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Abstract

Monkeypox is a double-stranded DNA virus with an envelope and is a member of the Poxvir-
idae family’s Orthopoxvirus genus. This virus can transmit from human to human through
direct contact with respiratory secretions, infected animals and humans, or contaminated
objects and causing mutations in the human body. In May 2022, several monkeypox
affected cases were found in many countries. Because of its transmitting characteristics, on
July 23, 2022, a nationwide public health emergency was proclaimed by WHO due to the
monkeypox virus. This study analyzed the gene mutation rate that is collected from the most
recent NCBI monkeypox dataset. The collected data is prepared to independently identify
the nucleotide and codon mutation. Additionally, depending on the size and availability of
the gene dataset, the computed mutation rate is split into three categories: Canada, Ger-
many, and the rest of the world. In this study, the genome mutation rate of the monkeypox
virus is predicted using a deep learning-based Long Short-Term Memory (LSTM) model and
compared with Gated Recurrent Unit (GRU) model. The LSTM model shows “Root Mean
Square Error” (RMSE) values of 0.09 and 0.08 for testing and training, respectively. Using
this time series analysis method, the prospective mutation rate of the 50" patient has been
predicted. Note that this is a new report on the monkeypox gene mutation. It is found that
the nucleotide mutation rates are decreasing, and the balance between bi-directional rates
are maintained.
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Introduction

The monkeypox virus (MPV) is a smallpox-related orthopox DNA virus from the Poxviridae
family [1-3]. It is currently causing worry on a global scale. In Central and West Africa, two
distinct genetic subtypes are recognized to be disease-causing. Compared to the Central Afri-
can subtype, the disease is less acute in the West African subtype [4]. The natural reservoirs are
probably different African rodents and primates [5]. The monkeypox virus (MPV) can be
transmitted to anyone by close, direct, and frequent skin-to-skin contact in several ways.
Human-to-human transmission may result from close physical contact with an infected per-
son or animal through respiratory droplets, bodily fluids, lesions, and contaminated objects
like bedding [5, 6]. Direct contact with infected animals through scratches and bites zoonosis
spread. Rather than monkeys, rodents like mice, rats, and squirrels carry the disease, which is
then passed on to humans [4]. The invasion period of monkeypox lasts between 0-5 days, the
affected people usually experience viral symptoms like fever, tiredness, headaches, general ach-
iness followed by developing a rash, while some other affected people experience them after
the rash appears. Until the rash is entirely gone and a new layer of skin has formed on the sick
person, monkeypox is communicable from the time when the symptoms start to manifest. It
usually lasts typically 2 to 4 weeks [4-6]. Recently, the patient mortality rate ranged from
3-6%. In contrast to COVID-19, this virus doesn’t travel from person to person effectively. It
is also much simpler to isolate affected people and stop the transmission. Through the pla-
centa, a pregnant individual can transmit the virus to their unborn child, which is too danger-
ous for the child. Not only this, air travelers are crucial in the spread of sickness [7, 8].
Monkeypox was initially detected in colonies of monkeys held for research in 1958 follow-
ing two outbreaks of a condition resembling pox [9, 10]. The disease monkeypox virus was
first discovered in a human being in 1970. Infection outbreaks have been observed sporadically
in Africa, usually due to interaction with wildlife reservoirs (mainly rodents) [11]. Nearly all
occurrences of monkeypox infection in people outside of Africa before the 2022 outbreak were
connected to either imported animals or international travel to countries [9]. In 2003, the
monkeypox outbreak was reported for the first time outside of Africa, where pet prairie dogs
were infected because those dogs were housed with dormice imported from Ghana and Gam-
bian pouched rats [6, 11]. Along with this, the United States confirmed more than 70 cases of
monkeypox in the same year. Travelers reported numerous instances of monkeypox from
Nigeria to other nations, including the United Kingdom (UK) in 2018-19, 2021-22, Israel in
2018, Singapore in 2019, and the United States (US) in 2021 [6]. In Nigeria, 76 cases were
reported in 2018, of which 37 are confirmed, one is likely, and two have resulted in death [12].
More monkeypox cases were reported in many non-endemic nations in May 2022. Interest-
ingly, the monkeypox virus strain causing the current epidemic of the disease in nonendemic
states probably branched from the monkeypox virus that caused an outbreak in Nigeria in
2018-19 and has far more mutations than would be anticipated, some of which increase trans-
mission [13]. Since early May 2022, more than 50 countries across five regions have reported
over 3000 instances of the monkeypox virus infection [1]. The current monkeypox outbreak
was consequently classified as a “Public Health Emergency of International Concern” by the
"World Health Organization" (WHO) on 23rd July 2022 [14]. According to data from around
the world, most cases of the current monkeypox outbreak are among gays and bisexuals [15].
Mutation analysis has been a hot topic since the occurrence of COVID-19 in 2019, and now
whenever the outbreak of any potential pandemic capable disease happens, the first question
that come around to our mind is if it can change or evolve with time. This research also gets
the motivation from the adaptation characteristics of monkeypox. And we wanted to analyze
not only the past mutation rates but also the future rates with the help of machine learning. In
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this paper, we worked with the gene mutation which is almost new in regard to the monkeypox
gene mutation. Furthermore, we have processed big data which is not done for the recent pan-
demic such as COVID-19. This paper is mainly focused on the general readers so that people
with no background of mutation rate studies can understand how machine learning is used in
mutation analysis related tasks. The major contribution of this study is as follows:

