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Abstract

Evaluating normalising constants is important across a range of topics in statistical

learning, notably Bayesian model selection. However, in many realistic problems this

involves the integration of analytically intractable, high-dimensional distributions, and

therefore requires the use of stochastic methods such as thermodynamic integration

(TI). In this paper we apply a simple but under-appreciated variation of the TI method,

here referred to as referenced TI, which computes a single model’s normalising constant

in an efficient way by using a judiciously chosen reference density. The advantages of

the approach and theoretical considerations are set out, along with pedagogical 1 and

2D examples. The approach is shown to be useful in practice when applied to a real

problem —to perform model selection for a semi-mechanistic hierarchical Bayesian

model of COVID-19 transmission in South Korea involving the integration of a 200D

density.

Introduction

The marginalised likelihood, or normalising constant of a model, is a feature central to the

principles and pathology of Bayesian statistics. For example —given two models representing

two competing hypotheses, the ratio of the normalising constants (known as the Bayes factor),

describes the relative probability of the data having been generated by one hypothesis com-

pared to the other. Consequently, at a practical level the estimation of normalising constants is

an important topic for model selection in the Bayesian setting [1].

In practice, estimating a normalising constant relies on “integrating out” or marginalis-

ing the parameters of the model to get the probability the associated hypothesis produced

the data. But in general this is difficult, because we cannot easily integrate arbitrary high-

dimensional distributions —certainly analytical or quadrature-based methods are of little

help directly. As a result, practitioners turn to a range of approaches, typically based on sta-

tistical sampling. Specific examples include bridge sampling [2, 3], stochastic density of
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states based methods [4, 5] and thermodynamic integration [6–9]. This work focuses on

the latter —thermodynamic integration —in particular on the development of the practical

details for efficient application for Bayesian model selection.

By way of introduction for researchers unfamiliar with thermodynamic integration (TI), it

allows us to estimate the ratio of two normalising constants in a general and asymptotically

exact way. Instead of marginalising the associated densities explicitly in terms of the high-

dimensional integrals, using TI we only have to evaluate a 1-dimensional integral, where the

integrand can easily be sampled with Markov Chain Monte Carlo (MCMC). To see how this

works, consider two models labelled 1 and 2 with normalising constants z1 and z2. Each z is

given by

zi ¼
Z

qiðθÞdθ ; i 2 f1; 2g ; ð1Þ

where qi is a density for model Mi with parameters θ, that gives the model’s Bayesian posterior

density as

piðθÞ ¼
qiðθÞ
zi

; i 2 f1; 2g :

To apply thermodynamic integration we introduce the concept of a path between q1(θ)

and q2(θ), linking the two densities via a series of intermediate ones. This family of densities,

parameterised by the path coordinate λ, is denoted by q(λ;θ). An example path in λ is shown

in Fig 1A.

The density q(λ;θ), linking q1 to q2 and defining the intermediate densities, can be chosen

to have an optimal or in some way convenient path. A common choice based on convenience

is the geometric one

qðl; θÞ ¼ ql
2
ðθÞq1� l

1
ðθÞ ; l 2 ½0; 1� :

The important point to note is that for λ = 0, q(λ;θ) returns the first density q(0;θ) = q1(θ),

for λ = 1 it gives q(1;θ) = q2(θ), and for in-between λ values a log-linear mixture of the end-

point densities. Just as we have defined a family of densities, there is an associated normalising

constant for any point along the path, that for any value of λ is given by

zðlÞ ¼
Z

OðlÞ

qðl; θÞdθ :

A further small but important point to avoid complications is to have densities with com-

mon support, for example O(λ = 1) = O(λ = 0). Hereafter support is denoted byO.

