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Abstract

Shigella sonnei is a gram-negative bacterium and is the primary cause of shigellosis in

advanced countries. An exceptional rise in the prevalence of the disease has been reported

in Asia, the Middle East, and Latin America. To date, no preventive vaccine is available

against S. sonnei infections. This pathogen has shown resistances towards both first- and

second-line antibiotics. Therefore, an effective broad spectrum vaccine development

against shigellosis is indispensable. In the present study, vaccinomics-aided immunoinfor-

matics strategies were pursued to identify potential vaccine candidates from the S. sonnei

whole proteome data. Pathogen essential proteins that are non-homologous to human and

human gut microbiome proteome set, are feasible candidates for this purpose. Three anti-

genic outer membrane proteins were prioritized to predict lead epitopes based on reverse

vaccinology approach. Multi-epitope-based chimeric vaccines was designed using lead B-

and T-cell epitopes combined with suitable linker and adjuvant peptide sequences to

enhance immune responses against the designed vaccine. The SS-MEVC construct was

prioritized based on multiple physicochemical, immunological properties, and immune-

receptors docking scores. Immune simulation analysis predicted strong immunogenic

response capability of the designed vaccine construct. The Molecular dynamic simulations

analysis ensured stable molecular interactions of lead vaccine construct with the host recep-

tors. In silico restriction and cloning analysis predicted feasible cloning capability of the SS-

MEVC construct within the E. coli expression system. The proposed vaccine construct is
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predicted to be more safe, effective and capable of inducing robust immune responses

against S. sonnei infections and may be worthy of examination via in vitro/in vivo assays.

Introduction

Shigella sonnei (S. sonnei) is a rod-shaped, non-motile, gram-negative bacterium associated

with actin polymerization in the host cell [1–5]. S. sonnei causes an acute intestinal infection

known as shigellosis. S. sonnei originates from the harmless enterobacteriaceae family and

causes debilitating diarrhea upon ingestion. The clinical symptoms of shigellosis can range

from mild watery diarrhea to serious inflammatory bacillary dysentery with severe abdominal

pains, fever, and bloody and mucus-filled stool [3]. Approximately 99% of shigellosis cases

have been reported in underdeveloped countries with poor sanitation and hygienic conditions.

Limited access to clear drinking water has encouraged the spread of enteric disease. Insuffi-

cient healthcare and malnutrition contribute to the high mortality rate in children, the elderly,

and individuals with chronic health conditions [6]. Shigellosis is contagious and can easily be

transmitted from person to person. Strong evidence links domestically acquired shigellosis

associated with sexual transmission among homosexual men in Western industrialized coun-

tries as well as those with advanced HIV disease [6–8]. This bacterium spreads rapidly through

contaminated food, water, or close oral contact with an infected individual.

Prevalence of shigellosis is increasing at an alarming rate in both developed and developing

countries. Approximately 91 million instances of shigellosis occur every year with substantial

morbidity and mortality worldwide [9]. Shigellosis ranked 3rd in the United States [10] and

ranked 6th in China among gastrointestinal infections with high mortality rates [11]. In Asia,

shigellosis alone causes 125 million infections each year and 14,000 fatalities. S. sonnei and S.

flexneri accounted for approximately 90.5% of shigellosis cases [7, 12]. Rapid spread of shigel-

losis has also been reported in Europe, Asia, and Australia [6, 13, 14]. Typically, symptoms

begin to appear 1–2 days after the infection and last for 7 days [8]. Shigella enterotoxin-1 and

enterotoxin-2 (ShET-1 and ShET-2), the type 3 secretion system, and the invasion plasmid

antigen H gene (IpaH) are main components contributing to the pathogenesis and survival of

S. sonnei [15].

The majority of patients recover without antibiotic treatment; however, antibiotics admin-

istration is recommended to individuals with severe infections and underlying medical condi-

tions that compromise the patient’s immune system [11]. Antibiotics are effective in

preventing the spread of Shigella from one individual to another and in reducing the disease

duration. However, recent studies have reported that S. sonnei develops resistance towards var-

ious antibiotics including trimethoprim, sulfamethoxazole, ampicillin, and fluoroquinolones

[16]. Additionally, these strains have been reported to exhibit resistance to ciprofloxacin, a

first-line treatment for shigellosis [17]. A variety of mechanisms, including drug extrusion by

active efflux pumps [18], cellular permeability reduction, overexpression of enzymes responsi-

ble for inactivating and modifying drugs, and mutation-associated target modification, cause

drug resistance in S. sonnei [19, 20]. The emergence of multi-drug-resistant Shigella strains

and persistently high disease prevalence indicate that shigellosis is an ongoing and unresolved

global health burden [21].

Currently, there is no commercial vaccine available against Shigella; however, a number of

vaccines containing killed or live attenuated bacteria are being developed and evaluated at var-

ious clinical stages [3, 6]. The National Institute of Child Health and Human Development

(NICHHD) and the Laboratory of Developmental and Molecular Immunology (LDMI) pro-

posed a vaccine candidate, -O-SP- conjugated with a lipopolysaccharide (LPS) protein carrier
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against shigellosis to induce strong long-lasting immune responses; however, the induced

immunogenic responses were found lower [22]. Therefore, the development of novel thera-

peutic strategies against multidrug-resistant S. sonnei is essential. Designing a potential vaccine

against S. sonnei is an effective way to prevent this disease. The availability of mass genomic

and proteomic data, and recent advancements in the fields of immunoinformatics and bioin-

formatics have greatly facilitated the design of safe and highly effective vaccines against partic-

ular pathogens [23]. In the present study, vaccinomics-based immunoinformatics strategies

were employed to identify potential vaccine candidate proteins in S. sonnei proteome, followed

by designing a multi-epitope-based vaccine construct using reverse vaccinology techniques.

The vaccine was further evaluated for thermodynamic stability, binding potential to human

immune receptors, and in silico cloning in a bacterial expression system. The efficacy of the

designed vaccine construct was determined via immune simulation analysis by calculating the

immunogenic responses in the host.

Methodology

Consent statement is not applicable for this study as there are no human

participants or animal models involved in this study

Subtractive proteomic analysis was performed to identify pathogen-specific vaccine targets,

and reverse vaccinology techniques were used to design a multi-epitope vaccine construct

(MEVC) against S. sonnei (Fig 1).

