
RESEARCH ARTICLE

High-speed and energy-efficient

asynchronous carry look-ahead adder

Padmanabhan BalasubramanianID*, Weichen Liu*

School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore

* balasubramanian@ntu.edu.sg (PB); liu@ntu.edu.sg (WL)

Abstract

Addition is a fundamental computer arithmetic operation that is widely performed in micro-

processors, digital signal processors, and application-specific processors. The design of a

high-speed and energy-efficient adder is thus useful and important for practical applications.

In this context, this paper presents the designs of novel asynchronous carry look-ahead

adders (CLAs) viz. a standard CLA (SCLA) and a block CLA (BCLA). The proposed CLAs

are monotonic, dual-rail encoded, and are realized according to return-to-zero handshake

(RZH) and return-to-one handshake (ROH) protocols using a 28-nm CMOS process tech-

nology. The proposed BCLA has a slight edge over the proposed SCLA, and the proposed

BCLA reports the following optimizations in design metrics such as cycle time (delay), area,

and power compared to a recently presented state-of-the-art asynchronous CLA for a 32-bit

addition: (i) 32.6% reduction in cycle time, 29% reduction in area, 4.3% reduction in power,

and 35.5% reduction in energy for RZH, and (ii) 31.4% reduction in cycle time, 28.9% reduc-

tion in area, 4.4% reduction in power, and 34.4% reduction in energy for ROH. Also, the pro-

posed BCLA reports reductions in cycle time and power/energy compared to many other

asynchronous adders.

1. Introduction

Asynchronous circuits, which utilize delay-insensitive codes [1] for data encoding and incor-

porate a four-phase handshake protocol for data communication, are called input-output (IO)

mode asynchronous circuits, and they are more robust compared to synchronous circuits [2].

This is because IO-mode asynchronous circuits are not clock-driven unlike synchronous cir-

cuits, rather they are event-driven. This makes IO-mode asynchronous circuits naturally

robust to process, voltage, and temperature variations [3, 4], and they are inherently elastic [5].

Besides, IO-mode asynchronous circuits are modular [6], and less affected by electromagnetic

interference compared to synchronous circuits [7] and thus they are suited for secure applica-

tions [8, 9]. Further, IO-mode asynchronous circuits are self-checking [10].

IO-mode asynchronous circuits may or may not be delay-insensitive i.e., quasi-delay-insen-

sitive (QDI) in practice. QDI circuits assume the presence of isochronic forks [11]. An isochro-

nic fork refers to an electrical node from where two or more wires may emerge, and signal

transitions (i.e., binary 0 to 1 or 1 to 0) on the wires are assumed to happen concurrently. The

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Balasubramanian P, Liu W (2023) High-

speed and energy-efficient asynchronous carry

look-ahead adder. PLoS ONE 18(10): e0289569.

https://doi.org/10.1371/journal.pone.0289569

Editor: Michael Loong Peng Tan, Universiti

Teknologi Malaysia, MALAYSIA

Received: February 10, 2023

Accepted: July 21, 2023

Published: October 5, 2023

Copyright: © 2023 Balasubramanian, Liu. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work is partially supported by the

Ministry of Education, Singapore, under its

Academic Research Fund Tier 2 grant (MOE2019-

T2-1-071), and Nanyang Technological University,

Singapore, under its NAP grant (M4082282). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-9412-4773
https://doi.org/10.1371/journal.pone.0289569
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289569&domain=pdf&date_stamp=2023-10-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289569&domain=pdf&date_stamp=2023-10-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289569&domain=pdf&date_stamp=2023-10-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289569&domain=pdf&date_stamp=2023-10-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289569&domain=pdf&date_stamp=2023-10-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0289569&domain=pdf&date_stamp=2023-10-05
https://doi.org/10.1371/journal.pone.0289569
http://creativecommons.org/licenses/by/4.0/


isochronic fork assumption is practically viable for microelectronics and nanoelectronics [12].