Having set up the definitions of q(λ;θ) and z(λ), the TI expression can be derived, to com-

pute the log-ratio of z1 = z(λ = 0) and z2 = z(λ = 1), while avoiding explicit integrals over the
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models’ parameters θ. This is laid out as follows:

log
z2

z1

¼

Z 1

0

@llog zðlÞ dl

¼

Z 1

0

1

zðlÞ
@lzðlÞ dl

¼

Z 1

0

1

zðlÞ
@l

Z

O

qðl; θÞ dθ dl

¼

Z 1

0

1

zðlÞ

Z

O

@llog qðl; θÞð Þqðl; θÞ dθ dl

¼

Z 1

0

Epðl;θÞ½@llog qðl; θÞ� dl

¼

Z 1

0

Epðl;θÞ log
q2ðθÞ
q1ðθÞ

� �

dl

¼

Z 1

0

Eqðl;θÞ log
q2ðθÞ
q1ðθÞ

� �

dl ;

ð2Þ

Here we started with the fundamental theorem of calculus (first step), rules of differentiating

logs (second step), definition of z(λ) (third step), assumed exchangeability of @λ and
R
d θ and

Fig 1. Illustration of steps from the 1D pedagogical example. A) qlqð1� lÞref for the 1d example density in parameter θ (Eq 9) at selected λ values along

the path. B) Expectation Eqðl;θÞ log
qðθÞ

qref ðθÞ

h i
vs MCMC iteration, shown at each value of λ sampled. C) λ-dependence of Eqðl;θÞ log

qðθÞ
qref ðθÞ

h i
, the TI

contribution to the log-evidence. D) Convergence of the evidence z, with 1% convergence after 500 iterations and 0.1% after 17, 000 iterations per λ.

https://doi.org/10.1371/journal.pone.0289889.g001
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log differentiation rules again (fourth step), identifying the expectation Eqðl;θÞ from sampling

distribution q(λ;θ) (fifth step), differentiation of the geometric path for q(λ) (sixth step), and

finally equivalence of sampling from q and p. The final line in the expression summarises the

usefulness of TI. Instead of having to work with the complicated high-dimensional integrals of

Eq 1 to find the log-Bayes factor log z2

z1
, which measures the relative probability of getting the

data from one hypothesis compared to another, we only need to consider a 1-dimensional inte-

gral of an expectation, and that expectation can be readily produced by MCMC.

In our paper we examine the details of a referenced TI approach, which is a variation on the

TI theme that we find useful to enable fast and accurate normalising constant calculations.

Our main contributions are as follows:

• We show how to generate a reference normalising constant from an exactly-integratable ref-

erence density, through sampling or gradients, and with parameter constraints. And we

present how to use this reference in the TI method to efficiently estimate a normalising con-

stant of an arbitrary high-dimensional density.

• We discuss performance benchmarks for a well-known problem in the statistical literature

[10], which shows the method performs favourably in terms of accuracy and the number of

iterations to convergence.

• Finally the technique is applied to a hierarchical Bayesian time-series model describing the

COVID-19 epidemic in South Korea.

In relation to other work, we recognise using a reference for thermodynamic integration is

a topic that has been raised, especially in early theoretically-oriented literature [11–13]. Our

additional contribution is to bridge the gap from theory and simple examples to application,

which includes choosing the reference using MCMC samples or gradients, examination of ref-

erence support, comparisons of convergence, and illustration of the approach for a non-trivial

real-world problem.

Methods

Referenced TI

Introducing a reference density and associated normalising constant as

z ¼ zref
z
zref

¼ zref exp
Z 1

0

Eqðl;θÞ log
qðθÞ
qrefðθÞ

� �

dl ;
ð3Þ

yields an efficient approach to compute Bayes factors, or more generally to marginalise an

arbitrary density for any application. To clarify notation, here z is the normalising constant of

interest with density q, zref is a reference normalising constant with associated density qref. In

the second line the ratio z/zref is straightforwardly given by the thermodynamic integral iden-

tity in Eq 2.

While the Eq 2 can be directly applied to conduct a pairwise model comparison between

two hypotheses, by introducing a reference we can naturally marginalise the density of a single

model [11, 12]. This is useful when comparing multiple models as n > n
2

� �
for n> 3. Another

motivation to reference the TI is the MCMC computational efficiency of converging the TI

expectation. In Eq 3, with judicious choice of qref, the reference normalising constant zref can

be evaluated analytically and account for most of z. In this case log qðθÞ
qref ðθÞ

tends to have a small

expectation and variance and converges quickly.
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This idea of using an exactly solvable reference, to aid in the solution of an otherwise intrac-

table problem, has been a recurrent theme in the computational and mathematical sciences in