1. We analyzed the genome sequence based on codon and nucleotide separately.

2. Analyzed the mutation rate with own designed algorithm and created a timeseries dataset
from that.

3. Trained LSTM and GRU model for future rate predictions.

This paper will analyze monkeypox’s genetic data to identify the gene mutation rate. Here,
"genetic data" refers to DNA and an organism’s genome, which is the terminology usually used
in bioinformatics. The rest of the paper is sectioned as literature review to discuss current
word in this filed, working procedure would explain the whole workflow and dataset process-
ing, gene mutation section would discuss the different kind of mutation rates, next section
would discuss the model analysis and predictions and finally we discussed the result and con-
cluded our work.

Literature review

Monkeypox was declared to have developed in 2022, posing a new global health disaster,
according to the WHO, after the global effects of COVID-19 in 2019 [16]. Despite it having
recently occurred, Monkeypox is not the subject at hand because there has been so little
research on gene mutation. The phrase "gene mutation" describes a change in one or more
genes that has the potential to lead to various diseases or disorders. Time series work or fore-
casting any disease or its gene mutation rate is one of the great works in the field of research.
In the recent past, much work has been done on COVID-19 forecasting. To predict the
COVID-19 virus’s future mutation rate, a LSTM model was used in ref. [16]. The nucleotide
mutation rate of the 400™ patient was accurately predicted by this model, which had a RMSE
of 0.06 during testing and 0.04 during training. Five deep learning algorithms, including the
recurrent neural network (RNN), gated recurrent units (GRUs), variational autoencoder
(VAE), LSTM, and bidirectional LSTM (BiLSTM), were applied for the global forecasting of
COVID-19 cases [17]. The results show that the VAE outperformed all other models in terms
of forecasting performance. Besides, an extension of the RNN as an LSTM cell and its variants,
such as Bi-directional LSTM, Convolutional LSTM, and Stacked LSTM adopted to forecast the
Covid-19 cases for one month in the future [18]. In addition to monthly instances, LSTM
models are used to forecast the number of new COVID-19-positive cases for daily and weekly
purposes in all states of India [19]. The suggested strategy performed well, with errors for daily
predictions of about 3% and for weekly predictions of under 8%. In order to predict the risk
category, a shallow LSTM-based neural network was developed, where the trend data and
meteorological data were combinedly used as input for the prediction. [20]. In ref. [21],
authors proposed a deep learning-based LSTM approach to predict the trends and possible
stopping time of the current COVID-19 outbreak in Canada and worldwide. They also ana-
lyzed the COVID-19 virus’s transmission rates in a couple of countries such as Italy, Canada,
and the USA. The results demonstrated promising predicting abilities utilizing a time series
dataset.

The number of confirmed COVID-19 cases was frequently predicted by research using dif-
ferent time-series techniques, such as the Auto-Regressive Integrated Moving Average
(ARIMA) [22]. For forecasting, statistical and artificial intelligence (AI) models were
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developed to forecast the daily Covid-19 cases in Egypt [23]. Prediction models have been cre-
ated using ARIMA and nonlinear autoregressive artificial neural networks (NARANN), where
NARANN has a 5% forecasting error. In ref. [24], the COVID-19 outbreak in India has been
analyzed, and its patterns have been predicted using classic ARIMA modeling and exponential
smoothing techniques. Chintalapudi et al. [25] applied the ARIMA model to forecast regis-
tered and recovered COVID-19 cases after 60 days of lockdown in Italy. According to their
projection, it will be possible for recovered cases to increase by 66% and registered cases to
decrease by around 35%.

