
RESEARCH ARTICLE

Inhibition of SRC-3 as a potential therapeutic

strategy for aggressive mantle cell lymphoma

Imani Bijou1, Yang Liu2, Dong Lu1, Jianwei Chen1, Shelby Sloan3, Lapo Alinari3, David

M. Lonard4*, Bert W. O’Malley4*, Michael Wang2*, Jin WangID
1,4*

1 Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas,

United States of America, 2 Department of Lymphoma and Myeloma, The University of Texas MD Anderson

Cancer Center, Houston, Texas, United States of America, 3 Division of Hematology, The James Cancer

Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, United States of

America, 4 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas,

United States of America

* wangj@bcm.edu (JW); miwang@mdanderson.org (MW); berto@bcm.edu (BWO); dlonard@bcm.edu

(DML)

Abstract

Mantle cell lymphoma (MCL) has a poor prognosis and high relapse rates despite current

therapies, necessitating novel treatment regimens. Inhibition of SRC-3 show effectiveness

in vivo and in vitro in other B cell lymphomas. Additionally, previous studies have shown that

SRC-3 is highly expressed in the lymph nodes of B cell non-Hodgkin’s lymphoma patients,

suggesting SRC-3 may play a role in the progression of B cell lymphoma. This study aimed

to investigate novel SRC-3 inhibitors, SI-10 and SI-12, in mantle cell lymphoma. The cyto-

toxic effects of SI-10 and SI-12 were evaluated in vitro and demonstrated dose-dependent

cytotoxicity in a panel of MCL cell lines. The in vivo efficacy of SI-10 was confirmed in two

ibrutinib-resistant models: an immunocompetent disseminated A20 mouse model of B-cell

lymphoma and a human PDX model of MCL. Notably, SI-10 treatment also resulted in a sig-

nificant extension of survival in vivo with low toxicity in both ibrutinib-resistant murine mod-

els. We have investigated SI-10 as a novel anti-lymphoma compound via the inhibition of

SRC-3 activity. These findings indicate that targeting SRC-3 should be investigated in com-

bination with current clinical therapeutics as a novel strategy to expand the therapeutic

index and to improve lymphoma outcomes.

Introduction

Non-Hodgkin lymphoma (NHL) is the most commonly occurring hematological malignancy

containing a variety of subtypes. Mantle cell lymphoma (MCL) is an aggressive and incurable

subtype of B-cell-NHL, accounting for 4% of all lymphomas and resulting in a median survival

of 8–12 years [1,2]. Most patients present with advanced-stage disease, and current therapies,

which include anti-CD20 monoclonal antibodies, autologous stem-cell transplantation, immu-

nochemotherapy, and targeted therapy, have been unable to eradicate MCL resulting in almost

universal relapse [3]. Given the current efficacy of standard lymphoma treatment regimens,

therapies have been investigated targeting B-cell receptor pathway signaling or apoptotic
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pathway signaling to treat relapsed/refractory disease [1]. The BTK inhibitor ibrutinib and

some of its analogs have resulted in high overall response rates and FDA approval. However,

resistance and relapse still occur resulting in treatment regimens combining other targeted

therapies and necessitating approaches with differing mechanisms of action to those clinically

approved [4–6].

The steroid receptor coactivator (SRC) family contains three members, SRC-1, SRC-2, and

SRC-3 [7]. These transcriptional coactivators function through interactions with nuclear

receptors which then recruit additional proteins to form multi-subunit transcriptional com-

plexes that promote transcriptional activity. Additionally, SRCs have been shown to coactivate

various non-nuclear receptor transcriptional factors such as NF-kB, AP-1, and E2F1, and

interact with the CBP/p300 coactivators [4]. The dysregulation of epigenetic modulators is an

initiator of carcinogenesis, and SRC-3 overexpression has been associated with malignancy in

breast, lung, and prostate cancer [8–10]. SRC-3 has also been shown to promote tumor growth

through involvement in pathways regulating cell cycle, apoptosis, drug resistance, migration,

and invasion [11].

The role of SRC-3 in MCL yet to be well defined, but previous studies show that SRC-3 is

highly expressed in B-cell NHL models. Pharmacological inhibition of SRC-3 with gambogic

acid reduced tumor growth of diffuse large cell b cell lymphoma (DLBCL) models in vitro and

in vivo through histone deacetylation and downregulation of multiple oncoproteins such as

Bcl-2, cyclin D3, Bcl-6, and c-Myc [12]. Additionally, single-cell transcriptomic data suggest

that SRC-3 is most highly expressed in B cells and plasma cells, suggesting a potential undis-

covered role of SRC-3 in B cell receptor signaling [13].