Quasi-delay-insensitivity implies that all the output(s) of a circuit is produced after all the

inputs are received and the full completion of internal processing within the circuit. This

makes QDI asynchronous circuits robust but at the expense of compromising on the imple-

mentation cost (i.e., area, power, and speed) compared to non-QDI asynchronous circuits.

There exist different types of QDI circuits such as strong-indication circuits [13], weak-indica-

tion circuits [13], and early output circuits [14]. Strong indication circuits require all the pri-

mary inputs to process and produce all the primary outputs. Weak-indication circuits can

process a subset of primary inputs to produce a subset of primary outputs; at the maximum, all

but one of the primary outputs could be produced after processing a subset of primary inputs.

But only after receiving the last primary input, a weak-indication circuit would complete the

processing to produce the last primary output. Early output (QDI) circuits may process a sub-

set of primary inputs received to produce all of the primary outputs.

On the other hand, IO-mode asynchronous circuits that are not QDI include relative-timed

circuits [15] and monotonous/monotonic circuits [16, 17]. Relative-timed circuits tend to

incorporate internal timing assumption(s) to sequence the input(s) to process and produce the

output(s), whereas monotonic circuits are less complicated in that they only guarantee the

monotonicity of signal transitions in a circuit. Monotonicity [16] means rising signal transi-

tions (say, binary 0 to 1) on the inputs of a circuit would result in rising signal transitions on

the outputs of a circuit, and falling signal transitions (say, binary 1 to 0) on the inputs of a cir-

cuit would result in falling signal transitions on the outputs of a circuit. A circuit may be

monotonically increasing (i.e., monotonic for rising signal transitions alone) or monotonically

decreasing (i.e., monotonic for falling signal transitions alone), monotonically increasing and

decreasing (i.e., monotonic for both rising and falling signal transitions), or non-monotonic.

Generally, synchronous circuits tend to be non-monotonic whereas IO-mode asynchronous

circuits are monotonic. Henceforth, in this paper, by ‘monotonic circuits’, we mean both

monotonically increasing and decreasing implementations of asynchronous circuits unless

stated otherwise.

The different types of QDI circuits mentioned earlier viz. strong-indication, weak-indica-

tion, and early output are physically realized as monotonic implementations (i.e., both mono-

tonically increasing and decreasing) but they are constrained to ensure the full completion of

internal processing within a circuit before producing all the primary outputs. Relative-timed

circuits are a kind of early output circuits, but they may incorporate sophisticated timing

assumption(s) to sequence the processing of inputs to produce the outputs. Monotonic circuits

tend to be early output circuits but they do not mandate the full completion of internal pro-

cessing to produce all the primary outputs. Hence, compared to QDI asynchronous circuits,

non-QDI asynchronous circuits are rather relaxed. This relaxation is practically viable and is

welcome to reduce the complexity and implementation cost of an asynchronous circuit design

and to make an asynchronous circuit feature superior performance metrics. The proposed

asynchronous adders are monotonic circuits that are found to enable significant optimization

in the design metrics compared to existing asynchronous adders.

While QDI circuits avoid wire and gate orphans, relative-timed circuits and monotonic cir-

cuits may not. A wire orphan refers to an unacknowledged signal transition on a wire and a

gate orphan refers to an unacknowledged signal transition on a gate’s output. Wire and gate

orphans have been explained using examples in [18], and an interested reader may refer to the

same for details. The issue of wire orphans is overcome by imposing the isochronic assump-

tion on primary input forks while the issue of gate orphans is dealt with by performing indicat-

ing logic decomposition in QDI circuits [19, 20]. Monotonic circuits, as they are non-QDI

(internally), neglect the issue of gate orphans since monotonicity is guaranteed for both rising

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 2 / 24

https://doi.org/10.1371/journal.pone.0289569


and falling signal transitions between the primary inputs and primary outputs. A monotonic

implementation of asynchronous circuits would avoid a collision between data given the inser-

tion of a spacer between two successive data, and the acknowledgment of the complete receipt

of data and spacer via handshaking between input and output registers. QDI circuits also

include a spacer between two successive data. To ensure that monotonic circuits are free from

wire orphans, the isochronic assumption can be imposed on the primary input forks as done

in QDI circuits to detect the complete arrival of primary inputs, where the primary inputs to

the current circuit may be the primary outputs produced from a preceding circuit.