Along with other methods, classical machine learning (ML) techniques also work well in
time series forecasting. In the study referenced in [26], an enhanced model based on machine
learning has been used to forecast the possible threat of COVID-19 in nations worldwide.
Moreover, this proposed model is implemented in a cloud computing platform for more pre-
cise and immediate forecasting of the epidemic’s growth pattern. Furthermore, different
supervised machine learning models such as linear regression, support vector machine (SVM),
LASSO regression, and exponential smoothing (ES) are utilized in other work to predict the
COVID-19 future [27]. Related to those covid works, several Al techniques using mathemati-
cal and statistical methods have been employed in the forecast of the monkeypox virus. In ref.
[28], the time series analysis model ARIMA and Neural Networks were utilized to predict the
cumulative cases of monkeypox virus for the 10 days. For confirmed cases, nine different fore-
casting models Holt—-Winter’s model, Polynomial Regression, Holt’s Linear model, AR, SAR-
IMA, MA, ARIMA, SVR, and Prophet have been utilized in [9]. The study showed that the
Prophet model is the most reliable compared to the other used model where RMSE, MSE,
MAE, MAPE, and the R2 score are used as the performance indicator. In ref. [29], a novel
technique based on LSTM was used to predict the monkeypox infection. To improve the
LSTM model’s performance and boost forecast accuracy, the BER optimization algorithm is
used that optimize the parameters of the model.

Recently, due to the availability of much widely distributed datasets, researchers are now
doing classifications, prognosis analysis, mutation analysis etc. The fastest way to identify
monkeypox infection is via skin lesions. A PoxNet22 model has been fine-tuned to classify
monkeypox from 3192 images with a precision rate of 100% [30]. Another work has been
done where authors used a mobile application interface to detect monkeypox by simply cap-
turing photos of skin lesion [31]. In the background of this mobile application, they used pre-
trained EfficientNetb0 and MobileNetv2. Another broad statistical and regression analysis has
been done using nine different forecasting models with global monkeypox cases dataset [10].
They find out that Spain is in a bad and Europe is in a dangerous situation. Also, they used
timeseries models to predict the cases which was incremental till august 2022. So far, one
mutation analysis has been found for monkeypox which worked with GenBank dataset and
figured out the 2022 substitution mutation rate as 38.63 worldwide [32]. Though we have
observed a significant number of studies in this field, the amount of work to analyze the mon-
keypox data compared with COVID-19 is pretty low.

The major gap we noticed throughout the literature is that, researchers are using daily affir-
mative cases of monkeypox or COVID-19 to predict future case rate. On the other hand,
genetic researchers are analyzing the mutation rates for past confirmed cases. So, the future
mutation calculation is missing in this scene which we addressed and analyzed in this paper.

Working procedure

This paper is designed to represent the mutation rate analysis from a pure computer science
point of view. We have collected the gene data from NCBI public database and filtered with
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Fig 1. Summary illustration of whole process.

https://doi.org/10.1371/journal.pone.0290045.9001

some custom parameters (described in next section) to get the suitable genes. Next, we analyzed
the missense, nonsense and silent mutations. Also, we have calculated the nucleotide mutation
and codon mutation rates considering the protean transformation. From the nucleotide muta-
tion rates, we prepared a timeseries dataset considering 12 set as 1 target value, and trained with
LSTM as it is popular for its capability such as memorizing the data for a longer period in layers.
We selected 12 sets, because we have 12 nucleotide transformations. The whole process is visual-
ized in Fig 1 and each step of this process is discussed in detail in the following sections.

Dataset preprocessing and insights

A sufficient number of related gene datasets are publicly available in the NCBI GenBank, which
contains the entire genome sequence of monkeypox. We have filtered a large number of entities
using the gene sequence, sample nation, and collection date till: 24" July 2022. All genes were
taken from the monkeypox-affected human body. Although there are genes from almost 33 dif-
ferent countries, Canada and Germany have a substantial amount of patient data. To cover as
many regions as possible, we have included these countries and others with low patient gene
sequences available in GenBank. The details of the gene dataset are displayed in Fig 2.
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Fig 2. The number of patients in 33 countries.

https://doi.org/10.1371/journal.pone.0290045.g002
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Table 1. Nucleotide conversion using the codon indexing sequence.