general [14–17], and variations on this approach have been used to compute normalising con-

stants in various guises in the statistical literature [8, 9, 11, 18–24]. For example, in the general-

ised stepping stone method a reference is introduced to speed up convergence of the

importance sampling at each temperature rung [23, 24]. In the work of [22] a theoretical discus-

sion has been presented that shows the error budget of thermodynamic integration depends on

the J-divergence of the densities being marginalised. Noting this, [19] provide an illustration for

a 2-dimensional example in their work on recursive pathways to marginal likelihood estima-

tion. And in the power posteriors method, a reference is used but the reference is a prior density

and thus zref = 1 [20]. This approach is elegant as the reference need not be chosen —it is simply

the prior —however the downside is that for poorly chosen or uninformative priors, the ther-

modynamic integral will be slow to converge and susceptible to instability. In particular for

complex hierarchical models with weakly informative priors this is found to be an issue.

For referenced TI as presented here, the reference density in Eq 3 can be chosen at conve-

nience, but the main desirable features are that it should be easily formed without special con-

sideration or adjustments and that zref should be analytically integratable and account for as

much of z as possible. Such a choice of zref ensures the part with expensive sampling is small

and converges quickly. An obvious choice in this regard is the Laplace-type reference, where

the log-density is approximated with a second-order one, for example a multivariate Gaussian.

For densities with a single concentration, Laplace-type approximations are ubiquitous, and an

excellent natural choice for many problems. In the following section we consider approaches

that can be used to formulate a reference normalising constant zref from a second-order log-

density (though more generally other tractable references are possible). In each referenced TI

scenario, we note that even if the reference approximation is poor, the estimate of the normal-

ising constant based on Eq 3 remains asymptotically exact—only the speed of convergence is

affected (subject to the assumptions of matching support for end-point densities).

Taylor expansion at the mode Laplace reference

The most straightforward way to generate a reference density is to Taylor expand the log-den-

sity to second order about a mode. Noting no linear term is present, we see the reference den-

sity is

qrefðθÞ ¼ exp log qðθ0Þ þ
1

2
ðθ � θ0Þ

TH ðθ � θ0Þ

� �

; ð4Þ

where H is the Hessian matrix and θ0 is the vector of mode parameters. The associated nor-

malising constant is

zref ¼
Z 1

� 1

qrefðθÞdθ

¼

Z 1

� 1

exp log qðθ0Þ þ
1

2
ðθ � θ0Þ

TH θ � θ0ð Þ

� �

dθ

¼ qðθ0Þ

Z 1

� 1

exp
1

2
ðθ � θ0Þ

TH θ � θ0ð Þ

� �

dθ

¼ qðθ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2pH� 1Þ

p
:

ð5Þ

This approach to yield a reference density, using either analytic or finite difference gradients

at mode, tends to produce a density close to the true one in the neighbourhood of θ0. But this is
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far from guaranteed, particularly if the density is asymmetric, or has non-negligible high-order

moments, or is discontinuous for example exhibiting cusps. In many instances a more reliable

choice of reference can be found by using MCMC samples from the whole posterior density.

Sampled covariance Laplace reference

A second straightforward approach to form a reference density, that’s often more robust, is by

drawing samples from the true density q(θ) to estimate the mean parameters θ̂ and covariance

matrix Σ̂, such that

qrefðθÞ ¼ qðθ̂Þ exp �
1

2
ðθ � θ̂ÞTΣ̂ � 1 ðθ � θ̂Þ

� �

ð6Þ

Then the reference normalising constant is

zref ¼ qðθ̂Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2pΣ̂Þ
q

: ð7Þ

This method of generating a reference is simple and reliable. It requires sampling from the

posterior q(θ) so is more expensive than gradient-based methods, but the cost associated with

drawing enough samples to generate a sufficiently good reference tends to be quite low. In the

primary application discussed later, regarding structured high-dimensional Bayesian hierar-

chical models, we use this approach to generate a reference density and normalising constant.

