length of the reference gene, which is

197209 in this dataset. Fig 7 shows the codon mutation rate for the entire dataset. It is evident

from the obtained value that codons do not frequently mutate in the same way as nucleotides

do. The diagonal values are 0 since the maximum codon mutation rate is 0.174% and the point

codons are not changing compared to the reference gene.

Mutation rate prediction for nucleotide

The processed nucleotide dataset contains data that includes the period from 12th December

2001 to 16th May 2022 in a discontinuous manner. Since, dates are arranged in ascending

order at the data pre-processing stage, it is simple to process this as a time series dataset. This

dataset contains one or more patients for one specific date. By collecting all the patients, we

created the time series sequential dataset for patients which is shown in Fig 8.

Fig 8. Time series dataset based on patients.

https://doi.org/10.1371/journal.pone.0290045.g008
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In order to obtain a daily time-series dataset, we estimated the mean mutation rate for vari-

ous patients on the same date to prevent overlapping concerns. The dataset becomes smaller,

as a result, the dates are arranged in a non-sequential ascending order Fig 9 displays the muta-

tion rates for the entire timeframe. Due to the minimal availability of data, it is difficult to train

a model on such a tiny amount of data.

Fig 9. Mutation rate limits for the available timeframe.

https://doi.org/10.1371/journal.pone.0290045.g009

Table 2. Training data preparation.

Data (12×12) Label (1×12)

Processed dataset indexed set {1, 2, 3 . . ...11, 12} Corresponding target index 13

Processed dataset indexed set {2, 3, 4 . . ...12, 13} Corresponding target index 14

Processed dataset indexed set {3, 4, 5 . . ...13, 14} Corresponding target index 15

Processed dataset indexed set {n-12, n-11, n-10 . . .. . . n-2,n-1} Corresponding target index n

https://doi.org/10.1371/journal.pone.0290045.t002
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A deep learning-based LSTM network has been used in this experiment. Instead of taking

one patient per step, we utilized it as a set of 12 patient per step and the format have been pre-

sented in Table 2.

As for training and testing data, the entire set of data has been split 90–10%, respectively as

the dataset is low. As a result, we got 467 rows for training and 52 for testing. To train the data-

set, an LSTM model has been built using the Python deep learning API Keras and its structure

is shown in Fig 10. The model contains a stack of LSTM layers with 64, 128, 256 and 512 units,

linear activation functions and 10% dropout. After the flatten equivalent layer where LSTM

does not return any sequence, the unit reduces to 256, 128 and finally to 12 to maintain the

data shape. With adam optimizer and 100 epochs have been used with a tensor board to track

the losses. In testing and training, this model’s RMSE values are 0.09 and 0.08, respectively.

For GRU, we used a simple model architecture consisting of (12,12) input shape, followed by

bidirectional GRU layer with 32-unit, tanh activation, sigmoid recurrent activation as encoder

Fig 10. The LSTM model architecture used for the train time series dataset.

https://doi.org/10.1371/journal.pone.0290045.g010

Fig 11. Training, validation and nucleotide rate prediction with LSTM.

https://doi.org/10.1371/journal.pone.0290045.g011
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layer. Then used RepeatVector layer with 12 unit, again followed by a bidirectional GRU with

32 unit used as a decoder layer. And finally, uses TimeDistributed Dense layer with linear

activation.

After the training and testing phase, it was discovered that both models were performing at

the expected level. Therefore, we predicted each future patient’s gene mutation rate using the

mutation rates of the previous 12 patients. We then took that patient and calculated the muta-

tion rates of the previous 12 patients using 11 old patients and 1 new patient. Using this

method, we were able to predict the future mutation rates for 50 patients using the LSTM, as

shown in Fig 11. For GRU, we used nth patient data to predict (n+1)th future patient and the

predicted mutation rates are shown in Fig 12.

Fig 13 shows the mutation rate of nucleotide for the 50th patient in the near future time for

LSTM and Fig 14 shows for GRU. The mutation rate appears to have marginally decreased.

The balance between forward and backward mutation has been seen. The amount of nucleo-

tide mutated from T!C and C!T; T!G and G!T are almost equal, T!A and A!T differ

by 0.1%, the big difference of 6.2% is seen for C!A and A!C, C!G and G!C are also differ

by 2.1%, 0.1% difference has been seen between A!G and G!A. If additional continuous

data can be collected from different geo-locations and periods, this approach can be used to

calculate the mutation rate for a certain date in the future.

Comparison with similar literature work

A similar kind of work has been found for COVID-19 gene mutation. Still, this work is signifi-

cant for monkeypox gene analysis as no other literature has been found yet. We are working

Fig 12. Training, validation and nucleotide rate prediction with GRU.

https://doi.org/10.1371/journal.pone.0290045.g012
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Fig 14. Mutation rate prediction for 50th future patient for GRU.

https://doi.org/10.1371/journal.pone.0290045.g014

Fig 13. Mutation rate prediction for 50th future patient for LSTM.

https://doi.org/10.1371/journal.pone.0290045.g013
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on a real-time dynamic system to process and train the latest data automatically because the

patient’s data gradually increases in the NCBI dataset. Updating the whole work based on

those new data is time-consuming. The LSTM modal that we used is custom, simple and light-

weight for training and we have used google colab with GPU. This modal can predict the most

probable mutation rate scenario that might be seen in future patients. We also trained GRU as

a validation comparison with LSTM so that predictions can be validated. Compared with

nucleotide mutations, the GRU predicted nearly same result as LSTM with slight 0.01% differ-

ence. Another recent study showed that the substitutional mutation rate is 38.63 worldwide

for 2022, where our result is 40.88 which is slightly higher than their result, due to having less

data in our study.

Many have previously worked with COVID-19 mutation rate analysis, and based on that

result, it can be mentioned that, this model is working as expected and no overfitting is

noticed. Although some research on monkeypox was done where distinct forecasting tech-

niques were utilized, suggesting that the Prophet model is the most accurate forecasting model

[9]. Moreover, other existing works showed the prediction of monkeypox cases based on the

LSTM, MLP, and ARIMA models [16, 28]. However, the central fact is that those types of

work are not with gene mutations. As a result, our work is unique in the perspective of time

series analysis of the monkeypox mutations.

Conclusion

The monkeypox virus’s severity and wide spreadness in this year attracted attention. Already

several works have been done on this analysis and forecast for the future events of this virus

except for gene mutation. Genetic data has been used by the latest analysis techniques to

understand the importance of an object’s behavior. With the upgrade of computing power and

algorithms, we can now see the future based on numbers. LSTM has been widely used and is

one of the most popular models to predict time series data. This paper uses an LSTM model to

train and predict monkeypox mutation on substitutional patients’ processed dataset. Using

this, the 50th future mutation rate has been predicted, and a lower rate is noticed. Also, the

codon rate is shown to understand the flow of change at the protein level. As the dataset is

comparatively lower than the covid case, it was impossible to go further. But if the number of

patients increases, we expect more gene data collection in the NCBI database.
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