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Abstract

The objective of this study was to evaluate the time of blastulation monitored by time-lapse

technology to predict in vitro viability of bovine blastocysts. This technology can be a power-

ful tool for bovine embryos selection with higher implantation capacity and competence.

Also, in humans an early blastulation is associated with higher quality and pregnancy rate.

Cumulus oocyte complexes (COCs) were matured for 20 to 22 h and then fertilized by co-

incubation of COCs and spermatozoa (10,000 sperm per oocyte) for 18 h. Presumptive

zygotes were placed individually in microwells, in droplets of commercial culture medium.

The Primo Vision TL system (EVO+; Vitrolife) captured digital images of developing

embryos every 15 minutes. The time frame from IVF to the start of blastulation (tSB) and to

blastocyst development (tB) was recorded. After day 7.5, the blastocysts were in vitro cul-

ture for 48 h until day 9.5 after IVF to evaluate post hatching development. In vitro viability

was evaluated at day 9.5: those with a diameter greater than 200 μm and a total cell count

greater than 180 were classified as viable (value 1), while the rest were classified as non in

vitro viable (value 0). The area under the ROC curve (AUC) was estimated to determine the

predictive power of in vitro viability through blastulation time. In addition, binary logistic

regression analysis was used to generate a mathematical model with morphokinetic vari-

ables that allow the best prediction of in vitro viability. In 13 sessions, the blastocyst produc-

tion rate was 46.2% (96/208). The cut-off time to discriminate early or late blastulation was

149.8 h. The post-hatching development of the embryos with early blastulation was 63.3%

(31/49), being statistically superior (p = 0.001) than the late blastulation group 14.9% (7/47).

Likewise, the time of blastulation showed an accuracy of 90.8% (p < 0.001) in predicting in

vitro viability of bovine blastocysts. In conclusion, the selection of blastocysts based on blas-

tulation time (< 155 h) and blastocyst diameter measured on day 7.5 after IVF (> 180 μm)

maximizes the in vitro viability.
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Introduction

For the world embryo industry, in vitro fertilization (IVF) is the most important innovation

that allow the trade of genetics of various species [1]. Over 1.5 million in vitro-produced (IVP)

bovine embryos were recorded in 2021 [2]. Although, low pregnancy rate (33.5%; [3]) and

high proportion of chromosomal abnormalities (20 to 25%; [4]), increased pregnancy loss [5],

abnormal placental development [6], heavier fetuses [7], higher rates of dystocia, congenital

anomalies [8], stillbirths and neonatal mortality [9] have been suggested as a major cause of

failure of IVP system in cattle. Therefore, non-invasive criteria are required to achieve an

objective and more precise embryo selection [10].

Early embryonic development involves a series of orchestrated events between the first cell

cleavages and the differentiation of the first cell lineages [11,12], leading to the differentiation

of the inner cell mass into hypoblast and epiblast (blastocyst formation) important events for

the implantation of the embryo in the uterus [13]. Also, in humans, blastulation timing is asso-

ciated with mitochondrial content, chromosome status, and embryonic quality and compe-

tence [14–16], synchrony between embryo development and endometrial receptivity [17] and

high precision of pregnancy rate (80%; [18]). In cattle, blastulation timing may have a high

potential for embryo selection over other embryo morphologic parameters and may be a crite-

rion for the selection of blastocysts to be transferred that can predict the embryo viability or

competence.

The competence of the oocyte and/or embryo is of great importance for the in vitro embryo

production programs, impacting on the successful establishment of pregnancy after transfer to

recipients [19]. The traditional selection of in vitro produced bovine embryos is mainly based

on morphological characteristics [20], though this classification is considered subjective and

inadequate [21]. Time-lapse technology is a non-invasive method that allows obtaining contin-

uous digital images to monitor embryonic development in vitro [22]. Studies in humans indi-

cate that the selection of competent embryos using continuous monitoring technologies is the

more accurate method to identify embryos with greater implantation capacity [22–24]. How-

ever, it is little used in bovine embryo transfer [25,26]. The objective of this work is to evaluate

the value of blastulation timing monitored by time-lapse technology to select embryos with

greater post-hatching development.