Though the sampled covariance reference is typically a good approach, it is not in general

optimal within the Laplace-type family of approaches —typically another Gaussian reference

exists with different parameters that can generate a normalising constant closer to the true

one, thus potentially leading to overall faster convergence of the thermodynamic integral to

the exact value. Such an optimal reference can be identified variationally, as we show in S1

Appendix

Reference support

If a model involves a bounded parameter space, for example θ1 2 [0,1), θ2 2 (−1,1) etc. as

commonly arise in structured Bayesian models, in referenced TI the exact analytic integration

for the reference density should be commensurately limited. This is necessary not only so the

reference is closer to the true density to speed up convergence, but also so MCMC samples

from both densities can be drawn on the same parameter space, as is required for the thermo-

dynamic integrand in Eq 3 to be well-defined. However, the calculation of arbitrary probability

density function orthants (an orthant is a specific region in a multi-dimensional space or more

precisely a bounded n-dimensional space), even for well-known analytic functions such as the

multivariate Gaussian, is in general a difficult problem. High-dimensional orthant computa-

tions usually require advanced techniques, the use of approximations, or sampling methods

[25–30]. Fortunately, we can simplify our reference density to create a reference with tractable

analytic integration for limits by using a diagonal approximation to the sampled covariance or

Hessian matrix. For example the orthant of a diagonal multivariate Gaussian can be given in

terms of the error function [31],

zref ¼ qðθ̂Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2pΣdiagÞ

q Y

i2K

1þ erf
ŷ i � aiffiffiffiffiffiffiffiffiffiffiffi

2Σdiag
i

q

0

B
@

1

C
A

0

B
@

1

C
A ; ð8Þ

where K denotes the set of indices of the parameters with lower limits ai. Sdiag is a diagonal
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covariance matrix, that is one containing only the variance of each of the parameters, without

the covariance terms and Σdiag
i denotes the ith element of the diagonal. Restricting our density

to a diagonal one is a poorer approximation than using the full covariance matrix. In practice

however this has not been a substantial drawback to the convergence of the thermodynamic

integral—and again we state that the quality of the reference affects only convergence rather

than eventual accuracy of the normalising constant. This behaviour is observed in the practical

examples later considered, though we do recognise the distinction between accuracy and con-

vergence and matters of asymptotic consistency using an MCMC estimator with finite itera-

tions are not clear cut.

Technical implementation

Referenced TI was implemented in Python and Stan programming languages. Using Stan

enables fast MCMC simulations with Hamiltonian Monte Carlo and No-U-Turn algorithm

[32, 33], and portability between other statistical languages. We also provide an example of

carrying out referenced-TI in NumPyro [34]. The code for all examples shown in this paper

is available at https://github.com/mrc-ide/referenced-TI. In the examples shown in Section

Applications, we used 4 chains with 20,000 iterations per chain for the pedagogical exam-

ples, and 4 chains with 2,000 iterations for the other applications. In all cases, half of the iter-

ations were used for the burn-in (alternatively warm-up [33]). Mixing of the chains and the

sampling convergence was checked in each case, by ensuring that the R̂ value was�1.05 and

investigating the trace plots. The R̂ is a standard MCMC diagnostic that assesses the conver-

gence of multiple parallel chains running in an MCMC simulation. It is computed by com-

paring the variance between chains to the variance within each chain. If chains have not

fully converged, their variances will be larger compared to when they have reached conver-

gence [35].

In all examples, the integral given in Eq 2 was discretised to allow computer simulations.

Each expectation Eqðl;yÞ log
q1ðyÞ

q0ðyÞ

h i
was evaluated at λ = 0.0, 0.1, 0.2, . . .., 0.9, 1.0, unless stated

otherwise. To obtain the value of the integral in Eq 2, we interpolated a curve linking the

expectations using a cubic spline, which was then integrated numerically. The pseudo-code of

the algorithm with sampled covariance Laplace reference is shown in Algorithm 1.