In the remainder of this paper, Section 2 discusses the preliminaries of asynchronous circuit

design such as data encoding and four-phase handshaking. Section 3 surveys related literature

on asynchronous adders. Section 4 presents the design of the proposed asynchronous adders.

Section 5 reports the design metrics of different asynchronous adders including the proposed

ones and makes a comparative evaluation. Section 6 concludes this paper.

2. Asynchronous circuit design–Background

The block diagram of an IO-mode asynchronous pipeline stage is shown in Fig 1. An asyn-

chronous circuit is sandwiched between two banks of registers viz. an input register bank, and

an output register bank. The input register bank may serve as the output register bank for a

preceding circuit in the pipeline, and the output register bank may serve as an input register

bank for a succeeding circuit in the pipeline.

The asynchronous circuit receives input from the input registers, processes them, and pro-

duces the output which is sent to the output registers. The asynchronous circuit is encoded

using a delay-insensitive code [1], and often the dual-rail code is used for data encoding–the

encoding of data using dual-rail code shall be described later in this section. When all the out-

puts of an asynchronous circuit have reached the output registers, this is indicated (i.e.,

acknowledged) by a completion detect circuit, and the completion detect circuit associated

with the output registers issues an acknowledgment output (AKO) signal which is then

inverted to yield the acknowledgment input (AKI) signal that enables the input registers to for-

ward new inputs to the asynchronous circuit for processing. Thus, AKO and AKI signals are

Boolean complements. This communication process between the input and output register

banks is called ‘handshaking’. There are four phases involved in handshaking in IO-mode

asynchronous circuits, and there exist two types of handshake protocols: return-to-zero hand-

shaking (RZH) and return-to-one handshaking (ROH). These shall also be described later in

this section.

The Muller C-element [21] is used as a register in an IO-mode asynchronous circuit. The

C-element is a unique gate, which outputs binary 1 when all its inputs are binary 1 and outputs

binary 0 when all its inputs are binary 0. If the inputs to a C-element are not the same, the C-

element shall retain its existing steady state. In the register banks, one of the inputs to each C-

element is the AKI signal, and the other is an encoded input rail.

We shall now explain how data is encoded as per the handshaking scheme. Based on dual-

rail encoding and RZH [2], an input I is represented using two wires or rails as say I1 and I0.

I = 1 is encoded as I1 = 1 and I0 = 0, and I = 0 is encoded as I0 = 1 and I1 = 0. These two assign-

ments are called ‘(valid) data’ with respect to RZH. I1 = I0 = 0 is referred to as the ‘spacer’ or

‘null data’, inserted between two successive data. I1 = I0 = 1 is an invalid/illegal assignment for

RZH, which is avoided. Based on dual-rail encoding and ROH [22], an input I is represented

using two wires or rails as say I1 and I0, where I = 1 is encoded as I1 = 0 and I0 = 1, and I = 0 is

encoded as I0 = 0 and I1 = 1. These two assignments are called ‘(valid) data’ with respect to

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 3 / 24

https://doi.org/10.1371/journal.pone.0289569


ROH. I1 = I0 = 1 is referred to as the ‘spacer’ or ‘null data’, inserted between two successive

data. I1 = I0 = 0 for ROH is an invalid/illegal assignment, which is avoided.

Example illustrations of completion detect circuit corresponding to RZH and ROH are

shown in Fig 1(B) and 1(C) respectively. For RZH, the completion detect circuit consists of a

series of 2-input OR gates in the first level to combine the dual rails of respective encoded

inputs. The outputs of OR gates are given to a C-element or a tree of C-elements which pro-

duce the AKO signal. For ROH, the completion detect circuit consists of a series of 2-input

AND gates in the first level to combine the dual rails of respective encoded inputs. The outputs

of AND gates are given to a C-element or a tree of C-elements which produce the AKO signal.

We shall now describe the four phases involved in RZH and ROH by referring to Fig 1(A).