Materials and methods

The Graduate School of the La Molina National Agrarian University did not request the

approval of the ethics committee, since the research only used commercial frozen semen and

ovaries collected at a local slaughterhouse. The chemicals were purchased from Sigma-Aldrich

(St. Louis, MO, USA), and the in vitro embryo culture media from Vitrogen (YVF Biotech

LTDA EPP, Sao Paulo, Brazil).

Experimental design

Presumptive zygotes were cultured individually in microwell plates (16-microwell, Vitrolife,

Gothenburg, Sweden). Embryo development was monitored with images captured by the

Primo Vision TL system (EVO+; Vitrolife, Gothenburg, Sweden) for 7 days. The morphoki-

netic parameters were annotated: t2 (h) division time to 2 cells; t3 (h) division time to 3 cells;

t4 (h) division time to 4 cells, t5 (h) division time to 5 cells, t8 (h) division time to 8 cells; t9+

(h) division time to 16 cells, tM (h) time to morula stage; tSB (h) time of starting blastulation,

tB (h) time to blastocyst stage and tBX (h) time to expanded blastocyst stage. At day 7.5, mor-

phological characteristics of blastocysts, embryo quality, developmental stage and blastocyst

diameter were determined, using criteria described in the IETS manual [27]. In addition, on
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day 7.5, embryos were kept in individual culture, to assess their post-hatching development (in

vitro viability) based on growth performance and diameter (Fig 1).

In vitro embryo production

Ovaries were obtained from local abattoirs following the standard procedure described by

Rodrı́guez et al. [28]. COCs in groups (10 to 12) were in vitro matured (IVM) in a drop (70 μL)

of IVM medium (Vitrogen1, Brazil) for 20 to 22 h. Immediately after sperm selection, 10,000

motile spermatozoa per oocyte were used in IVF and co-incubated with COCs at 38˚C in an

atmosphere of 6% CO2 in air, similar to other authors [29,30]. After 18 h of IVF, presumptive

zygotes were mechanically denuded by pipetting and then in vitro cultured (IVC) in IVC

medium (Vitrogen, Brazil) at 38˚C in 6% CO2 in air. During in vitro culture, 16 presumptive

zygotes were individually (Fig 2) monitored using the Primo Vision TL1 equipment (Vitro-

life, Sweden) that takes images every 15 minutes from day 1 to 7.5 post IVF. On day 3 and 5

post IVF, culture media was refresh by changing 50% of the culture medium. The morphoki-

netics parameters (t2, t3, t4, t5, t8, t9+ tM, tSB, tB, tBX) were recorded during the culture of

the embryos until day 7.5 post IVF. The starting point of IVF was considered as time zero (t0).

Fig 1. Schematic illustration of experimental design. Presumptive zygotes were cultured individually and embryonic development monitored with images

captured by the Primo Vision TL system for a period of 7.5 days. At day 9.5 post IVF, blastocysts were classified according to their post-hatching development

(V: Viable, NV: Non-viable).

https://doi.org/10.1371/journal.pone.0289751.g001
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Variables related to the duration of cell cycles were also determined and designated: duration

of second cell cycle t3–t2, duration of third cell cycle t4–t3, duration of cell cycle between t5–

t4, duration of cell cycle between t8–t5, duration of cell cycle between t9+–t8, duration of cell

cycle between tM–t9+, duration of cell cycle between tSB–tM, duration of cell cycle between

tB–tSB, duration of cell cycle between tBX–tB, which combines the concepts of cell cycle and

synchrony (S1 Fig).

At the end of individual embryonic development monitoring (day 7.5 post IVF), each video

was processed to establish embryonic division times. In addition, the images with calibrated

measurements were saved in JPG format to be processed with the ImageJ software to measure

the diameters of the embryos at tSB, tB and tBX times. At day 7.5, morphological characteris-

tics of the blastocysts were determined; embryo quality, developmental stage and blastocyst

diameter. In vitro viability was evaluated at day 9.5: those with a diameter greater than 200 μm

and a total cell count greater than 180 were classified as viable (value 1), while the rest were

classified as non in vitro viable (value 0).

As laboratory control, embryos were cultured in groups of 10 to 12 zygotes in 70 μL microdrops

under mineral oil. On day 3 and 5 post IVF, a 50% change of the culture medium was performed

and on day 3 and 7.5 post IVF the cleavage and blastocysts rate were evaluated, respectively.