Algorithm 1 Referenced thermodynamic integration algorithm

Input q—un-normalised density, qref—un-normalised reference density, Λ—set of cou-

pling parameters λ, N—number of MCMC iterations

Output z—normalising constant of the density q
1: Define un-normalised density q and the reference density qref
2: Calculate zref analytically by using the determinant of the covari-
ance matrix, as per Eqs 5 or 6 from the main text.
3: for λ 2 Λ do
4: Sample N values θn from qlq1� l

ref

5: for n = 1, 2, . . ., N do
6: Calculate log qðynÞ

qrefðynÞ

7: end for
8: Compute the mean, El ¼

1

N ΣN
n¼1
log qðynÞ

qrefðynÞ

9: end for
10: Interpolate between the consecutive El values to obtain a curve
@λlog(z(λ))
11: Integrate @λlog(z(λ)) over λ 2 [0, 1] to get log z

zref

12: Calculate z = zref � exp log z
zref

� �
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Applications

In this section we present applications of the referenced TI approach. In 1D Pedagogical

Example and 2D Pedagogical Example with Constrained Parameters we give 1- and 2-dimen-

sional pedagogical introductions to the approach. In Benchmarks—Radiata Pine we select a

linear regression model for a well-known problem in the statistical literature, and finally in in

Model Selection for the COVID-19 Epidemic in South Korea we consider a challenging model

selection task for a structured Bayesian model of the COVID-19 epidemic in South Korea.

1D pedagogical example

To illustrate the technique we consider the 1-dimensional density

qðyÞ ¼ exp �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy � 4j

p
�

1

2
ðy � 4Þ

4

� �

; y 2 R; ð9Þ

with normalising constant z ¼
R1
� 1

qðyÞdy. This density has a cusp and it does not have an

analytical integral that easily generalises to multiple dimensions.

In this instance the Laplace approximation based on the second-order Taylor expansion at

the mode will fail due to the cusp, so we use the more robust covariance sampling method.

Sampling from the 1D density q(θ) we find a variance of ŝ2 ¼ 0:424, giving a Gaussian refer-

ence density qref(θ) with normalising constant of zref = 1.559. The full normalising constant,

z ¼ zref z
zref

, is evaluated by Eq 3, by setting up a thermodynamic integration along the sampling

path qlqð1� lÞref . The expectation, Eqðl;θÞ log
qðθÞ

qref ðθÞ

h i
, is evaluated at 5 points along the coupling

parameter path λ = 0.0, 0.2, 0.5, 0.8, 1.0, shown in Fig 1. In this simple example, the integral

can be easily evaluated to high accuracy using quadrature [36, 37], giving a value of 1.523. Ref-

erenced TI reproduces this value, with convergence of z shown in Fig 1, converging to 1% of z
with 500 iterations and 0.1% within 17, 000 iterations.

This example illustrates notable characteristic features of referenced TI. Here the reference

qref(θ) is a good approximation to q(θ), with zref accounting for most of z (zref = 1.02z). Conse-

quently z
zref

is close to 1, and the expectations, Eqðl;θÞ log
qðθÞ

qref ðθÞ

h i
, evaluated by MCMC for the

remaining part of the integral are small. For the same reasons the variance at each λ is small,

leading to favourable convergence within a small number of iterations. And finally

Eqðl;θÞ log
qðθÞ

qref ðθÞ

h i
weakly depends on λ, so there is no need to use a very fine grid of λ values or

consider optimal paths—satisfactory convergence is easily achieved using a simple geometric

path with 4 λ-intervals.

2D pedagogical example with constrained parameters

As a second example, consider a 2-dimensional unnormalised density function with a con-

strained parameter space:

qðy1; y2Þ ¼ expð� YÞ ; ð10Þ

with

Y ¼
1

4

X

i;j2f1;2g

yi þ
1

2

� �2j

þ
1

8
y1y

2

2
; ð11Þ
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and

y1 2 ½0;þ1Þ and y2 2 ð� 1;þ1Þ :

A reference density qref(θ) can be constructed from the Hessian at the mode of q(θ). To

marginalise it on a parameter space with restricted support, we use a reference density qdiagref ðyÞ

based on a diagonal Hessian, that has an exact and easy to calculate orthant. All densities are

shown in Fig 2.

To obtain the log-evidence of the model, we calculated the exact value numerically [36, 37],

and using a sampled diagonal covariance matrix, as per Eq 8, to account for the lower bound

of the parameter θ1. Without this restriction the final normalising constant is overestimated—

if the support of the parameters in the MCMC is not the same as for the analytic zref calcula-

tion, zref as shown in Eq 3 does not cancel with the TI reference. Numerical comparison of the

referenced TI to quadrature is presented in the S2 Appendix.