With respect to RZH, in the first phase, initially, AKI = 1 since AKO = 0, and the input register

bank would forward the data for processing to the asynchronous circuit. This implies that one

of the rails of each encoded input would be driven to binary 1, signifying the application of

data for processing by the asynchronous circuit. In the second phase, the output register bank

would receive all the outputs produced by the asynchronous circuit and the AKO signal of

Fig 1. (a) Block diagram of an IO-mode asynchronous circuit stage. Example completion detect circuits corresponding to (b) RZH, (c) ROH, and input

registers.

https://doi.org/10.1371/journal.pone.0289569.g001

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 4 / 24

https://doi.org/10.1371/journal.pone.0289569.g001
https://doi.org/10.1371/journal.pone.0289569


binary 1 is issued. In the third phase, the input register bank waits for AKI to become 0, and

then the spacer (all zeroes) is supplied to the asynchronous circuit for processing. In the fourth

and final phase, the output register bank receives the spacer output produced by the asynchro-

nous circuit, and the AKO signal of binary 0 is issued which implies that AKI would subse-

quently assume binary 1 which signifies the completion of one data transaction.

With respect to ROH, in the first phase, initially, AKI = 1 since AKO = 0, and the input reg-

ister bank would forward the spacer (all ones) for processing to the asynchronous circuit. This

implies that all the rails of each encoded input would be driven to binary 1, signifying the

application of the spacer for processing by the asynchronous circuit. In the second phase, the

output register bank would receive the spacer output produced by the asynchronous circuit

and the AKO signal of binary 1 is issued. In the third phase, the input register bank waits for

AKI to become 0, and then data (where one of the rails of each encoded input is driven to

binary 0) is supplied to the asynchronous circuit for processing. In the fourth and final phase,

the output register bank receives the data output produced by the asynchronous circuit, and

then the AKO signal of binary 0 is issued which implies that AKI would subsequently assume

binary 1, which signifies the completion of one data transaction.

As explained in the handshaking process, a spacer is inserted between the application of

two input data to ensure delay insensitivity in QDI circuits. For a monotonic circuit, the inser-

tion of a spacer between two successive data helps to ensure delay insensitivity (externally) for

handshaking. In a synchronous circuit, a pair of input and output registers would be controlled

by a common clock signal, and the minimum clock period determines the maximum fre-

quency of operation. The minimum clock period would be roughly calculated as the sum of

set-up time, input register delay, and maximum combinational logic delay (also called critical

path delay which is the main timing parameter) in a synchronous circuit. In an IO-mode asyn-

chronous circuit that is shown in Fig 1, the ‘cycle time’ is the dominant timing parameter that

represents the time taken for one data transaction. The cycle time is calculated as the sum of

the times taken to process data and the spacer. The (worst-case) time taken to process data is

called forward latency, and the (worst-case) time taken to process the spacer is called reverse

latency. The cycle time of an IO-mode asynchronous circuit is given by the sum of forward

and reverse latencies. The critical data path traversed in an IO-mode asynchronous circuit

includes an input register bank and an asynchronous circuit, which is highlighted by the red

dashed line in Fig 1(A). The critical data path delay encountered for processing data and spacer

may differ in an IO-mode asynchronous circuit depending upon its type. This shall be dis-

cussed in the next section while surveying different asynchronous adders.

3. Survey of (IO-mode) asynchronous adders

The addition is a fundamental computer arithmetic operation that is frequently performed in

microprocessors, digital signal processors, and application-specific processors such as graphics

processing units, etc. Given this, the realization of addition using a high-speed and low-power/

energy-efficient adder has practical significance. Several IO-mode asynchronous adders have

been presented in the literature, many of which have been realized at the gate level while a few

of them have been realized at the transistor level. Gate-level designs (also referred to as semi-

custom designs) are relatively easier to implement/replicate compared to transistor-level

designs (also referred to as full-custom designs) since the former uses the gates available in a

standard cell library while the latter involves building circuits transistor-by-transistor and

would require optimum sizing of transistor aspect ratios to achieve an acceptable trade-off

between different performance metrics and to ensure that suitable driving strengths are provi-

sioned at the cell level and the circuit level, depending upon the process technology used for

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 5 / 24

https://doi.org/10.1371/journal.pone.0289569


implementation. Therefore, considering the design complexities involved, semi-custom design

is preferable to full-custom design, and this holds well for asynchronous circuits.