T C A G
T 1. “TTT” 5. “TCT” 9. “TAT” 13. “TGT” T
2.“TTC” 6. “TCC” 10. “TAC” 14. “TGC” C
3. “TTA” 7. “TCA” 11. “TAA” 15. “TGA” A
4.“TTG” 8. “TCG” 12. “TAG” 16. “TGG” G
C 17. “CTT” 21. “CCT” 25. “CAT” 29. “CGT” T
18. “CTC” 22.“CCC” 26. “CAC” 30. “CGC” C
19. “CTA” 23. “CCA” 27.“CAA” 31. “CGA” A
20. “CTG” 24. “CCG” 28. “CAG” 32. “CGG” G
A 33. “ATT” 37. “ACT” 41. “AAT” 45. “AGT” T
34. “ATC” 38. “ACC” 42. “AAC” 46. “AGC” C
35. “ATA” 39. “ACA” 43. “AAA” 47. “AGA” A
36. “ATG” 40. “ACG” 44. “AAG” 48. “AGG” G
G 49. “GTT” 53. “GCT” 57. “GAT” 61. “GGT” T
50. “GTC” 54. “GCC” 58. “GAC” 62. “GGC” C
51. “GTA” 55. “GCA” 59. “GAA” 63. “GGA” A
52. “GTG” 56. “GCG” 60. “GAG” 64. “GGG” G

https://doi.org/10.1371/journal.pone.0290045.t001

Original ATT AAA GGT TTA TAC CTT CCC

Converted: 33 43 61 3 10 17 22

Fig 3. Indexing from nucleotide to the codon.

https://doi.org/10.1371/journal.pone.0290045.g003
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Input: Dataset with the patient in rows and nucleotide in columns.
Output: A 4x4 mutation matrix.

1. let mutation[1:4,1:4]=0

2. fori=1 to (len (dataset)) do

3 for j = 1 to (len (ReferenceGene)) do

4 let D1= dataset[i][j]

5. let D2= reference[j]

6 if D1!=D2 then

7 mutation[D1][D2] «— mutation[D1][D2]+1
8

end if
9. end for
10. end for

Fig 5. Algorithm for calculating nucleotide mutation rate.

https://doi.org/10.1371/journal.pone.0290045.g005

There are a few partial genes in this collected dataset. Therefore, we filtered them and only
kept those that had the “complete” genome status including the reference gene sequence with
a length of 197209. Finally, the dataset was reduced using a minimum gene length of 190083
and a maximum gene length of 206372. As a result, overall patient numbers drop from 757 to
512. The size of the filtered dataset resulted in the division of the mutation rates computations
into three groups: Canada, Germany, and the rest of the world. Moreover, the dataset is orga-
nized in a way that makes it possible to calculate the “nucleotide mutation” and “codon muta-
tion” separately. The nucleotide mutation rate is determined using the first filtered dataset.
After that, we changed the four unprocessed nucleotides (A = adenine, T = thymine,

C = cytosine, and G = guanine) into a codon set, which is a three-nucleotide unit of genetic
code found in DNA or RNA. The information in Table 1 has been used in this context to trans-
form the gene sequence by its sequence number. For example, "TTT" will be translated to 1,
"GCT" will be 53, and so on. Fig 3 illustrates the conversion process. This conversion process is
essential to understanding the monkeypox codon sequence mutation. Additionally, it helps to
reduce computing complexity.

Gene mutation

Numerous factors can cause a gene to mutate. When RNA attempts to duplicate genetic infor-
mation from DNA, errors may occur that lead to mutation. Additionally, the mutation is
brought on by errors in DNA recombination, replication, and chemical damage to DNA or
RNA. Basically, there are three different kinds of mutations: “base substitutions”, “deletions”,
and “insertions”. We can determine the three types of substitution mutation present in this
dataset: silent, missense, and nonsense. Silent mutations are codon changes where the resultant
amino acid is left unchanged. A missense mutation is said to have occurred if the ensuing
amino acid has changed. Moreover, it is referred to as a nonsense mutation when a codon
changes, resulting in the gene translation being stopped, leading to an inoperable protein. The
three different substitution mutation types found in the dataset are shown in Fig 4, with
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missense mutation rates of 40.8803%, nonsense mutation rates of 6.3667%, and silent mutation
rates of 0.9602%.