For cell count, embryos were individually fixed in 1% paraformaldehyde in saline phos-

phate buffer for 30 minutes at 4˚C. Subsequently, the fixed embryos were incubated individu-

ally at 37˚C for 15 to 20 min in a dark environment for blastomere nuclei staining in drops of

10 μL of manipulation medium supplemented with 2 μL of DAPI solution (NucBlue™ Fixed

Cell ReadyProbes™ Reagent, Thermo Fisher Scientific) and covered with mineral oil. Finally,

embryos were mounted on a slide for counting the nuclei using a fluorescence microscope

(Axioscope, Carl Zeiss, USA) with a magnification of 100x at a wavelength of 365 nm.

Fig 2. Individual culture to monitor embryonic development (Primovision1, Vitrolife, Sweden).

https://doi.org/10.1371/journal.pone.0289751.g002
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Statistical analysis

Morphokinetics variables (t2, t3, t4, t5, t8, t9+ tM, tSB, tB, tBX) and cell cycle and synchrony

(t3-t2, t4-t3, t5-t4, t8-t5, t9+-t8, tM-t9+, tSB-ttM, tB-tSB, tBX-tB) measurements were classi-

fied according to embryo viability and blastulation time and analyzed for normality of distri-

bution using Kolmogorov–Smirnov test and for homogeneity of variance using Levene’s Test

after which these variables were analyzed with ANOVA.

For exploring the relationship between two quantitative variables and one categorical vari-

able we performed a scatterplot analysis with groups. Principal component analysis (PCA) was

used for the multidimensional data set to emphasize variation and highlight strong patterns of

morphokinetics and cell cycle variables and synchrony of embryonic development according

to their in vitro viability (V = viable and N = non-viable) applying the same approach adopted

by Mellisho et al. [26].

The predictive model of embryo in vitro viability proposed here was based on binary logistic

regression to describe the dichotomous dependent variable of the blastocyst (viable = 1 and

non-viable = 0). A set of independent morphokinetic variables were analysed with multiple

regression. The logistic regression generated the coefficients, the standard errors and level of

significance of the model for calculating the probability to predict the viability of the embryos,

where values between 0.5 and 1 indicated blastocyst viability. To verify the predictive power of

the algorithm, the following indicators were used: ROC-AUC (receiver operating characteris-

tic analysis with determination of the area under the curve), percentage of correct predictions

and omnibus tests. Statistical significance was determined at the P< 0.05 level. A rough guide

for classifying the accuracy of a predictive model was 0.90–1 = excellent, 0.80–0.90 = good,

0.70–0.80 = fair, 0.60–0.70 = poor, 0.50–0.60 = fail. Statistical analysis was performed with the

IBM SPSS Statistics program, version 20 (IBM, Armonk, NY, USA).

Results

In this work, 923 viable COCs (quality 1 and 2) were used in 13 in vitro embryo production

sessions (Table 1). The blastocyst rate obtained on day 7.5 post IVF and cultured in a time-

lapse system (42.8%) was superior (p = 0.0001) to the laboratory control group (30.7%).

Impact of blastulation time on embryonic development in vitro

Out of 208 embryos cultured in microwell culture system (time-lapse system), 174 (83.65%)

had a first cleavage and 96 (42.8%) developed to the blastocyst stage. The 96 embryos that

formed blastocysts reached mean values of t2, t3, t4, t5, t8, t9+ tM, tSB, tB and tBX at 29.41,

35.30, 43.21, 50.58, 65.74, 80.76, 109.66, 149.79, 164.42 and 171.98 h post IVF, respectively (see

S1 Table). Also, they were retrospectively classified as viable (>200 μm and>180 cell count)

38/96 (39.58%) and as non-viable (<200 μm and<180 cell count) 58/96 (60.42%) (Table 2).

In this study, of 96 embryos (96/208) that reached blastulation, 49/96 (51.04%) embryos

showed early blastulation (<149.79 h) and 47/96 (48.95%) embryos showed late blastulation

Table 1. Production of bovine embryos in vitro in a time-lapse system and culture in drops (laboratory control).