The IO-mode asynchronous adders presented in the literature correspond to QDI and

non-QDI design styles, and these are surveyed next with theoretical modeling of their timing

performance. Note that the theoretical modeling of the cycle time of different asynchronous

adders is approximate since only the delays of building blocks are topologically considered for

simplicity and no gate, interconnect, or parasitic delays are considered. Besides, the input reg-

ister delay is also not accounted for in the theoretical computation. The area of various asyn-

chronous adders tends to differ depending upon their logic composition, and accordingly,

their power dissipation also differs, and these metrics are non-trivial to model theoretically.

The power dissipation of various IO-mode asynchronous adders does not vary significantly

and this is due to the activation of unique signal paths from primary inputs to primary outputs

for the processing of data and spacer in IO-mode asynchronous circuits and hence non-neces-

sary signal transitions that do not reach the primary outputs generally do not occur. As a

result, the switching activity and dynamic power do not vary significantly between different

IO-mode asynchronous adders.

In synchronous design, the ripple-carry adder (RCA) is very slow although it occupies less

area and dissipates less power than other high-speed adders such as a carry look-ahead adder

(CLA). However, in IO-mode asynchronous design, the RCA architecture could be useful as

some of the RCAs tend to have a small reverse latency, which is unlikely to be achieved by any

other adder architecture. Moreover, the RCA has the least area occupancy compared to other

adders. We shall survey IO-mode asynchronous adders next.

An N-bit RCA can be constructed by cascading N full adders, as shown in Fig 2, where A

(N–1) up to A(0) and B(N–1) up to B(0) represent the inputs and SUM(N) up to SUM(0) rep-

resents the output. In Fig 2, the inputs and outputs of all the full adders are dual-rail encoded.

A full adder adds two input bits along with a carry input and produces the sum output and any

carry overflow. For example, the output equations of a dual-rail encoded full adder corre-

sponding to RZH are given below, where (A1, A0) and (B1, B0) represent the dual-rail augend

and addend, (C1, C0) represent the dual-rail carry input, (SM1, SM0) represents the dual-rail

sum output, and (CT1, CT0) represents the dual-rail carry overflow from the addition.

SM1 ¼ A0B0C1þ A0B1C0þ A1B0C0þ A1B1C1 ð1Þ

SM0 ¼ A0B0C0þ A0B1C1þ A1B0C1þ A1B1C0 ð2Þ

CT1 ¼ A0B1C1þ A1B0C1þ A1B1C0þ A1B1C1 ð3Þ

CT0 ¼ A0B0C0þ A0B0C1þ A0B1C0þ A1B0C0 ð4Þ

Fig 2. Dual-rail encoded asynchronous N-bit RCA comprising N full adders.

https://doi.org/10.1371/journal.pone.0289569.g002

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 6 / 24

https://doi.org/10.1371/journal.pone.0289569.g002
https://doi.org/10.1371/journal.pone.0289569


The full adders based on [23, 24] are strongly indicating and a strong-indication full adder

can be designed based on the delay-insensitive minterm synthesis (DIMS) method [25]. These

full adders can be replicated and cascaded to form RCAs, which would have a forward latency

of O[N×DFA] and a reverse latency of O[N×DFA], where N refers to the number of full adders

used commensurate with the size of the addition. DFA represents the propagation delay of a

full adder. It should be noted that DFA tends to differ for various full adders depending upon

their logic composition. The forward and reverse latencies of an RCA incorporating strong-

indication full adders are the highest, and this is because of the longest carry propagation

encountered for the processing of both data and the spacer. Thus, the cycle time of such RCAs

would be equal to O[2×N×DFA], which implies those RCAs would be very slow.