Benchmarks—Radiata Pine
To benchmark the application of the referenced TI in the model selection task, two non-nested

linear regression models are compared for the radiata pine data set [10]. This example has

been widely used for testing normalising constant calculating methods, since in this instance

the exact value of the model evidence can be computed. The data consists of 42 3-dimensional

data-points, expressed as yi—maximum compression strength, xi—density and zi—density

adjusted for resin content. In this example, we follow the approach of [21], using the priors

from therein, and test which of the two models M1 and M2 provides better predictions for the

compression strength:

M1 : yi ¼ aþ bðxi � �xÞ þ �i; �i � Nð0; t� 1Þ; i ¼ 1; :::; n ;

M2 : yi ¼ gþ dðzi � �zÞ þ Zi; Zi � Nð0; r� 1Þ; i ¼ 1; :::; n :

Five methods of estimating the model evidence were used in this example: Laplace approxi-

mation using a sampled covariance matrix, model switch TI along a path directly connecting

the models [8, 38], referenced TI, power posteriors with equidistant 11 λ-placements (labelled

Fig 2. Contour plots of un-normalised densities. Contour plots of the un-normalised density q and its two reference densities qref, one using a full

covariance matrix and another using a diagonal covariance matrix that can be easily marginalised. The red line shows the lower boundary θ1 = 0 and the

shaded θ1 < 0 region to the left of the line is outside of the support of the density q.

https://doi.org/10.1371/journal.pone.0289889.g002
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here as PP11) and power posteriors with 100 λ-s (PP100), following the example from [21]. For

the model switch TI, referenced TI and PP11 we used λ 2 {0.0, 0.1, . . ., 1.0}.

The expectation from MCMC sampling per each λ for model switch TI, referenced TI, PP11

and PP100 and fitted cubic splines between the expectations are shown in the S2 Appendix.

Both reference and model switch TI methods eliminate the problem of divergence of expecta-

tion for λ = 0, which is observed with the power posteriors, where samples for λ = 0 come from

the prior density function. And both reference and model switch have smaller residuals for

splines in λ fitted to Eqðl;θÞ log
qðθÞ

qref ðθÞ

h i
than power posteriors.

For each approach, the splines fitted to Eqðl;θÞ log
qðθÞ

qref ðθÞ

h i
were integrated to obtain the log-

evidence for models M1 and M2, and the log-ratio of the two models’ evidences for the model

switch TI. The rolling means of the integral over 1500 iterations for referenced TI and PP100

for M2 are shown in Fig 3A. We can see from the plot, that referenced TI presents favourable

convergence to the exact value, whereas PP100 oscillates around it. Fig 3B shows the distribu-

tion of log-evidence for the same model generated by 15 runs of the three algorithms: Laplace

approximation with sampled covariance matrix, referenced TI and PP100. Similar figures for

model M1 are given in the S2 Appendix. Although all three methods resulted in a log-evidence

satisfactorily close to the exact solution, referenced TI was the most accurate and importantly,

converged fastest (308 MCMC draws compared to 55,000 draws needed for the power poste-

rior method to achieve standard error of 0.5%, excluding burn-in, see S2 Appendix).

Model selection for the COVID-19 epidemic in South Korea

The final example of using referenced TI for calculating model evidence is fitting a renewal

model to COVID-19 case data from South Korea. The data were obtained from opendata.ecdc.

europa.eu/covid19/casedistribution/csv. The model is based on a statistical representation of a

stochastic branching process whose expectation mechanistically follows a renewal-type equa-

tion. Its derivation and details are explained in [39] and a short explanation of the model is

provided in the S2 Appendix. Briefly, the model is fitted to the time-series case data and esti-

mates a number of parameters, including serial interval and the effective reproduction

Fig 3. The estimated log-evidence of M2 from the Radiata Pine benchmark problem. The log-evidence of M2 from the Radiata Pine benchmark

problem is shown estimated using three approaches. (A) shows the rolling mean of log-evidence of M2 over 1500 iterations per λ obtained by referenced TI

(blue line) and PP100 (orange line) methods. The exact value is shown with red dashed line. (B) shows the mean log-evidence of the model M2 evaluated

over 15 runs of the three algorithms. The exact value of the log-evidence is shown with the dotted line.