Treatment Rep. COCs (quality 1 and 2) Cleavage rate (D3 post IVF)

(x± SD)

Blastocyst rate (D7.5 post IVF) (x± SD)

Laboratory Control (in drops) 13 715 82.1± 5.2 a 30.7± 3.1 a

Microwell (Individually) Time-lapse system 13 208 83.7± 7.0 a 42.8± 9.2 b

a,b Different letters in the same column show significant differences (P<0.05). X: Mean, SD: Standard Deviation.

https://doi.org/10.1371/journal.pone.0289751.t001
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(>149.79 h). In Table 3, we observed that blastulation time is critical for in vitro viability, pre-

senting high and significant viability the embryos with early versus late blastulation (63.27 vs

14.89%, respectively). The average blastulation timing for the 96 embryos resulted in 149.79 h.

In Fig 3A and 3B, the morphokinetic parameters of embryonic development were classified

and compared statistically according to in vitro viability. The variables tM, tsB and tBx (Fig 3A)

and tm-t9+ (Fig 3B) showed statistical differences (P<0.05). Scatter plot showed that embryos

with time of starting blastulation (tSB) less than 155 h maximized their in vitro viability to 54.54%

(Fig 3C, 3D and 3E), although embryos with time of starting blastulation (tSB) greater than 155 h

reduce to 6.67% their viability (see S1 Table). In Fig 3E, we show that a combination between time

of starting blastulation (tSB) less than 155 h and embryo diameter measured at day 7.5 post IVF

greater than 180 μm ensures maximum viability of in vitro produced blastocysts.

In Fig 4A, in vitro viability shows a positive and significant Pearson’s correlation coefficient

with embryo diameter at day 7.5 post IVF (0.75) and a negative and significant correlation

with embryo quality at day 7.5 post IVF (-0.56). Also, in Fig 4B and 4C, PCA analysis of multi-

variable data sets does not allow to emphasize variation or highlight patterns or cluster embryo

morphokinetics variables (Fig 4B) and morphokinetics variables and embryo diameter after

the start of blastulation (Fig 4C) according to their in vitro viability.

Mathematical model to predict viability in vitro
Mathematical model-1 and model-2 included univariable data of the time of starting blastulation

(tSB) and blastulation time (BT) had a fair predictor (ROC-AUC 0.7–0.8) of viability. While, the

mathematical model-3 included the univariate data of embryo diameter at day 7.5 post IVF (D75)

and had an excellent predictor of viability (ROC-AUC 0.92) (Tables 4 and 5). Additionally, the

mathematical model-5 included four quantitative parameters of blastocyst (DtSB, DtB, DtBX,

D75) after blastulation time and had the highest precision for predicting viability (ROC-AUC

0.93). Mathematical models 3, 4 and 5 showed a high ROC-AUC value>0.90 (Table 5).

The logistic function (logit) for Model-3

Y ¼ ln½p=ð1� pÞ� ¼ � 24:393þ 0:125∗D75

Table 2. Characteristics of in vitro cultured blastocyst according to in vitro viability determined by extended culture up to 9.5 days post IVF.

Viability in vitro n Blastulation time (tSB) Blastocyst stage (tB) Blastocyst (7.5 post IVF)

Time (h) Diameter (μm) Time (h) Diameter (μm) Diameter (μm)

Viable 38 142.55±7.79 a 155.36± 4.45 a 159.75±8.76 a 168.93±7.77 a 209.29±17.19 a

Non-viable 58 154.54±12.92 b 154.81±4.60 a 167.91±9.95 b 167.21±7.53 a 176.35±15.02 b

a,b Different letters in the same column show significant differences (P<0.05).

https://doi.org/10.1371/journal.pone.0289751.t002

Table 3. Characteristics of blastocyst cultured in vitro according to blastulation time.