In collaboration with Drs. O’Malley and Lonard’s groups, we identified SI-2 as a potent

SRC-3 inhibitor capable of decreasing SRC-3 protein levels and inhibiting breast cancer cell

proliferation in vitro and tumor growth in vivo [14]. More recently, SI-2 was optimized for

more favorable pharmacokinetic properties by introducing of up to three fluorine atoms gen-

erating the analogs SI-10 and SI-12. These analogs have been shown to exert potent anti-cancer

activity with minimal cardiotoxicity in breast cancer models [15]. In this study, we aim to

investigate the anti-cancer effect of new SRC-3 inhibitors in vitro and in vivo for the treatment

of MCL.

Results

Src-3 inhibitors reduce the proliferation of various MCL cell lines

Previous studies have shown SRC-3 overexpression to be pivotal in many solid tumors, but the

significance of SRC-3 in blood cancer tumors was undetermined [8–10]. Recently, a study

showed clinical SRC-3 overexpression in the lymph nodes of B-cell NHL patients [12]. To eval-

uate the in vitro anti-lymphoma activity of SI-10 and SI-12, four MCL lines and one murine

lymphoma line were treated with either SRC-3 inhibitor SI-10 or SI-12 at concentrations rang-

ing from 0–2 μM. Cell viability was assessed using the Alamar Blue assay after 48 hours. After

treatment, both SI-10 and SI-12 significantly inhibited the growth of lymphoma in a dose-

dependent manner. IC50 values were calculated at the low nanomolar level for both SI-10 and

SI-12 (Fig 1A and 1B). Comparing the IC50 values of the two drugs, they both demonstrated

similar efficacy in the human MCL cell lines. The murine A20 B cell lymphoma line showed

the most resistance to SI-10 with an IC50 of 20 nM. Cell viability was also measured at different

treatment times 12, 24, and 48 h at concentrations up to 2 μM. Viability also decreased in a

time-dependent manner (Fig 1C and 1D).
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SRC-3 inhibitors overcome drug resistance in vitro
The first-line treatment of MCL includes chemotherapy and the anti-CD20 monoclonal anti-

body rituximab, but given that so many patients relapse, targeted therapies are frequently

offered as a second-line option. Current targeted therapy for MCL includes the FDA-approved

BTK inhibitor ibrutinib and the Bcl-2 inhibitor venetoclax currently in clinical trials. B–cell

receptor (BCR) signaling is highly upregulated in B-cell malignancies, and inhibition of BTK

leads to durable clinical responses in MCL [16]. Additionally, Bcl-2 regulates the intrinsic

mitochondrial apoptotic pathway where its overexpression results in mitochondrial outer

membrane permeabilization through the interplay of pro- and anti-apoptotic Bcl-2 family pro-

teins [17]. Despite the clinical efficacy of both drugs, resistance to venetoclax and ibrutinib is

still of concern as most patients progress on both drugs [18,19].

High levels of SRC-3 have been associated with resistance to chemotherapy and targeted

therapies in cancer. SRC-3 has been associated with resistance to chemotherapy and targeted

therapies in cancer models. Targeting SRC-3 with bufalin resulted in reduced polarization of

pro-tumorigenic M2 macrophages by decreasing MIF expression in chemo-resistant colon

cancer models [20]. Additionally, siRNA downregulation of SRC-3 reverses tamoxifen resis-

tance in endocrine-resistant, HER2-positive breast cancer cells [21]. We next investigated if

Fig 1. MCL cell lines were treated with SRC-3 inhibitors. A) SI-10 or B) SI-12 at various concentrations for 48 h and cell viability was determined

using the resazurin assay C) Mino D) Jeko-1 growth inhibition with SI-10 (0–1 mM) for 6,12,24, or 48h.

https://doi.org/10.1371/journal.pone.0289902.g001
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SRC-3 inhibitors were effective in drug-resistant Jeko-1 and Mino cells given their efficacy in

the parental cell lines. Venetoclax and ibrutinib-resistant mantle cell lymphoma lines were

established in Dr. Michael Wang’s lab by exposing the cells to stepwise dose increases of the

drug [22,23]. Compared to the parental cells, both venetoclax and ibrutinib-resistant cells

showed reduced sensitivity when treated with their respective inhibitors (Fig 2A and 2B). The

efficacy of both SRC-3 inhibitors, SI-10 and SI-12, was then evaluated in the resistant lines.