Proteome set retrieval and paralogous sequences identification

The entire proteome set of S. sonnei strains (available at the time this study was conducted)

was retrieved from the UniProt database based on the UP000002529 accession ID (https://

www.uniprot.org/, accessed on 30th November, 2022) [24]. The data was subjected to the

CD-HIT suite to identify paralogous protein sequences with a cut off value of 0.8 [25]. Redun-

dant protein sequences were removed and non-paralogous protein sequences were acquired

for further analysis.

Human non-homologous proteins identification

Non-paralogous pathogen proteins were screened against the entire human proteome (Taxon-

omy ID: 9606) using the NCBI BLASTp program with a threshold of E-value cut off 10−4, per-

centage identity�35, query coverage�35, and bit score�100 [26]. Homologous proteins

were removed, and pathogen-specific proteins were obtained during this subtractive analysis.

Subcellular localization

Human non-homologous pathogen-specific proteins were subjected to subcellular localization

using the CELLO2GO v.2.5 web server (http://cello.life.nctu.edu.tw/cello2go/, accessed on 3rd

December, 2022) during the downstream analysis. The server employs CELLO localization

prediction and BLAST homology search approaches to screen for various properties of the tar-

geted proteins. Additionally, the server provides data based on gene ontology (GO), including

cellular components, molecular functions, and biological processes [27]. The outer membrane

and extracellular proteins were prioritized as vaccine candidate proteins [28].

Vaccine candidate proteins prioritization

VaxiJen v2.0 web server (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html,

accessed on 5th December, 2022) was used to assess the antigenicity of the prioritized proteins
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Fig 1. The systematic workflow of the current study.

https://doi.org/10.1371/journal.pone.0289773.g001
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with a threshold of>0.4 [29]. The Algpred2 web tool (https://webs.iiitd.edu.in/raghava/

algpred2/, accessed on 5th December, 2022) was used to evaluate the allergenicity of the priori-

tized antigenic proteins [30]. Non-allergenic antigenic proteins were further evaluated for tox-

icity using the ToxinPred2 server (https://webs.iiitd.edu.in/raghava/toxinpred2/, accessed on

5th December, 2022) [31]. Subsequently, human host non-homologous pathogen proteins with

antigenic, non-toxic, and non-allergenic natures were further analyzed for B- and T-cell epi-

tope prediction.

T-cell epitopes prediction

The MHC-I-restricted CD8+ cytotoxic T lymphocyte (CTL) epitopes in the prioritized patho-

gen proteins were predicted using NetCTL 1.2 web tool (https://services.healthtech.dtu.dk/

services/NetCTL-1.2/, accessed on 7th December, 2022) [32]. The epitope length setting main-

tained at 9-mers, and a maximum score of 0.75 was selected. The entire human HLA reference

alleles set was used. The prioritized pathogen proteins were independently submitted in

FASTA format, and the top two epitopes for each protein were prioritized based on antigenic-

ity, allergenicity, and toxicity parameters [33]. MHC-II-restricted CD4+ helper T lymphocyte

(HTL) epitopes were predicted for seven human HLA alleles (HLA-DRB1*03:01,

HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02,

HLA-DRB4*01:01, and HLA-DRB5*01:01) using the Immune Epitope Database (IEDB)

MHC-II module (http://tools.iedb.org/mhcii/, accessed on 8th December, 2022) [34]. The

SMM-align (netMHC1.1) method was used to predict MHC-II epitopes, with a calling crite-

rion of IC50 <500 nM. The IC50 values of HTL epitopes determined their affinity for MHC-II.

The maximum binding affinity for MHC-II was observed at IC50 = 50 nM, moderate affinity

for MHC-II was observed at IC50 value of 500 nM, and the lowest binding affinity for MHC-II

was observed at an IC50 value of 5000 nM. In additional, epitopes were prioritized based on

their antigenicity, allergenicity, and toxicity. The predicted epitope sequences with 20 mer

were prioritized for further analyses. The conserved peptide sequences among various S. Son-
nei strains were determined by the IEDB Epitope Conservancy tool (http://tools.iedb.org/

conservancy/, accessed on 9th December, 2022).

B-cell epitopes prediction

The ABCpred web server (http://crdd.osdd.net/raghava/abcpred, accessed on 9th December,

2022) was used to predict linear B-cell epitopes from prioritized pathogen proteins. B-cell epi-

topes are crucial for inducing humoral immune responses that stimulate B lymphocytes to

produce antibodies against pathogens. ABCpred uses a Support Vector Machine (SVM) and

artificial intelligence approaches to accurately predict the sequences of B-cell epitopes [35].

High-scoring B cell epitopes were prioritized based on their antigenicity, allergenicity, and tox-

icity parameters. The prioritized CTL, HTL, and B-cell epitopes were screened against human

proteins via BLASTp with a threshold of E-values > 0.05. Epitopes above the threshold values

were identified as human non-homologous peptides.

Multi-epitope vaccine construct (MEVC) designing

Potential vaccine design requires an adjuvant, prioritized B- and T-cell epitopes, and linker

sequences to design an efficient construct with the potential to elicit a robust immune

response. Multi-epitope vaccine construct elicits a stronger immune response than the individ-

ual peptides. In this study, we used six CTL epitopes, nine HTL epitopes, and three linear B-

cell epitopes with appropriate linkers to design a chimeric vaccine construct. The 50S ribo-

somal protein L7/L12 adjuvant was incorporated into the vaccine construct at the N-terminus
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to enhance its stability and induce both innate and adaptive immune responses. The rigid

linker EAAAK was used to connect the adjuvant to the multi-epitope sequence. Glycine-pro-

line-rich GPGPG linkers were used to conjugate linear B-cell and HTL epitopes. Furthermore,

CTL epitopes were linked with flexible AAY linkers. These linkers provide stability, prevent

self-folding in the vaccine construct, enhance immunogenicity, and improve defense mecha-

nism against specific pathogens [36].