https://doi.org/10.1371/journal.pone.0289889.g003
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number, Rt. The number of cases for each day are modelled by a negative binomial likelihood,

with location parameter estimated by a renewal equation. Three modifications of the original

model are tested here:

• variation of the infection generation interval for values GI = 5, 6, 7, 8, 9, 10, 20—where GI
denotes the mean of Rayleigh-distributed generation interval,

• changing the order of the autoregressive model for the reproduction number, for AR(k) with

k = 2, 3, 4 lags,

• varying the length of the sliding window for estimating the reproduction number for values

in W = 1, 2, 3, 4, 7 days.

Within each group of models, GI, AR and W, we want to select the best model through the

highest evidence method. The dimension of each model was dependent on the modifications

applied, but in all the cases the normalising constant was a 40- to 200-dimensional integral.

The log-evidence of each model was calculated using the Laplace approximation with a sam-

pled covariance matrix, and then correction to the estimate was obtained using referenced TI

method. Values of the log-evidence for each model calculated by both Laplace and referenced

TI methods are given in Table 1. Interestingly, the favoured model in each group, that is the

model with the highest log-evidence, was different when the evidence was evaluated using the

Laplace approximation than when it was evaluated with referenced TI. For example, using the

Laplace method, sliding window of length 7 was incorrectly identified as the best model,

whereas with referenced TI window of length 2 was chosen to be the best among the tested

sliding windows models, which agrees with the previous studies of the window-length selec-

tion in H1N1 influenza and SARS outbreaks [40]. This exposes how essential it is to accurately

determine the evidence, even good approximations can result in misleading results. Bayes fac-

tors for all model pairs are shown in the S2 Appendix.

Table 1. Log-evidence estimated by Laplace and referenced TI approximations. In each section, model with the

highest log-evidence estimated by Laplace or referenced TI method is indicated in bold. The credible intervals for log-

evidence comes from calculating the quantiles of the integral from Eq 2, where the integral values were obtained from

the spline interpolated using running means of the expecations per λ over all iterations.

Model Log-evidence Laplace Log-evidence ref TI [95% CrI]

GI = 5 -1274 -716 [-715.6, -715.2]

GI = 6 -1274 -703 [-703.3, -702.7]

GI = 7 -1255 -732 [-732.4, -731.8]

GI = 8 -1245 -685 [-685.5, -684.7]

GI = 9 -1310 -803 [-802.8, -802.3]

GI = 10 -1313 -805 [-805.1, -805.3]

GI = 20 -1170 -796 [-796.3, -795.5]

AR(2) -1207 -711 [-711.2, -710.6]

AR(3) -1293 -704 [-704.7, -703.7]

AR(4) -2166 -821 [-820.6, -819.2.]

W = 1 -1260 -802 [-802.1, -801.6]

W = 2 -1069 -791 [-791.2, -790.7]

W = 3 -1003 -807 [-807.5, -807.2]

W = 4 -940 -811 [-811.1, -810.7]

W = 7 -875 -814 [-813.7, -813.5]

https://doi.org/10.1371/journal.pone.0289889.t001
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Interpretation of the COVID-19 model selection

The importance of performing model selection in a rigorous way is clear from Fig 4, where the

generated Rt time-series are plotted for the models favoured by Laplace and referenced TI

methods (additional posterior densities are shown in the S2 Appendix. The differences in the

Rt time-series show the pitfalls of selecting an incorrect model. The differences between the

two favoured models were most extreme for the GI = 8 and GI = 20 models. While a GI = 8 is

plausible, even likely for COVID-19, GI = 20 is implausible given observed data [41]. This is

further supported by observing that for GI = 20, favoured by the Laplace method, Rt reached

the value of over 125 in the first peak—around 100 more than for the GI = 8. The second peak

was also largely overestimated, where Rt reached a value of 75.

We find it interesting to note that all models present a similar fit to the confirmed COVID-

19 cases data (see S2 Appendix). This makes it impossible to select the best model through

visual inspection and comparison of the model fits, or by using model selection methods that

do not take the full posterior distributions into account. Although the models might fit the

data well, other quantities generated, which are often of interest to the modeller, might be

completely incorrect. Moreover, it emphasises the need to test multiple models before any con-

clusion or inference is undertaken, especially with the complex, hierarchical models.