The SRC-3 inhibitors maintained nanomolar IC50 in venetoclax-resistant Mino cells and ibru-

tinib-resistant Jeko-1 cells (Fig 2C and 2D). This suggests that SRC-3 inhibitors may be effec-

tive in drug-resistant models of MCL.

SI-10 overcomes ibrutinib resistance in pdx mouse models

Most MCL patients eventually relapse; therefore it is critical to find drugs that are effective

even after primary treatment. The MCL lines screened had varying sensitivities to ibrutinib,

but all had low nanomolar IC50 for our SRC-3 inhibitors. To evaluate the efficacy of SI-10

against ibrutinib resistance, we established a PDX mouse model with ibrutinib resistance in

6-week-old NSG mice by subcutaneous injection of ibrutinib-resistant Jeko cells. Mice were

treated for 7 weeks five times a week with either vehicle, ibrutinib (50 mg/kg), or SI-10 (50 mg/

kg) via oral gavage. Here we see reduced tumor volume and tumor weight after treatment

between SI-10 and vehicle, and we also see an improvement compared to ibrutinib treatment

(Fig 3A and 3B). Additionally, no significant body weight changes were observed throughout

Fig 2. Mino parental and Mino venetoclax resistant cells were treated with various concentrations of venetoclax. B) Jeko-1 parental and Jeko-1

ibrutinib resistant cells were treated with ibrutinib at various concentrations. C) Mino parental and resistant cells were treated with SI-10 and SI-12. D)

Jeko-1 parental and resistant cells were treated with SI-10 and SI-12.

https://doi.org/10.1371/journal.pone.0289902.g002
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the treatment course (Fig 3C). This suggests that SI-10 could be beneficial against ibrutinib-

resistant MCL.

SI-10 inhibition extends survival in a syngeneic tumor model

We next investigated SI-10 in an A20 immunocompetent syngeneic mouse model of B cell

lymphoma. With increasing knowledge of the tumor microenvironment, preclinical studies

show that the TME plays a significant role in drug resistance to current therapies [24]. The

A20 model exhibits clinical characteristics of MCL in vivo, including infiltration of the bone

marrow and liver, and enlargement of the spleen [25]. This model has also been shown to

exploit evasive immune mechanisms across tumor progression. Specifically, injection of A20

cells has been shown to induce an expansion of regulatory T cells [26]. Tumors generate an

immunosuppressive environment to maintain optimal growth, and recent studies show SRC-3

may contribute to this suppressive environment. Inhibition of SRC-3 may act dually, reducing

cancer cell growth and blocking the activity of suppressive immune cells like T regulatory cells

(Tregs); this has been shown in vivo in breast cancer models [27,28]. We evaluated if SRC-3

inhibition would still be effective in an immunosuppressive environment. A20 cells were

injected via the tail vein of Balb/c mice. A week later, mice were randomized into two groups

(n = 7) to receive SI-10 at 1 mg/kg vehicle. Mice received daily intraperitoneal injections over

7 weeks with SI-10 or vehicle. During the treatment period, mice were evaluated for gross

abnormalities associated with the model and sacrificed according to protocol. As shown, mice

treated with 1 mg/kg of SI-10 have a median survival of 47 days, significantly extending sur-

vival compared to the vehicle-treated mice with a median survival of 33 days (Fig 4A). No

noticeable side effects were observed during treatment and body weight was not significantly

affected (Fig 4B).

Chronic treatment with SI-10 is well tolerated

To evaluate chronic toxicity, ICR mice were treated daily with 50 mg/kg or 100 mg/kg SI-10

for 4 weeks and serum chemistry analysis was performed. The highest dose is 2 times that used

in the mouse xenograft model above. Throughout the treatment course, we see no significant

body weight fluctuations (Fig 5A). Compared to literature reference values and the control, no

obvious difference was observed in the levels of liver enzymes AST and ALT (Fig 5B). Only

one mouse in the 100 mg/kg group had high AST levels. Regarding kidney function, BUN lev-

els were observed to be comparable to that of the reference range, although a bit lower than the

control.