Immunogenicity assessment of SS-MEVC

The designed vaccine construct was further subjected to immunogenicity analysis. The

AlgPred server (https://webs.iiitd.edu.in/raghava/algpred2/, accessed on 13th December, 2022)

[30] was used to predict the allergenicity of the vaccine construct with an accuracy of 85% at a

threshold of 0.4. The antigenic nature of the vaccine construct was determined by using Vaxi-

jen v2.0 (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html, accessed on 13th

December, 2022), with probable antigen calling criteria set at>0.4 and ANTIGENpro (https://

scratch.proteomics.ics.uci.edu/, accessed on 13th December, 2022) servers. Vaxijen v2.0 server

calculates the antigenicity scores based on the physicochemical properties of the peptide vac-

cine sequence with an accuracy of 89% [37]. ANTIGENpro assesses antigenicity by performing

a 10-fold-cross-validation of the peptide sequence against known datasets and identifying the

protective aspects of the antigenic sequences [38].

Physiochemical properties assessment of SS-MEVC

The ProtParam tool from ExPASy (https://web.expasy.org/protparam/, accessed on 17th

December, 2022) was used to predict various physicochemical properties of the designed vac-

cine construct. ProtParam was employed to calculate the amino acid content, molecular

weight, stability, aliphatic indices, theoretical PI, solubility, and grand average of hydropathi-

city (GRAVY) of the vaccine construct [39].

Secondary structure prediction

The PSIPRED 4.0 web tool (http://bioinf.cs.ucl.ac.uk/psipred/, accessed on 18th December,

2022) was used to predict the secondary structure of the designed vaccine construct. The server

is based on position-specific scoring matrices to predict transmembrane topology, transmem-

brane helices, and the recognition of fold and domain regions in the peptide sequence [40].

Structure prediction, refinement and validation

The Robetta web tool (https://robetta.bakerlab.org/, accessed on 19th December, 2022) was

used to predict the tertiary structure of the vaccine construct. The server uses comparative

modeling or de novo structure prediction methods to predict the five best three-dimensional

(3D) models for a protein [41]. The top 3D model was selected and refined using the GalaxyR-

efine web tool (https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE, accessed on 20th

December, 2022) [42]. The refined 3D-structure of the designed vaccine construct was further

validated using the ERRAT, PROCHECK (https://saves.mbi.ucla.edu/, accessed on 21st

December, 2022) [43], and ProSA-Web (https://prosa.services.came.sbg.ac.at/prosa.php,

accessed on 21st December, 2022) [44] servers.

Conformational B-cell epitopes prediction

The refined and validated 3D-structure of the designed vaccine construct was subjected to

conformational B-cell epitope prediction using the ElliPro web tool (http://tools.iedb.org/
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ellipro/, accessed on 22nd December, 2022). Linear B-cell epitope prediction is based solely on

the amino acid sequence of the designed vaccine. However, some epitopes are also discontinu-

ous or conformational, and rely on the 3D-structure of the antigenic vaccine instead of the lin-

ear sequence [45].

Molecular docking of SS-MEVC with human immune receptor

The Cluspro web server (https://cluspro.org/login.php, accessed on 24th December, 2022) was

used for molecular docking of the vaccine construct with human toll-like receptor 2 and 4

(TLR2 and TLR4) to evaluate the molecular interaction of the designed vaccine construct with

immunological receptor (Stony Brook, New York, USA). ClusPro server is a protein-protein

docking tool which generates different models based on the binding energies [46]. The refined

vaccine construct was docked against the TLR2 (PDB ID: 2Z7X) and TLR4 (PDB ID: 3FXI)

homodimers. The docked complex of the designed vaccine and TLR4 with the lowest energy

score was prioritized for further analysis. The PDBsum web tool (http://www.ebi.ac.uk/

thornton-srv/databases/pdbsum/, accessed on 19th December, 2022) was used to obtained

information about the vaccine construct interaction with TLR4 [47].

Normal modes analysis

The iMODS web server (https://imods.iqfr.csic.es/, accessed on 1st January, 2023) was used for

normal mode analysis (NMA) of the designed vaccine construct in complex with TLR4 to cal-

culate the flexibility of the vaccine construct [48]. The server defines potential conformational

changes, detects elastic network models, and resolutions using a variety of coarse-grained

atomic representations, and provides an improved affine-model-based arrow representation

of macromolecular complex domain dynamics. Based on NMA, the server calculates the struc-

tural dynamics of proteins and docked protein complexes with other proteins and ligands, and

provides deformability, eigenvalues, variance, B-factor (mobility profiles), covariance maps,

and elastic network data [49].

Molecular dynamic (MD) simulations

The AMBER 20 package was used to perform molecular dynamic simulations for the designed

vaccine construct and TLR4 docked complex. The initial system was prepared for the MD sim-

ulations using the Tleap module. The prioritized vaccine-receptor complex was solvated in

TIP3P [50]. Hydrated cubic box with a boundary size of 10 Å. Subsequently, Na+ and CL- ions

were added to the system to neutralize the charge density. Additionally, during the preprocess-

ing phase, energy minimization was carried out, including the 500-step energy minimization

of hydrogen atoms, 1000-step energy minimization of water molecules with a 200 kcal/mol Å2

restraint on the remaining system, 1000-step energy minimization of all atoms with the excep-

tion of the 5 kcal/mol Å2 restraint on α-carbon atoms, and 300-step energy minimization of

non-heavy atoms with 100 kcal/mol Å2. The systems were heated to 300 K using the NVT

ensemble, maintaining the temperature constant, and hydrogen bond restriction was applied

using Langevin dynamics [51] and the SHAKE algorithm [52]. The complex system was equili-

brated for 1000 ps and compressed using the NPT ensemble, which limited the energy of the C

atoms to 5 kcal/mol Å2. Finally, the CPPTRAJ module was used to conduct the production of

the 100 ns simulation and to analyze the trajectory [53]. After the 100ns MD simulation was

successfully completed, root-mean-square deviation (RMSD), root-mean-square fluctuation

(RMSF), and radius of gyration (Rg) studies were performed to evaluate the strength of the

vaccine-receptor protein interactions.
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Codon optimization and in silico restriction cloning

The Java Codon Adaptation Tool (JCAT) (http://www.jcat.de/, accessed on 3rd January, 2023)

was utilized for the reverse translation of the finalized vaccine sequence to cDNA and codon

optimization to achieve maximum expression in the bacterial expression system after cloning

[54]. JCAT evaluates the maximum possible expression potential of the cloned vaccine by cal-

culating the codon adaptation index (CAI) and percentage of CG content. The optimum CAI

value reported for favorable transcriptional and translational efficacy is 0.8–1 and the GC con-

tent is 30%-70% [28, 55]. The pET28a_TIAL1 (E. coli plasmid) for in silico restriction cloning

was retrieved from the Addgene server [56]. The Snapgene tool (https://www.snapgene.com/,

accessed on 3rd January, 2023) was used for in silico restriction cloning of the optimized codon

sequence in an E. coli expression system.