Although often the Laplace approximation of the normalising constant is sufficient to pick

the best model, it was not the case in this epidemiological model selection problem. We can

see in Table 1 that the evidence was the highest for the “boundary” models when Laplace

approximation was applied. For example, for the sliding window length models, when the

Gaussian approximation was applied, the log-evidence was monotonically increasing with the

value of W within the range of values that seem reasonable (W = 1 to 7). In contrast, with refer-

enced TI, the log-evidence geometry is concave within the range of a priori reasonable

parameters.

Discussion

The examples shown in Section Applications illustrate the applicability of the referenced TI

approach for calculating model evidence. In the radiata pine example, referenced TI per-

formed better than the other tested methods in terms of accuracy and speed. When using ref-

erenced TI, at λ = 0 values are sampled from the reference density rather than the prior as in

the power posterior method, which should be closer to the original density (in the sense of

Fig 4. Time-dependent reproduction number. Time-dependent reproduction number generated by models with the highest evidence calculated

using the Laplace approximation (orange lines) and referenced TI (blue lines). Note, the fitting data in this example contains superspreading events

(which leads to very high values of Rt on certain days) so is not representative of SARS-CoV-2 transmission generally.

https://doi.org/10.1371/journal.pone.0289889.g004
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Kullback–Leibler or Jensen-Shannon divergence). This leads not only to a more accurate esti-

mate of the normalising constant, but also much faster convergence of the MCMC samples. A

detailed theoretical characterisation of rates of convergence is beyond the scope of this article,

nonetheless the empirical tests presented consistently show faster convergence than with com-

parative approaches. This is useful especially for evaluating model evidence in complex hierar-

chical models where each MCMC iteration is computationally demanding.

Although referenced thermodynamic integration and other methods using path-sampling

have theoretical asymptotically exact Monte Carlo estimator limits, in practice a number of

considerations affect accuracy. For example, biases will be introduced to the referenced TI esti-

mate if one endpoint density substantially differs from another. An example of this and expla-

nation is included in the S3 Appendix.

Furthermore, the discretisation of the coupling parameter path in λ can introduce a discre-

tisation bias. For the power posteriors method, [9] propose an iterative way of selecting the λ-

placements to reduce the discretisation error. [42] test multiple λ-placements for 2- and 20D

regression models, and report relative bias for each tested scenario. In the referenced TI algo-

rithm discretisation bias is however negligible —the use of the reference density results in TI

expectations that are both small and have low variance, and therefore curvature with respect to

λ. In our framework we use geometric paths with equidistant coupling parameters λ between

the un-normalised posterior densities, but there are other possible choices of the path con-

structions, for example a harmonic [7] or hypergeometric path [38]. This optimisation might

be worth exploring, however, as illustrated in Fig 3B, the expectations evaluated vs λ are typi-

cally near-linear with referenced TI suggesting limited gains, although the extent of this will

differ from problem to problem.

In the application to the renewal model for the COVID-19 epidemic in South Korea, we

showed that for a complex structured model, hypothesis selection by Laplace approximation of

the normalising constant can give misleading results. Using referenced TI, we calculated

model evidence for 16 models, which enabled a quick comparison between chosen pairs of

competing models. Importantly, the evidence given by the referenced TI was not monotonic

with the increase of one of the parameters, which was the case for the Laplace approximation.

The referenced TI presented here will similarly be useful in other situations particularly where

the high-dimensional posterior distribution is uni-modal but non-Gaussian.

Conclusions

Normalising constants are fundamental in Bayesian statistics. In this paper we give an account

of referenced thermodynamic integration (TI), in terms of theoretical consideration regarding

the choice of reference, and show how it can be applied to realistic practical problems. We

show how referenced TI allows efficient calculation of a single model’s evidence by sampling

from geometric paths between the un-normalised density of the model and a judiciously cho-

sen reference density —here, a sampled multivariate normal that can be generated and inte-

grated with ease. Referenced TI method has practical utility for substantially challenging

problems of model selection in epidemiology and we suggest it has applicability in other fields

of applied machine learning that rely on high-dimensional Bayesian models.
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