Fig 3. SRC-3 treatment decreased tumor growth in a Jeko-1 ibrutinib resistant mouse model. A) Volumes of tumors treated with SI-10 (50 mg/kg),

ibrutinib (100mg/kg) or vehicle B) Weight of tumors treated with SI-10 (50 mg/kg), ibrutinib (100mg/kg) or vehicle before sacrificing C) The weight of

each mouse was measured 3 times a week.

https://doi.org/10.1371/journal.pone.0289902.g003
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Discussion

Much research has been done exploring the role of SRC-3 in carcinogenesis through the regu-

lation of oncoproteins and transcription factors in solid tumors, but the role of SRC-3 in blood

cancers is less clear. SRC-3 is overexpressed in the lymph nodes of other B cell malignancies,

but its role in MCL is not well characterized. MCL patients frequently undergo relapse to cur-

rent therapies, necessitating novel treatment modalities to improve outcomes. This study

Fig 4. SRC-3 treatment prolonged survival of A20-Balb/c mice. Balb/c mice were injected with 1 x 106 A20 cells intravenously. Treatment started on

day 7. A) Kaplan-Meier survival plot reflecting time to lethal tumor burden. Based on the log-rank test, there are significant differences between the

treated group and the control (P< 0.05). B) Body weight of all groups were measured 5 days a week.

https://doi.org/10.1371/journal.pone.0289902.g004

Fig 5. SRC-3 inhibitor treatment in normal mice show little to no toxicity after treatment for 28 days. A) Body weight of all groups were measured

5 days a week. B) Blood serum levels of clinical markers related to kidney and liver failure. Dotted lines represent upper and lower limits based on

reference values. Data outliers were removed using the identify outlier function in Graphpad Prism with the ROUT method (Q = 1%).

https://doi.org/10.1371/journal.pone.0289902.g005
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demonstrates the therapeutic potential of SRC-3 inhibitor SI-10 as a treatment for in vitro and

in vivo models of mantle cell lymphoma. SI-10 also exhibited inhibitory effects in drug-resis-

tant models of MCL.

Previous data surrounding SRC-3 and B-cell malignancies is a bit conflicting regarding the

possibility of SRC-3 as a tumor suppressor or oncogene. SRC-3 overexpression has been

shown to contribute to other aggressive non-Hodgkin B cell lymphomas. Inhibition of SRC-3

in DLBCL with gambogic acid resulted in cell cycle arrest and apoptosis in B cell NHL lines.

Treatment was also associated with the downregulation of DLBCL oncoproteins, including

Bcl-2, Bcl-6, c-Myc, and NF-kB [12]. Unlike gambogic acid, SRC-3 has been confirmed to be a

target of SI-10 [15]. Gambogic acid has been shown to target multiple cancer-related proteins

in addition to SRC-3, including Bcl-2 family proteins, the proteasome, and topoisomerase IIa

exhibiting polypharmacology [29–31]. Despite efficacy with pharmacological inhibition of

SRC-3, complete amelioration of SRC-3 via knockout in vivo shows the specific induction of

extreme lymphoproliferation of both T and B cells, eventually progressing into B-cell lym-

phoma with age. Interestingly, the in vivo studies showed no effect on cell proliferation and

apoptosis in other tissue types in the SRC-3 knockout mice [32].

We demonstrate here that SI-10 is a potent anti-tumor small molecule for the treatment of

MCL in vitro and in vivo. SI-10 exhibits low nanomolar efficacy in a panel of MCL cell lines.

SRCs have been shown to regulate a multitude of pathways involved in cancer progression and

metastasis, including known targets of MCL. Several signaling molecules have been implicated

in MCL pathogenesis, including PI3K/AKT, NF-kB, and Bcl-2 [33]. SRC-3 has previously

been shown to coactivate many of the targets important in MCL pathogenesis in other cancer

types [10,34,35]. Many of these same pathways are also implicated in ibrutinib resistance. Ibru-

tinib-resistant cells activate BCR signaling through the PI3K/AKT pathway and NF-kB signal-

ing, and maintain cell cycle progression through cyclin D1 to undergo primary resistance [19].

These findings suggest that SRC-3 signaling may be important for MCL cell survival and drug

resistance through the possible coactivation of these targets.

In addition to its efficacy in vitro, SI-10 has demonstrated survival extension in an immuno-

competent lymphoma model and a human PDX model both resistant to ibrutinib. The role of

SRC-3 in cancer drug resistance is context-dependent, but previously SRC-3 overexpression

has been shown to contribute to Herceptin resistance in ERBB2 overexpressing breast cancer

cells [36]. Given the high rate of relapse against current MCL treatments, overcoming drug

resistance is especially exciting and warrants further study. SI-10 also has a good safety profile.