Immune simulation

The C-ImmSim server (https://kraken.iac.rm.cnr.it/C-IMMSIM/, accessed on 6th January,

2023) was used for computational immune simulation of the designed vaccine construct to

evaluate the immunogenic potential of the designed vaccine [57]. The server uses various

machine learning techniques to predict possible stimuli of the host immune system and pro-

vide information regarding cellular and humoral responses against antigens [58]. The standard

clinical protocol recommends a four-week period between two vaccine doses [59]. In this

study, we followed the protocol previously used by to carry out the immune simulation of the

designed vaccine construct. The simulation parameters were set as default for time periods of

1h 84h and 168h. The human host leukocyte antigens HLA-A*0101, HLA-A*0201,

HLA-B*0702, HLA-B*3901, HLA-DRB1*0101, and HLA-DRB1*0401 were selected for 1000

simulation steps.

Results

Subtractive proteomics analysis

In this study, we utilized a subtractive proteomic approach to identify pathogen-specific vac-

cine proteins and design a multi-epitope subunit vaccine. The whole proteome of S. sonnei was

acquired from the UniProt database (UniProt ID: UP000002529) with a total of 4,068 proteins.

CD-HIT resource was used to remove redundant protein sequences with a sequence similarity

index of 80%. Non-paralogous pathogen proteins were further screened against the human

proteome using BLASTp analysis to remove human homologous proteins. A total of 2633

human non-homologous and non-paralogous proteins from S. sonnei were acquired for down-

stream analyses (S1 File).

Subcellular localization

CELLO2GO v.2.5 [27] categorized the prioritized list of proteins with respect to their cyto-

plasm, periplasm, inner membrane, outer membrane, or extracellular localization (Table 1)

[25]. Three proteins with UniProt IDs Q3Z2A3, Q3Z118, and Q3YUS5 in the outer-mem-

brane and extracellular region were prioritized based on higher antigenicity scores of 0.4611,

0.6350, and 0.6462, respectively (Table 2).

B- and T-cell epitopes prediction

The three proteins prioritized in this study were subjected to B- and T-cell epitope prediction

to identify the lead epitopes for designing a potential MEVC against S. sonnei. T cell epitopes

represent MHC class I and II molecules that are capable of stimulating CD8+ and CD4+ T cell
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receptors, respectively, to induce a strong immune response against specific pathogens [60].

NetCTL 1.2 tool predicted 17 CTL epitopes from the three proteins prioritized in this study

(S1 Table). Only 6 epitopes were prioritized based on their antigenic, non-allergenic, and non-

toxic nature, MHC binding scores, and non-homology to human host (Table 3). The IEDB

database predicted a total of seven HTL epitopes of 15-mer based on an IC50 value of�500.

Three HTL were further prioritized based on antigenic, non-allergenic, non-toxic, and human

host non-homologous features (Table 4). The prioritized epitopes were conserved peptide

sequences among various S. Sonnei strains and the epitope conservancy was calculated based

on 100% sequence identity (Table 5). ABCpred identified 10 B-cell epitopes of the 20-mer with

scores of>0.9. The three B-cell epitopes with the best scores were prioritized for incorporation

into the vaccine construct to induce humoral responses against S. sonnei (Table 6).

Model vaccine construction

A multi-epitope chimeric vaccine construct was designed using prioritized CTL, HTL, and B-

cell epitopes with the aim of eliciting a strong immune response against S. sonnei infections.

Highly immunogenic vaccine design requires the presence of an adjuvant, antigenic epitopes,

and appropriate epitopes-specific linkers. The L7/L12 ribosomal protein was incorporated as

an N-terminus-linked adjuvant to increase the potency and minimize the toxicity of the

designed vaccine. A total of six CTL, nine HTL, and three B-cell epitopes were used in the con-

struct design. GPGPG linkers were used to link HTL epitopes with B-cell epitopes, CTL epi-

topes were linked with AAY linkers, and EAAAK linker was used to conjugate adjuvant to the

epitopes. These epitope-specific linkers are critical in designing an immunogenic multi-epi-

tope vaccine for the epitopes to elicit immune responses independently and as a whole con-

struct without interfering with one another. The length of the model S. sonnei vaccine

construct (SS-MEVC) was 469 amino acids (Fig 2). The proposed SS-MEVC vaccine is a supe-

rior alternative because it is inexpensive, easy to produce, stimulates specific immune

responses, and reduces the risk of antigen-induced anaphylaxis. The designed vaccine con-

struct could accommodate new or different antigenic peptide sequences.

Immunological and physiological properties of SS-MEVC

The Protparam server was used to determine a number of different physicochemical parameters

to confirm the stability of SS-MEVC. The server revealed that the vaccine construct had a

Table 1. Subcellular localization prediction of the shortlisted proteins.

S. No. Cellular location Number of Proteins

1. Cytoplasm 1608

2. Periplasm 358

3. Inner membrane 496

4. Outer membrane 99

5. Extracellular 72

https://doi.org/10.1371/journal.pone.0289773.t001

Table 2. The top-ranked vaccine candidate proteins with amino acid lengths, antigenicity, allergenicity, and toxicity.

No UniProt ID Name of protein Number of Amino acids Antigenicity Allergenicity Toxicity

1 Q3Z2A3 Sulfurtransferase 454 Antigenic Non-allergen Non-toxin

2 Q3Z118 Putative oxidoreductase 260 Antigenic Non-allergen Non-toxin

3 Q3YUS5 Single-stranded DNA-binding protein 182 Antigenic Non-allergen Non-toxin

https://doi.org/10.1371/journal.pone.0289773.t002
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theoretical PI value of 8.56, indicating slight acidic nature of the construct. The molecular weight

of the vaccine construct was 39.18 kDa, suggesting its easy purification. The aliphatic index and

GRAVY of SS-MEVC were 72.77 and -0.198, respectively. The instability index score of 37.04

indicated the stable nature of the vaccine construct. In yeast and E. coli expression systems, the

half-life of the vaccine sequence was predicted as>20h and 10h, respectively [39]. Furthermore,

the SS-MEVC construct was predicted to exhibit high antigenic, non-allergenic, and non-toxic

Table 3. Top-ranked CTL epitopes prioritized for vaccine construct designing.