Reference [26] presented a weak-indication full adder, considered the ultimate full-custom

design requiring 42 transistors for a static CMOS implementation. This full adder when repli-

cated and cascaded to construct an RCA would have a forward latency of O[N×DFA] and a

reverse latency of O[2×DFA], thus resulting in a cycle time of O[(N+2) ×DFA]. The forward

latency is still significant and this is because of the maximum carry propagation encountered

for the processing of data. However, the reverse latency is considerably minimized due to the

distribution of weak indication between the sum and carry outputs of the full adder. The carry

output of the full adder is dependent only upon the adder inputs for the processing of the

spacer while the sum output of the full adder is dependent only upon the carry input for the

processing of the spacer. As a result, the RCA can produce the spacer sum output with just two

full adder delays.

Full adders realized based on [27–29] are weakly indicating. A weak-indication full adder

can also be realized based on the DIMS method [25]. The weak-indication full adders of [25,

27] have a cycle time of O[2×N×DFA] since their forward and reverse latencies are O[N×DFA],

and this is due to the worst-case carry propagation encountered for the processing of both data

and the spacer. The weak-indication full adders of [28, 29] have a cycle time of O[(N+2)

×DFA] given that their forward latency is O[N×DFA], and their reverse latency is O[2×DFA].

The reduction in reverse latency results from biased weak indication whereby the sum output

of the full adders is made responsible for indicating all the adder inputs while the carry output

is freed from indication.

Recently, [30] presented three weak-indication full-adder designs based on the concept of

sorting networks (SN), namely SN full adder, SNFC full adder, and SNX full adder. However,

these full adders were not physically implemented. Among these, SN full adder has a cycle

time of O[2×N×DFA] implying that its forward and reverse latencies are the same. SNFC and

SNX full adders have a reduced cycle time of O[(N+2) ×DFA] which implies that their reverse

latency is significantly lesser than their forward latency due to the phenomenon of biased weak

indication.

An early output QDI full adder was presented in [31], which when duplicated and cascaded

to form an RCA would have a forward latency of O[N×DFA], and a reverse latency of O

[2×DFA], which results in a cycle time of O[(N+2) ×DFA]. The RCA also corresponds to the

early output type.

Two early output full adders were presented in [32], which can be individually duplicated

and cascaded to form relative-timed RCAs. Among the early output full adders, one of them is

better optimized for the area while the other is better optimized for latency. The RCAs would

have a forward latency of O[N×DFA], and an optimal reverse latency of O[DFA] which

becomes possible since all the full adders in the RCA can simultaneously produce the spacer as

the sum output without having to wait for the spacer carry input. The resultant cycle time of

relative-timed RCAs is O[(N+1) ×DFA].

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 7 / 24

https://doi.org/10.1371/journal.pone.0289569


It should be noted that the DFA of all the full adders is not the same as this depends upon

the internal logic of the respective full adders. From the above discussion, it may be noted that

some of the RCAs have a small reverse latency of O[2×DFA] or O[DFA], which is unlikely to be

achieved by any other adder. However, all the RCAs have a forward latency of O[N×DFA],

which is substantial. To reduce the significant forward latency encountered in an RCA, a CLA

may be used and this is discussed next.

Reference [33] presented a hierarchical QDI CLA with speed-up circuity called DICLASP,

which is a full-custom transistor-level design requiring a total of (66×N– 4) transistors to real-

ize an N-bit DICLASP. However, in [33], DICLASP was simulated only in a topological sense

without any physical implementation; hence, no physical design metrics were estimated. Ref-

erences [34–38] presented many gate-level designs of QDI CLAs based on standard and block

CLA architectures, which are easy to reproduce and modular, and they were physically realized

and their design metrics were estimated. We shall review these gate-level asynchronous CLAs

given that the proposed asynchronous CLAs are also gate-level designs.