Mutation in nucleotides

When the type of mutation is missense, the nucleotide changes affect protein synthesis and
could change the virus’s behavior. Moreover, finding the cure’s gene sequence is quite tricky.
The missense nucleotide mutation rate has been established using the algorithm shown in Fig
5. After applying this algorithm, the values were converted into percentages using Eq (1).

tati
MutationRate = (M> *100 (1)
lg*gs

The final output array in this case is called "MutationRate," the output array "mutation" is
of size 44 and contains the raw values received after performing the method, and the term, Ig is
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the dataset length, which in this dataset is 512 for the total dataset, 105 for Canada, and 186 for
Germany. The term gs is the length of the reference gene sequence, which in this dataset is
197209 in length. We have computed the nucleotide mutation rate for the prepared dataset in
this step. The mutation rate for Canada is shown in Fig 6(a). Germany in (b) and all in (c)
explain that a considerable percentage of thymine (T) and Adenine (A) is converting into
other nucleotides compared with Cytosine (C) and Guanine (G). But the amount of nucleo-
tides mutate to other types, and mutate back to their own class, which may explain why the
virus is stable till now and does not have a large variety in its behavior. In comparison to Can-
ada and Germany, the mutation rate of the overall dataset is high. Moreover, the dataset from
the rest of the countries shows some variations in T, C, A, and G. Based on the availability of
data from other countries, these values change.

Codon mutation

The codon mutation rate was calculated using the second processed and converted dataset cre-
ated previously, as shown in Fig 7. Modifications to the codon set result from nucleotide
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changes and ultimately have an immediate impact on the protein. To determine the codon
mutation rate, we applied the same algorithm displayed in Fig 5. The receiving array has seen a
small change, going from a nucleotide array size of 4 x 4 to a codon mutation array of 64x64.
Following the codon mutations’ discovery, the percentage rates were obtained using Eq (2).

CodonMutation = (W> *100 (2)
lg*gs

Here, “CodonMutation” is the final output array, “mutation” is the output array with a size
of 64x64 that contains original values after the algorithm is applied, lg is the dataset length,
which in this converted dataset is 521, and gs is the length of the reference gene, which is
197209 in this dataset. Fig 7 shows the codon mutation rate for the entire dataset. It is evident
from the obtained value that codons do not frequently mutate in the same way as nucleotides
do. The diagonal values are 0 since the maximum codon mutation rate is 0.174% and the point
codons are not changing compared to the reference gene.

Mutation rate prediction for nucleotide

The processed nucleotide dataset contains data that includes the period from 12th December
2001 to 16th May 2022 in a discontinuous manner. Since, dates are arranged in ascending
order at the data pre-processing stage, it is simple to process this as a time series dataset. This
dataset contains one or more patients for one specific date. By collecting all the patients, we
created the time series sequential dataset for patients which is shown in Fig 8.
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Fig 9. Mutation rate limits for the available timeframe.

https://doi.org/10.1371/journal.pone.0290045.9009

In order to obtain a daily time-series dataset, we estimated the mean mutation rate for vari-
ous patients on the same date to prevent overlapping concerns. The dataset becomes smaller,
as a result, the dates are arranged in a non-sequential ascending order Fig 9 displays the muta-
tion rates for the entire timeframe. Due to the minimal availability of data, it is difficult to train
amodel on such a tiny amount of data.

Table 2. Training data preparation.

Data (12x12) Label (1x12)

Processed dataset indexed set {1,2, 3 .....11, 12} Corresponding target index 13
Processed dataset indexed set {2, 3,4 .. ...12, 13} Corresponding target index 14
Processed dataset indexed set {3, 4,5 .. ...13, 14} Corresponding target index 15
Processed dataset indexed set {n-12,n-11,n-10...... n-2,n-1} Corresponding target index n

https://doi.org/10.1371/journal.pone.0290045.t1002
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Fig 10. The LSTM model architecture used for the train time series dataset.
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A deep learning-based LSTM network has been used in this experiment. Instead of taking
one patient per step, we utilized it as a set of 12 patient per step and the format have been pre-
sented in Table 2.