Uniprot

IDs

Peptide

sequence

Human non-homology

(BLASTp, E-value >0.5)

MHC binding

affinity

Rescale binding

affinity

C-terminal

cleavage affinity

Transport

affinity

COMB

score

MHC-I

binding

Q3Z2A3 KADAPVALY 0.42 0.4936 2.9592 0.9752 2.9560 2.3899 Yes

ISHIPGADY 9.8 0.2002 0.8499 0.8738 3.0660 1.1343 Yes

Q3Z118 KSDAGSLVF 57 0.3999 1.6977 0.9411 2.5540 1.9666 Yes

LADEYQQRL 1.7 0.1368 0.5807 0.9674 0.8820 0.7699 Yes

Q3YUS5 KLAEVASEY 4.8 0.3174 1.3477 0.9733 3.0380 1.6456 Yes

WTDQSGQDR 14 0.2222 0.9432 0.0652 1.3610 1.0210 Yes

https://doi.org/10.1371/journal.pone.0289773.t003

Table 4. Top prioritized HTL epitopes shortlisted for vaccine construct designing.

Protein IDs Allele Human non-homology (BLASTp, E-value >0.5) Peptide sequence Methods Percentile rank

Q3Z2A3 HLA-DRB1*03:01 1.3 AKPLTLDQLQQQNGK Consensus (smm/nn/sturniolo) 1.3

HLA-DRB3*01:01 11 CGTGWRASETFMYAR Consensus (comb.lib/smm/nn) 2.5

HLA-DRB1*03:01 1.3 QIMLYAGVKDVRLLD Consensus (comb.lib/smm/nn) 2.8

Q3Z118 HLA-DRB3*01:01 11 LPLLLKSDAGSLVFT Consensus (comb.lib/smm/nn) 1.3

HLA-DRB3*02:02 2.7 QDVMQVNVNATFMLT NetMHCIIpan 1.4

HLA-DRB1*03:01 3.8 MMQVLADEYQQRLRV Consensus (smm/nn/sturniolo) 1.6

Q3YUS5 HLA-DRB3*02:02 11 PEVRYMPNGGAVANI NetMHCIIpan 1.2

HLA-DRB1*15:01 1.9 GKLAEVASEYLRKGS Consensus (smm/nn/sturniolo) 1.1

HLA-DRB3*02:02 5.4 VVVNVGGTMQMLGGR NetMHCIIpan 1.3

https://doi.org/10.1371/journal.pone.0289773.t004

Table 5. T-cell epitopes conservancy prediction by IEDB prioritized for vaccine construct designing.

Uniprot IDs CTL Peptides Epitope Conservancy HTL Peptides Epitope Conservancy

Q3Z2A3 KADAPVALY 100% AKPLTLDQLQQQNGK 100%

ISHIPGADY 100% CGTGWRASETFMYAR 100%

Q3Z118 KSDAGSLVF 100% QIMLYAGVKDVRLLD 100%

LADEYQQRL 100% LPLLLKSDAGSLVFT 100%

Q3YUS5 KLAEVASEY 100% QDVMQVNVNATFMLT 100%

WTDQSGQDR 100% MMQVLADEYQQRLRV 100%

https://doi.org/10.1371/journal.pone.0289773.t005

Table 6. The predicted B-cell epitopes prioritized for the vaccine construct designing.

Protein IDs Epitopes Peptide sequence Human non-homology (BLASTp, E-value >0.5) Position Amino acid length ABCpred Score

Q3Z2A3 B-cell DYIDTNEVESEPLWNKVSDE 16 195 20 0.89

Q3Z118 B-cell VNATFMLTQALLPLLLKSDA 5.7 125 20 0.86

Q3YUS5 B-cell GGAQSRPQQSAPAAPSNEPP 1.4 150 20 0.96

https://doi.org/10.1371/journal.pone.0289773.t006
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behaviors. The ANTIGENpro antigenicity score of 0.907043 and VaxiJen v2.0 score of 0.7648

indicate the strong antigenic nature of SS-MEVC. SOLpred score of 0.939657 indicated high sol-

ubility of SS-MEVC upon expression. The immunological and physicochemical properties con-

firmed the non-allergenic, and non-toxic nature of the SS-MEVC construct along with stability

and substantial capability to induce robust immune responses against S. sonnei infections.

Secondary and tertiary structure prediction and validation

The secondary structure of SS-MEVC consisted 35.61% of α-helices, 22.9% β-sheets, and

37.10% coils, indicating potential structural stability of SS-MEVC (S1 Fig). The high number

of α-helices and coil-coiled domains in a vaccine construct is crucial for proper protein fold-

ing, mimicking native proteins structures, and confers sufficient and effective humoral immu-

nity against the target pathogen [61]. The 3D-structure of SS-MEVC was predicted using the

Robetta web tool and refined using the GalaxyRefine server. The first model, with an RMSD

value of 0342 and a molProbity of 2.145 was chosen among the five refined structures for struc-

tural validation (Fig 3A and S2 Table). The quality score determined by ERRAT was 91.37 per-

cent, whereas the Z-score was -4.78, according to ProSA-web (Fig 3B). A considerable number

of the construct residues (91.9%) appeared in the favored region of the Ramachandran plot

and ensured the 3D structural accuracy of the model construct (Fig 3C).

Conformational B-cell epitope prediction

The refined structure of SS-MECV was submitted to ElliPro to determine the conformational

B-cell epitopes. The server predicted a total of six discontinuous/conformational B-cell epi-

topes with scores ranging from 0.516 to 0.771 (S3 Table). Various lengths (138, 82, 12, 8, 4, and

4 residues) and compositions of the predicted conformational B-cell epitopes, A-F, were

observed (S2 Fig and S3 Table). The scores for individual conformational B-cell epitopes from

Fig 2. (A) Sequence of SS-MEVC design showing adjuvant in red, epitopes in black, and linkers in blue, yellow, and

green. (B) Structural representation of the vaccine construct in different colors.

https://doi.org/10.1371/journal.pone.0289773.g002
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A-F are shown in Fig 4. These findings support a high prediction score for the six conforma-

tional B-cell epitopes in the SS-MEVC structure.