In the studies performed here, mice in both treated and control groups exhibited normal

behavior and minimal body weight loss. SI-10 treatment was well tolerated even at 50 times

the dose tested for survival extension.

In conclusion, SI-10 is a small molecule SRC-3 inhibitor that can inhibit MCL in vitro and

in vivo and overcome ibrutinib resistance. With further studies, SI-10 may be a promising

therapeutic candidate for ibrutinib-resistant MCL.

Methods

Cell culture

Cells were grown in RPMI-1640 supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin-streptomycin (10000 U/mL) and cultured at 37˚C in a humidified incubator at 5%

CO2 for all experiments. Human MCL cell lines (JeKo-1, Mino, Maver-1, Z-138, Jeko-1-IbrR,

Mino-VenR) were gifted from Dr. Michael Wang’s lab (MD Anderson). The murine-derived

A20 cells are from ATCC and were maintained in RPMI-1640 supplemented with 0.05 mM

2-mercaptoethanol, 10% FBS, and 1% penicillin-streptomycin.
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Cell viability assay

Cells were seeded in 96 well plates at a density of 5000–8000 cells per well. The next day cells

were treated with serially diluted SRC-3 inhibitors for 48 h along with DMSO control. Cell via-

bility was measured using the Alamar Blue assay. Resazurin was added at 10% of well volume

and incubated with cells for 4 hours. Fluorescence was measured at excitation/emission 544/

590 nm. Viability was calculated by plotting viability relative to control. The IC50 values for

compounds were calculated based on the Hill-Slope equation and analyzed in GraphPad

Prism 9 (GraphPad Software, Inc., San Diego, CA, USA).

In vivo experiments

Therapeutic efficacy of SI-10 in ibrutinib-resistant MCL PDX mice. To establish a

xenograft model, 5 million cells were injected subcutaneously into NSG mice (6–8 weeks old).

After the formation of palpable tumors, mice were treated orally 5 days per week with SI-10 50

mg/kg, ibrutinib 50 mg/kg, or vehicle (DMSO) (n = 5 for all groups) for 7 weeks. Tumor size

and body weight were measured 3 times a week. Animals were monitored five times a week

and tumor volume was measured using callipers every other 2–3 days in three dimensions.

Mice were euthanized either when the tumor diameter reached the protocol limit of 1.5 cm or

if the tumor showed signs of ulceration reaching 4mm.

Survival extension of SI-10 in A20 lymphoma mice. To evaluate the survival extension

of SI-10 in vivo, immunocompetent tumor xenograft models were developed in female Balb/c

mice (6–8 weeks old, Jackson Labs) via the tail vein injection of 1 x 106 B cell lymphoma cells.

(A20). A week later, mice were randomized using Graphpad and treated with 1 mg/kg/day SI-

10 (n = 9) or vehicle (DMSO) (n = 7) control via intraperitoneal injection for 8 weeks. Animals

were monitored daily and sacrificed based on the experimental protocol.

In vivo toxicity. Female ICR mice (6–8 weeks old, CCM Vendor) were treated with 50 mg/

kg/day SI-10 (n = 5) or 100 mg/kg/day SI-10 (n = 5) daily by oral gavage for 4 weeks. Control

mice (n = 5) were treated with the vehicle (DMSO). After the treatment period, 200 μL of blood

was collected from the mice via submandibular bleeding to isolate plasma for conducting a com-

prehensive panel of serum chemistry assays. Animals were monitored daily for signs of toxicity.

As per the experimental procedure approved by the Institutional Animal Care and Use

Committee at BCM and MD Anderson Cancer Center, mice were monitored at least every 3

days to ensure no more than a 10% decrease in body weight. Animal welfare considerations

were taken to minimize suffering and distress. Daily monitoring was required if the 10%

weight loss threshold was met or once tumor is over 1.0 cm in diameter. Additionally, any

mice displaying signs of distress, including immobility, huddled posture, inability to eat, ruf-

fled fur, self-mutilation, vocalization, wound dehiscence, hypothermia, or a weight loss greater

than 20%, were humanely euthanized using isoflurane the same day following guidelines. No

animals died before meeting the criteria for euthanasia. Imani Bijou completed training from

the Center for Comparative Medicine (CCM) at BCM.

Statistical analysis

All statistical graphs are constructed using Prism 9 (GraphPad Software, Inc.). P<0.05 was

considered statistically significant.
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