As for training and testing data, the entire set of data has been split 90-10%, respectively as
the dataset is low. As a result, we got 467 rows for training and 52 for testing. To train the data-
set, an LSTM model has been built using the Python deep learning API Keras and its structure
is shown in Fig 10. The model contains a stack of LSTM layers with 64, 128, 256 and 512 units,
linear activation functions and 10% dropout. After the flatten equivalent layer where LSTM
does not return any sequence, the unit reduces to 256, 128 and finally to 12 to maintain the
data shape. With adam optimizer and 100 epochs have been used with a tensor board to track
the losses. In testing and training, this model’s RMSE values are 0.09 and 0.08, respectively.
For GRU, we used a simple model architecture consisting of (12,12) input shape, followed by
bidirectional GRU layer with 32-unit, tanh activation, sigmoid recurrent activation as encoder
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Fig 11. Training, validation and nucleotide rate prediction with LSTM.
https://doi.org/10.1371/journal.pone.0290045.g011
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Fig 12. Training, validation and nucleotide rate prediction with GRU.
https://doi.org/10.1371/journal.pone.0290045.g012

layer. Then used RepeatVector layer with 12 unit, again followed by a bidirectional GRU with
32 unit used as a decoder layer. And finally, uses TimeDistributed Dense layer with linear
activation.

After the training and testing phase, it was discovered that both models were performing at
the expected level. Therefore, we predicted each future patient’s gene mutation rate using the
mutation rates of the previous 12 patients. We then took that patient and calculated the muta-
tion rates of the previous 12 patients using 11 old patients and 1 new patient. Using this
method, we were able to predict the future mutation rates for 50 patients using the LSTM, as
shown in Fig 11. For GRU, we used n™ patient data to predict (n+1)" future patient and the
predicted mutation rates are shown in Fig 12.

Fig 13 shows the mutation rate of nucleotide for the 50" patient in the near future time for
LSTM and Fig 14 shows for GRU. The mutation rate appears to have marginally decreased.
The balance between forward and backward mutation has been seen. The amount of nucleo-
tide mutated from T—C and C—T; T—G and G—T are almost equal, T—A and A—T differ
by 0.1%, the big difference of 6.2% is seen for C—A and A—C, C—G and G—C are also differ
by 2.1%, 0.1% difference has been seen between A—G and G—A. If additional continuous
data can be collected from different geo-locations and periods, this approach can be used to
calculate the mutation rate for a certain date in the future.

Comparison with similar literature work

A similar kind of work has been found for COVID-19 gene mutation. Still, this work is signifi-
cant for monkeypox gene analysis as no other literature has been found yet. We are working
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on a real-time dynamic system to process and train the latest data automatically because the
patient’s data gradually increases in the NCBI dataset. Updating the whole work based on
those new data is time-consuming. The LSTM modal that we used is custom, simple and light-
weight for training and we have used google colab with GPU. This modal can predict the most
probable mutation rate scenario that might be seen in future patients. We also trained GRU as
a validation comparison with LSTM so that predictions can be validated. Compared with
nucleotide mutations, the GRU predicted nearly same result as LSTM with slight 0.01% differ-
ence. Another recent study showed that the substitutional mutation rate is 38.63 worldwide
for 2022, where our result is 40.88 which is slightly higher than their result, due to having less
data in our study.

Many have previously worked with COVID-19 mutation rate analysis, and based on that
result, it can be mentioned that, this model is working as expected and no overfitting is
noticed. Although some research on monkeypox was done where distinct forecasting tech-
niques were utilized, suggesting that the Prophet model is the most accurate forecasting model
[9]. Moreover, other existing works showed the prediction of monkeypox cases based on the
LSTM, MLP, and ARIMA models [16, 28]. However, the central fact is that those types of
work are not with gene mutations. As a result, our work is unique in the perspective of time
series analysis of the monkeypox mutations.

Conclusion

The monkeypox virus’s severity and wide spreadness in this year attracted attention. Already
several works have been done on this analysis and forecast for the future events of this virus
except for gene mutation. Genetic data has been used by the latest analysis techniques to
understand the importance of an object’s behavior. With the upgrade of computing power and
algorithms, we can now see the future based on numbers. LSTM has been widely used and is
one of the most popular models to predict time series data. This paper uses an LSTM model to
train and predict monkeypox mutation on substitutional patients’ processed dataset. Using
this, the 50" future mutation rate has been predicted, and a lower rate is noticed. Also, the
codon rate is shown to understand the flow of change at the protein level. As the dataset is
comparatively lower than the covid case, it was impossible to go further. But if the number of
patients increases, we expect more gene data collection in the NCBI database.
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