Molecular docking of SS-MEVC with human immune receptors

Molecular docking analysis was performed to evaluate the optimal binding conformation

between the SS-MEVC and TLR immune receptors. The Cluspro server performed protein-

protein rigid body docking of SS-MEVC with TLR2 and TLR4 based on millions of confirma-

tions, RMSD-based clustering, and structural refinement based on energy minimization to

generate the top 10 models. The complex model-4 was selected based on the lowest binding

energies (-869.1 kcal/mol with TLR2 and -879.2 kcal/mol for TLR4) and high binding affinities

for further analysis (Fig 5A and 5B and S3 Fig). Moreover, a graphical representation of the

residues involved in the interactions between the top-ranked SS-MEVC-TLR4 docked com-

plex (model-4) was generated using PDBsum (Fig 5C). A total of 22 hydrogen-bond interac-

tions were observed between chain A of SS-MEVC and chain B of TLR4 molecules and 236

non-bonded contacts were also observed between SS-MEVC-TLR-4 chains.

Normal modes analysis

The collective functional mobility of SS-MEVC was determined using the iMODS web tool,

which uses a normal modes analysis (NMA) approach to describe the functional motion of

atoms in a macromolecule. Each normal mode has a frequency that correlates with the relative

motion amplitude and deformation vector, indicating the direction of the atomic displacement

Fig 3. Tertiary structure prediction and validation of SS-MEVC. (A) The three-dimensional structure of the vaccine

modeled by Robetta server. Blue, yellow, green, red, and purple represent the adjuvant, CTLs, HTLs, B-cell epitopes,

and linkers, respectively. (B) Structure validation of SS-MEVC by ProSA-web with a Z-score of -4.78. (C)

Ramachandran plot determined by PROCHECK with 91.9% residues in the favored region of the plot.

https://doi.org/10.1371/journal.pone.0289773.g003
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of the macromolecule to assess its molecular flexibility in a cellular environment [62]. The

NMA results for the SS-MEVC and TLR4 docked complex are shown in Fig 6. The RMSD of

SS-MEVC-TLR4 complex was minimized by iterative deformation of the input structure along

the lowest modes, while superimposing the two structures locally and globally to simulate

potential transitions. A measure of the main-chain deformability is the total atomic displace-

ments across all modes of residues at each individual atomic site. The peaks in the deformabil-

ity graph of the complex indicate the flexible regions of the protein. The rigid regions of the

main-chain residues showed lower values, whereas high values demonstrated flexible regions

Fig 4. Residue-by-residue, two-dimensional ElliPro score charts for each conformational B-cell epitope in the

SS-MEVC structure.

https://doi.org/10.1371/journal.pone.0289773.g004

Fig 5. (A, B) 3D representation of the docking complex of SS-MEVC with human TLR4. (C) Molecular interactions

between chain A of SS-MEVC and chain B of TLR4 molecules.

https://doi.org/10.1371/journal.pone.0289773.g005
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(hinges/linkers) of the chain (Fig 6A). The amplitudes of the atomic displacements of the

molecular complex around the equilibrium conformation were determined using NMA-

derived B-factor. The B-factor graph depicts the connection between NMA mobility of the

SS-MEVC-TLR4 complex and the PDB scores, representing the average RMSD value (Fig 6B).

The motion stiffness is represented by the eigenvalue associated with each normal mode,

which is proportional to the amount of energy required to deform a structure. The lower the

eigenvalue, the easier it is for α-carbon atoms to deform. The eigenvalue of the

SS-MEVC-TLR4 complex was 2.889351e-05, indicating the significant stability of the complex

(Fig 6C). Additionally, the variance graph was inversely related to the eigenvalue and associ-

ated with each normal mode of the SS-MEVC-TLR4 complex, representing individual (purple)

and cumulative (green) variances (Fig 6D). The covariance map of the SS-MEVC-TLR4 com-

plex revealed connectivity between pairs of residues in the system. The atomic movements in

the dynamic regions of the complex molecule are depicted using covariance analysis as corre-

lated (red), uncorrelated (white), or anti-correlated (blue) regions in the SS-MEVC-TLR4

complex (Fig 6E). Ichiye and Karplus, 1991 [63], calculated the correlation matrix using Cα
Cartesian coordinates and Equation 2. The interactions between atoms were described by the

elastic network model of the complex. Each dot in the graph denotes a spring connecting the

corresponding pair of atoms. The stiffness of the dots is indicated by their color; darker greys

denote stiffer parts, whereas the lighter dots denote more flexible sections (Fig 6F).

Molecular dynamic simulations

Computational molecular dynamic (MD) simulations analysis mainly evaluates the dynamic

behavior of the docked molecules over a given period of time. MD simulations determine the

Fig 6. Results of normal mode analysis of vaccine SS-MEVC and TLR4 complex acquired by the iMODS server.

(A) Deformability, (B) B-factor indicating average RMSD, (C) eigenvalue, and (D) colored bars showing the individual

(purple) and cumulative (green) variances. (E) Covariance matrix indicating correlated (red), uncorrelated (white),

and anti-correlated (blue) motions of paired residues and (F) the elastic network model of the SS-MEVC-TLR4

complex (grey regions indicating stiffer regions).

https://doi.org/10.1371/journal.pone.0289773.g006
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correct binding conformations, protein folding, and stability in the cellular environment. An

MD simulation of 100 ns was conducted to assess the dynamic behavior and structural stability

of SS-MEVC. The trajectories of the MD simulation consisted of the RMSD, RMSF, and Rg

analyses. The RMSD backbone atoms of the SS-MEVC-TLR4 docked complex revealed that

the initial deviation was between 0.2–0.3 nm around 10 ns, however, RMSD plot was stabilized

afterwards (Fig 7B). The convergence remained minimal and the average RMSD was observed

to be 4.0 Å. RMSD analysis inferred stable molecular interactions between SS-MEVC and

TLR4 docked complex. The flexibility of the backbone residues of the SS-MEVC-TLR4 com-

plex was evaluated by RMSF analysis, showing lower fluctuation between SS-MEVC and TLR4

docked complex. However, the flexibility indices for the 80–120, and 288–300 regions were

comparatively high, owing to the presence of loop regions. The residue fluctuation analysis

revealed a lower flexibility index for the entire period of simulation of the overall system, and

no drastic changes were observed in the SS-MEVC and TLR4 docked complex (Fig 7C). The

Rg analysis for the SS-MEVC-TLR4 complex determined the compactness of the complex with

slight variations, which depicted the statistical behavior of the vaccine in the system (Figs 7D

and 8A). Moreover, the per-residue correlation matrix evaluated the correlated (red) and

uncorrelated (blue) movements of the SS-MEVC vaccine (Fig 8B). Overall, MD simulation

analysis indicated a stable binding affinity of the SS-MEVC vaccine with the TLR4 receptor,

ensuring efficient representation of the vaccine to the host immune cells to elicit an immediate

immunological response against the pathogen.