Group N Blastulation time (h) (x± SD) Blastocyst rate (7.5 post IVF) Post hatching development (9.5 post IVF)

% Diameter (μm) % Total count cell Diameter (μm)

Early 49 140.01±6.48a 49 (100%) 204.04±19.59a 31 (63.27%) a 268.03±72.97 335.60±73.51

Late 47 159.99±8.70b 47

(100%)

174.11±13.82b 7 (14.89%) b 260.7±65.94 309.65±85.46

a,b Different letters in the same column show significant differences (P<0.05). X: Mean, SD: Standard Deviation.

https://doi.org/10.1371/journal.pone.0289751.t003
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The logistic function (logit) for Model-2

Y ¼ ln½p=ð1� pÞ� ¼ 2:83 � 2:287∗BT

The logistic function (logit) for Model-1

Y ¼ ln½p=ð1� pÞ� ¼ 15:274 � 0:106∗tSB

The estimated probability is:

p ¼ Exp Y=ð1þ Exp YÞ

Where:

ln is the natural logarithm, log exp, where exp = 2.71828. . .

ln[p/(1-p)] is the log odds ratio, or "logit"

p/(1-p) is the "odds ratio"

Fig 3. Bovine embryonic development in microwell culture system according to viability (Viable “green line” and non-viable (red line). A) Morphokinetic

parameters of embryonic divisions t2, t3, t4, t5, t8, t9+, tM, tSB, tB and tBX; B) Time of cell cycle and synchrony t3-t2, t4-t3, t5-t4, t8-t5, t9+-t8, tM-t9+, tSB-

ttM, tB-tSB, tBX-tB. (*) It indicates that in this morphokinetic parameter there is a statistical difference (P<0.05); Scatter plot illustrating two variables from the

morphokinetics data, where colour represents in vitro viability, C) t2 (h) division time to 2 cells; D) Embryo diameter at tSB; and E) Embryo diameter at day 7.5

post IVF, with tSB (h) time of starting blastulation, respectively.

https://doi.org/10.1371/journal.pone.0289751.g003
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p is the probability that the event Y occurs, p (Y = 1)

If. p> 0.5, Predicts, embryo viable

p< 0.5, Predicts, embryo non-viable

Example: Estimated value of probability to predict viability for model 3:

Discussion

Time-lapse system of embryonic development is currently one of the most advanced tech-

niques used in in vitro embryo production in humans [31], cattle [32] and ovine [33]. In

humans and bovines, morphokinetics has generated a database of parameters which has

included the development of machine learning technologies to provide further insights to

interpret and understand the embryonic development data.

Fig 4. Pearson correlation coefficient and principal component analysis for all variables with in vitro viability. A) Variables con Pearson’s correlation

coefficient significative (p<0.01). PCA analysis of morphokinetics variables (B) and morphokinetics variables and embryo diameter after the start of

blastulation (C) according to their in vitro viability (V = viable and N = non-viable).

https://doi.org/10.1371/journal.pone.0289751.g004

D75 (μm)) Y p Predicted

173.729 -2.68 0.06 Non viable

179.884 -1.91 0.13 Non viable

163.567 -3.95 0.02 Non viable

166.116 -3.63 0.03 Non viable

196.371 0.15 0.54 viable

158.534 -4.58 0.01 Non viable

164.131 -3.88 0.02 Non viable

194.569 -0.07 0.48 Non viable

201.487 0.79 0.69 Viable

229.554 4.30 0.99 Viable

202.061 0.86 0.70 Viable

211.086 1.99 0.88 Viable

213.196 2.26 0.91 Viable

231.816 4.58 0.99 Viable

225.276 3.77 0.98 Viable

235.291 5.02 0.99 Viable

https://doi.org/10.1371/journal.pone.0289751.t006

PLOS ONE Blastulation time can predict in vitro blastocyst viability

PLOS ONE | https://doi.org/10.1371/journal.pone.0289751 August 10, 2023 8 / 16

https://doi.org/10.1371/journal.pone.0289751.g004
https://doi.org/10.1371/journal.pone.0289751.t006
https://doi.org/10.1371/journal.pone.0289751


The first division is an indicator of the developmental potential of embryos produced in
vitro [34] and first division time is related to the state of polyadenylation and transcription of

genes that are important for early embryonic development [35]. In this work, the average first

cleavage time in bovine embryos was 31.18 h (Min 19.39 h and max: 69.33 h). Likewise, only

7.4% (2/27) of embryos cleaved after 36 h IVF developed into a blastocyst, similar to those

reported by Dinnyés et al. [36] that showed very few blastocysts (5%) developed from embryos

cleaved after 36 h IVF. Also, in human [37] and bovine [25] studies, time lapse monitoring has

revealed that first cleavage after fertilization can be indicative of implantation potential. The

first cleavage rate reported in this study was 83.65% (174/208), being similar to those reported

by Rizos et al. [38] 84.3%, and Sanches et al. [39] 78.8%.