Immune simulation

Immune simulation predictions revealed a significant increase in primary and secondary

immune responses induced by the proposed vaccine. The C-ImmSim online program was

used to model a human immunization protocol utilizing SS-MEVC as an immunogen at three

doses, one month apart. The simulation of immune responses to the antigen in a computer

model accurately captured the complex dynamics of the immune system. Initially a significant

Fig 7. Molecular dynamic simulation of the SS-MEVC-TLR4 complex at 100ns using AMBER20. (A) Simulated the

SS-MEVC-TLR4 docked complex, where the green color indicates vaccine construct and purple color indicates TLR4

receptor. (B) RMSD analysis of the SS-MEVC-TLR4 complex. (C) RMSF analysis of the SS-MEVC-TLR4 complex (D)

Rg analysis of the SS-MEVC-TLR4 complex.

https://doi.org/10.1371/journal.pone.0289773.g007
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increase in IgM levels was observed. The simulated secondary and tertiary responses revealed

an increase in B-cell populations and IgG1 + IgG2, IgM, and IgM + IgG antibody levels associ-

ated with a decrease in antigen levels (Fig 9A and 9B). An increase in the memory B-cell popu-

lation was also observed, indicating the formation of immunological long-term memories. An

increase in both TC (cytotoxic) and TH (helper) cell populations in response to subsequent

antigen exposure resulted in a drastic decline in antigen levels and the development of corre-

sponding memory against the pathogen (Fig 9C–9E). Additionally, in this simulated immuni-

zation, the memory T helper cells and memory B cells were predicted to last for several

months. Moreover, macrophages, dendritic cells, and natural killer cell populations were pre-

dicted to induced and maintained at high levels throughout the vaccination period (Fig 9F–

9H). Similarly, significantly higher levels of cytokine-like IFN-γ and interleukin-like IL-2 were

observed (Fig 9I). These results suggest that the predicted SS-MEVC could elicit sustainable

and long-lasting humoral responses against S. sonnei.

Condon optimization and in silico restriction cloning

Potent and stable antigenic SS-MEVC capable of eliciting both innate and adaptive immune

responses must be produced using appropriate expression vectors. The JCAT server was used

for codon optimization and reverse translation of the peptide SS-MEVC sequence into cDNA

to achieve higher expression of the vaccine in the E. coli expression vector. The CAI value of

SS-MEVC was predicted as 0.88, and the average GC content was 54.34%. JCAT server pre-

dicted an acceptable range for significant expression of SS-MEVC in the E. coli expression sys-

tem. The codon sequence of SS-MEVC was inserted into the E. coli pET28a(+) sequence at

Xbal (922) and MluI (2131) restriction sites to construct a recombinant plasmid sequence

using the SnapGene tool. These results confirmed heterologous cloning and expression of

SS-MEVC in the E. coli system (S4 Fig). The resulting cloned product could be used to trans-

form the referred E. coli strain to produce the vaccine, following purification processes as per

the immunization protocol.

Discussion

S. sonnei, an Escherichia coli pathovar, is a gram-negative bacterium that causes bacillary dys-

entery and bloody diarrhea in humans. Currently, S. sonnei is a globally emerging pathogen

Fig 8. Probability distribution function and dynamic cross correlation matrix of SS-MEVC-TLR4 complex. (A)

Demonstration of the distributions of RMSD and Rg to show the favored conformation as a contour plot. (B) Per-

residue correlation matrix showing the correlated (red) and uncorrelated (blue) movements of SS-MEVC.

https://doi.org/10.1371/journal.pone.0289773.g008

PLOS ONE Immunoinformatics-guided multi-epitope vaccine designing against Shigella Sonnei

PLOS ONE | https://doi.org/10.1371/journal.pone.0289773 November 22, 2023 16 / 25

https://doi.org/10.1371/journal.pone.0289773.g008
https://doi.org/10.1371/journal.pone.0289773


and the leading cause of shigellosis in high-income countries. The unusually high number of

cases of multi drug-resistant (MDR) and extensively drug-resistant (XDR) S. sonnei is a public

health concern, as treatment options for moderate to severe cases are extremely limited [64].

Antibiotic resistance in bacteria has reached to a dangerous level, and strains resistant to most

of the commonly used antibiotics are now routinely reported in many countries worldwide

[65]. Therefore, new therapeutic strategies are needed to prevent MDR and XDR shigellosis.

As antibiotic resistance increases, effective vaccine development has become the best alterna-

tive against such pathogens. Subtractive proteomics have been widely used to identify potential

therapeutic targets for various pathogens. Advanced immunoinformatics and vaccinomics

approaches are currently gaining interest in identifying potential pathogen-specific vaccine

targets and designing potent vaccines against multiple resistant pathogens [66]. Reverse vacci-

nology and immunoinformatics approaches are cost- and time-effective with high efficacy

compared to conventional vaccine development methods. The strategy utilized in the present

study has been experimentally validated in mice models for various pathogens [67]. In 2019,

researchers tested the ability of computationally generated multi-epitope vaccine to elicit a

strong IgG antibody-specific immune response against Acinetobacter baumannii in mice [68].

Similarly, reverse vaccinology approaches have been experimentally validated in mice against

Salmonella Typhimurium using an S. Typhimurium LT2 challenge model with FliK and BcsZ

antigens [69]. The immunogenic responses of computationally designed B-cell epitopes to Try-
panosoma vivax were experimentally validated [70]. Moreover, computational vaccines against

Fig 9. The in silico immune simulation of SS-MEVC vaccine peptide predicted by C-ImmSim server. (A, B) A

significant increase in both B-cell numbers and antibody titer, with corresponding decreases in antigen concentrations.