A conventional culture system (microdrops) allows the development of 30% of the oocytes

matured in vitro to blastocysts [40–42] similar to the result reported in our laboratory control.

However, the use of microwell culture to monitor embryonic development showed blastocyst

rates greater than 30% in cattle [43] and humans [44–46] when cultured in a time-lapse system

versus the traditional microdrops system. The difference in the higher rate of blastocysts in the

Table 5. Logistic regression parameters of model-3 to predict viability in vitro.

Variable B 95% CI de OR P value

Constant -24.393 0.000

D75 0.125 1.077–1.192 0.000

Regression coefficient (B), odds ratio (OR), Confidence interval (95% CI of OR).

https://doi.org/10.1371/journal.pone.0289751.t005

Table 4. Non-invasive predictive models of in vitro viability using binary logistic regression.

Variable Model-1

(tSB)

Model-2

(BT)

Model-3

(D75)

Model-4 (E75, Q75,

D75)

Model-5 (DtSB, DtB, DtBX,

D75)

Constant 15.274 2.830 -24.393 -24.11 36.014

Blastocyst kinetics

BT (early = 1, late = 2) – -2.287 – – –

tSB -0.106 – – – –

Blastocyst morphometry

D-tSB – – – – -0.008

D-tB – – – – -0.052

D-tBX – – – – -0.364

E75 – – – -0.038 –

Q75 – – – -0.025 0.216

D75 – – 0.125 0.125 –

Algorithm power

ROC-AUC (0.9–1 = excellent, 0.8–0.9 = good, 0.7–0.8 = fair

predictor)

0.79 0.75 0.92 0.92 0.93

Correct prediction (%) 70.8 74.0 81.3 81.3 82.8

Coef. Omnibus test 0.000 0.000 0.000 0.000 0.000

Nagelkerke R-Square 0.308 0.309 0.655 0.655 0.695

Cox and Snell R squared 0.227 0.228 0.484 0.484 0.521

Note: Time of starting blastulation (tSB), blastulation time (BT; early = 1, late = 2), time to blastocyst stage (tB), time to expanded blastocyst stage (tBX), diameter to

time of starting blastulation (DtSB), diameter to time to blastocyst stage (DtB), diameter to time to expanded blastocyst stage (DtBX), embryo stage at day 7.5 post IVF

(E75), embryo quality at day 7.5 post IVF (Q75) and embryo diameter at day 7.5 post IVF (D75).

https://doi.org/10.1371/journal.pone.0289751.t004
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time-lapse system could be due to the lower exposure to changes in pH, temperature, osmotic

pressure and lighting during the observation and evaluation of embryonic development [47].

In addition, culture in a time-lapse system allows the non-invasive observation of key develop-

mental markers, such as the extrusion of polar bodies, the formation of pronuclei, division

times, and the duration of cell cycles that may be indicative of a greater potential of blastocyst

development, which could greatly influence embryo selection by offering new opportunities

and approaches for embryologists [48].

It is important to understand that a competent oocyte must develop to the blastocyst stage,

and then, when transferred to the uterus of a recipient, it must have good interaction with the

maternal environment and has the ability to implant. That is why during the last decades, opti-

mizing in vitro systems that impact embryonic quality and competence has been a priority

issue for laboratories and embryologists [49]. Likewise, non-invasive techniques that include

observation or morphological and morphokinetic parameters for the classification of embry-

onic development are more frequently used in IVF programs [50,51]. In this study, embryos

with in vitro viability have statistically different characteristics from non-viable embryos, being

the key factor the speed of blastulation onset (Tables 2 and 3).

Post-hatching development (in vitro viability) in extended culture emerged as a more accu-

rate alternative method to assess the development capacity of the embryo, without the need to

be transferred to recipients and maintaining in vitro conditions similar to all embryos [52,53].

This stage of development can be used not only to assess the quality of embryos produced by

different technologies, but also as a model to study embryonic loss during the period of cell dif-

ferentiation and embryo elongation [53]. On the other hand, determining the viability of blas-

tocysts under in vivo conditions has been carried out by transferring embryos at day 7 and

recovering them after day 14 or 16 of development from the cow uterus [54–57]. Although this

invasive technique may be more accurate in determining viability, the use of surgical proce-

dures in the recovery of elongated blastocysts is poorly repeatable.

Our results show that post-hatching viability of embryos with early blastulation (63.27%;

31/49) was higher (P<0.05) than in late blastulation (14.87%; 7/47) embryos. Blastulation is an

essential event in preimplantation embryonic development during which many molecular and

morphological changes occur [58]. In addition, between the compact morula and blastocyst

stages, the first differentiation of the cell lineage occurs, forming the inner cell mass (ICM) and

the trophectoderm [59,60]. Likewise, early division favors the abundance of transcripts in all

stages and increases blastocyst production [61], while early blastulation has been related to a

better synchrony of embryonic development [18,62].

On the other hand, the use of time-lapse technology to monitor early development, pronu-

clear formation and fusion, and time to first division is quite common in humans [63,64].

However, the determination of the impact of the blastulation moment is little studied [65,66].

In humans, Ho et al. [14] and Moustafa et al. [16] indicated that time of blastulation has a high

potential for embryo selection over other embryo morphologic grading components. Likewise,

Lee et al. [15]. and Moustafa et al, [16]. reported that embryos with chromosomal abnormali-

ties (aneuploid and mosaic) showed delayed blastulation. Nevertheless, in cattle, there are few

reports regarding the moment of blastulation and its impact on subsequent in vitro

development.

In humans, researchers have analyzed the prediction of embryonic morphokinetic evalua-

tion (based on time-lapse system results) on implantation, results of combined mathematical

models showed less precision than those shown in this work with ROC-AUC of 0.7 [67], 0.602

[66], 0.70 [68] and 0.71 [69]. Although, the ROC-AUC value was reduced to 0.561, when it

only included the blastocyst morphology parameters [66]. However, models that consider

morphokinetic variables are very useful for predicting blastocyst formation (ROC-AUC of
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0.849). On the other hand, Alpha Executive and ESHRE Special Interest Group of Embryology

(2011) proposed a blastocyst morphological evaluation system based on the combination of

developmental stage and quality criteria. Even though, predictive models based on morpholog-

ical parameters have low precision (ROC-AUC of 0.55) to predict successful pregnancy [70].

In cattle, some work has been done to predict pregnancy or implantation capacity in rela-

tion to morphological parameters and the time of the first embryonic division [71–73]

although, the results have been variable and contradictory. Holm et al. [71] affirm that the

time-lapse system is a superior method to study embryonic kinetics in cattle and to select

embryos with a high probability of being competent (63 to 80%). On the other hand, Mellisho

et al. [26]. used a mathematical model, with ROC-AUC value of 0.724, combining morphologi-

cal and morphokinetic variables of the embryo (blastulation time, stage of development, qual-

ity, and diameter of the blastocyst at day 7.5) to predict in vitro viability. In this study, it was

shown that the moment of blastulation affects the development of blastocysts diameter and

quality at day 7.5 and in vitro viability.

The use of time-lapse technology has allowed the acquisition of morphokinetic parameters

for the selection of viable embryos. These parameters include the duration of the first division

of 1 to 2 cells, the time between division of 2 to 3 cells, the time between division of 3 to 4 cells,

the cycle patterns of uniform divisions with short intervals in stage of 3 and 5 cells, and the

time of the abrupt first cell division into 3 or more cells [23,22]. In humans, some studies

report improved clinical outcomes when predictive morphokinetic models are used to select

embryos for transfer [74], although the results are still controversial with other reports [22,48].

Conclusion

The results from this work support that embryo morphokinetic variables at early stages of

development could be used simply and routinely to predict developmental viability of in vitro

produced bovine embryos. However, the high cost of time lapse monitoring equipment could

limit its use in cattle. We propose two variables that require only two observations at the end

of in vitro culture without the need for complex devices. Therefore, selection of blastocysts

based on a blastulation time of less than 155 h and a blastocyst diameter measured on day 7.5

after IVF greater than 180 μm maximizes their viability in vitro.
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