(C) An increase in B-cell numbers caused by repeated antigen exposure. (D, E) Increasing antigen exposure leads to an

increase in T-cytotoxic and T-helper cells. (F, G, H) Increase in the number of dendritic cells, macrophages, and

natural killer cell populations throughout the vaccination process. (I) Increase in the cytokine concentration after

repeated antigen exposure.

https://doi.org/10.1371/journal.pone.0289773.g009
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several human viruses, such as Ebola [71] and Marburg [72], have been experimentally tested

based on immunoinformatic strategies. This emphasizes the viability of in silico reverse vacci-

nology-based strategies for vaccine development.

Currently, no efficacious vaccines are available to prevent shigellosis. Previously, surface

proteins of S. sonnei reference strain 53G were reported as potential vaccine candidates [73]

and epitope mapping was performed [74]. However, the authors did not pursue detailed analy-

ses to design and evaluate a proper multi-valent vaccine construct model against S. sonnei.
Instead of single strain proteome data as utilized previously [74], we took advantage of the

updated databases and analyzed relatively large data, i.e., comprised of multiple S. sonnei
strains proteomes in the current study. Therefore, we speculate that the vaccine construct

model prioritized in the current study may provide broader immune protection against the

infection of multiple wide-spread strains of S. sonnei. Three proteins i.e., sulfur-transferase,

putative oxidoreductase, and single-stranded DNA-binding protein were selected as top candi-

dates based on immunological properties for designing a multimeric vaccine against S. sonnei.
Immunogenic responses against infections are triggered by the host immune system via B-

and T-cells. The prioritized proteins were used to predict B cell, MHC-I, and MHC-II epitopes

to design a multi-epitope-based chimeric vaccine construct against S. sonnei. Various combi-

nations of immune enhancers and flexible adjuvant peptides have been used to conjugate lead

epitopes by using suitable epitope-specific linkers. Additionally, we examined the antigenicity,

allergenicity, toxicity, solubility, and other physicochemical characteristics of the proposed

vaccine construct. Vaccines designed from these pathogen-specific antigenic proteins have the

capability to generate specific immunological responses, targeting conserved epitopes in the

whole antigen while evading reactions to non-neutralizing epitopes that could lead to immu-

nopathogenic or immune-modulating effects [75, 76].

Structural information is crucial for vaccine development to investigate interactions

between antigen and receptor molecules. The 3D-structure of SS-MEVC was predicted based

on homology modeling, and was further refined to improve. The structural stability of the

refined 3D-structure of SS-MEVC was validated by the Z-score and Ramachandran plot,

which determined the maximum number of residues in the favored region of the plot. Immu-

nological and physicochemical properties determined the highly antigenic, non-allergenic,

and non-toxic behavior of the SS-MEVC vaccine. Small molecular weight of~40 kDa, solubil-

ity, and instability scores ensured easy absorption, high soluble, and stable nature of the

SS-MEVC vaccine upon expression in the host. Serological confirmation of immunoreactivity

is an important step to validate the expression of the designed vaccine in a suitable expression

system [77]. The E. coli expression vector is considered the most suitable expression system for

cloning and development of recombinant peptides [78, 79]. The in-silico restriction cloning

analysis inferred the successful cloning capability of the designed SS-MEVC vaccine within the

bacterial expression system.

The immune simulation of the SS-MEVC vaccine was performed under different condi-

tions to analyze the host immune responses. The analysis predicted a strong immune response

induced by repeated antigen exposure. The consistently high level of Ig production and T cells,

increasing levels of IFN-γ and IL-2 upon repeated antigen exposure predict strong cell-medi-

ated and humoral responses against the designed SS-MEVC. The production of memory B

cells indicated development of adaptive immunity that may last for several months to years.

The Simpson index, D, for clonal specificity investigation indicated possible diverse immuno-

genic responses. Molecular docking analysis investigated the binding potential of SS-MEVC

vaccine to the human TLR2 and TLR4 immune receptors. TLR receptors are crucial for

immune cell activation to generate adaptive immune responses and thus play an important

role in innate immunity [80]. TLR receptors recognize conserved bacteria-associated
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molecular patterns, leading to an intermolecular signaling cascade. including the activation of

protein kinases, production of inflammatory cytokines, up regulation of MHC molecules, and

activation of co-stimulatory responses. This links innate and adaptive immune responses, spe-

cifically T and B cells activation and memory responses when hosts encounter pathogens [81,

82]. The designed vaccine model was predicted at multiple-levels to potentially activate TLR

receptors to initiate the innate immune response against S. sonnei. The stability of SS-MEVC

and TLR4 docked complex was confirmed by MD simulation studies. Strong molecular inter-

actions of the SS-MEVC vaccine with the TLR4 receptor ensured the molecular stability of the

vaccine in the host cellular environment. These in silico analyses predicted that the chimeric

vaccine model against shigellosis, proposed in current study, is extremely stable and capable of

generating strong immunogenic responses. The next step is to conduct in vitro immunological

assays to verify the efficacy of the proposed vaccine model constructs, assess its immunogenic-

ity, and design a preclinical challenge-protection trial to validate the findings of this study.

Conclusion

The present study employed an integrated subtractive proteomics and immunoinformatics

approach to identify potential vaccine candidates against MDR S. sonnai. Highly antigenic B-

and T-cell epitopes were prioritized to design a multi-epitope-based vaccine construct using

suitable adjuvant and linker sequences to elicit the host immune system. Inmmunological and

physiochemical properties ensured the antigenic, non-allergenic, non-toxic, and soluble

behavior of the vaccine construct. Immune simulation predicted high cellular and humoral

responses induced by the proposed vaccine with long-lasting innate immunity. Molecular

docking ensured the binding affinity of the vaccine with human TLR4 receptor. MD simula-

tions speculated the molecular stability of the vaccine in the cellular environment. In silico
cloning predicted effective gene expression capability of the designed vaccine construct in E.

coli expression system. Further in vitro and in vivo investigations are suggested to validate the

efficacy of the proposed vaccine against S. sonnai infections.
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