Two basic types of CLA architecture are available in the literature [39], namely the standard

CLA (SCLA) and the block CLA (BCLA), which are illustrated by Fig 3(A) and 3(B) respec-

tively. In Fig 3, A(N–1) up to A(0) represents one of the inputs and B(N–1) up to B(0) repre-

sents the other input given to the CLAs. SUM(N) up to SUM(0) represents the sum output of

the addition, where SUM(N) represents any carry overflow resulting from the addition. In the

inputs, A(N–1) and B(N–1) are the most significant, and A(0) and B(0) are the least significant.

In the output, SUM(N) is the most significant, and SUM(0) is the least significant. Note that

Fig 3. (a) N-bit standard CLA (SCLA), and (b) N-bit block CLA (BCLA). In the figure, N-bit SCLA and BCLA are constructed by replicating and cascading

4-bit SCLA and BCLA modules respectively for an example.

https://doi.org/10.1371/journal.pone.0289569.g003

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 8 / 24

https://doi.org/10.1371/journal.pone.0289569.g003
https://doi.org/10.1371/journal.pone.0289569


the inputs and outputs of the CLAs are dual-rail encoded according to the handshake protocol

used. In general, (N/M) M-bit CLA modules can be used to construct an N-bit CLA where N

and M are even and N modulo M equals 0. In Fig 3(A) and 3(B), M is assumed to be 4. We

shall first discuss the SCLA architecture followed by the BCLA architecture.

An M-bit SCLA module receives 2M inputs with/without any carry input and processes

them to produce M sum outputs and a look-ahead carry output, which in turn serves as the

carry input for a successive SCLA module. In single-rail format, the basic equation for the

carry output from addition is given by (5), where AQ and BQ represent the augend and addend

corresponding to a Qth adder stage, CQ represents the carry input, and CQ+1 represents the

carry output.

CQþ1 ¼ AQBQ þ ðAQ � BQÞCQ ¼ GQ þ PQCQ ð5Þ

Eq (5) can be utilized to derive a look-ahead carry output for a CLA module through recursion.

The product term AQBQ is referred to as the ‘carry generate function’ and the term (AQ� BQ)

is referred to as the ‘carry propagate function’. A carry output may be generated from a Qth

adder stage based on the activation of the generate function, and the carry input to a Qth

adder stage may be forwarded as the carry output based on the activation of the propagate

function.

Based on the dual-rail encoding and RZH, AQ, BQ, and CQ are encoded as (A1
Q, A0

Q), (B1
Q,

B0
Q), and (C1

Q, C0
Q) respectively. The equations for the carry output’s dual rails are given by

(6) and (7). In (7), KQ denotes the ‘carry kill function’, which implies that the carry input to a

Qth adder stage is killed, so no carry output is produced (i.e., the carry output is 0). The gener-

alized dual-rail encoded expressions for carry propagate, generate, and kill functions are given

as GQ = A1
QB1

Q; PQ = A1
QB0

Q + A0
QB1

Q; and KQ = A0
QB0

Q.

C1

Qþ1 ¼ GQ þ PQC
1

Q ð6Þ

C0

Qþ1 ¼ KQ þ PQC
0

Q ð7Þ

In an SCLA, in every M-bit SCLA module, M look-ahead carry outputs are generated in paral-

lel out of which (M– 1) carry outputs are used to produce the respective sum bits belonging to

that SCLA module and the most significant carry output is given as the carry input to a succes-

sive SCLA module. However, the look-ahead carry output generated by the last (i.e., most sig-

nificant) SCLA module signifies the carry overflow from the addition which is represented by

SUM(N).

Given a QDI implementation of an N-bit SCLA [34], which is shown in Fig 3(A), its for-

ward latency and reverse latency would be the same, that is governed by O[DSCLA
4b_first + {(N/

M)– 1}×DSCLA
4b], where DSCLA

4b_first denotes the propagation delay encountered in the first

4-bit SCLA module that processes inputs A(3) to A(0) and B(3) to B(0), and DSCLA
4b denotes

the propagation delay encountered in each subsequent 4-bit SCLA module that extends up to

the last SCLA module. DSCLA
4b_first is distinguished from DSCLA

4b in that the look-ahead carry

C(4) output by the first 4-bit SCLA module is produced after traversing multiple levels of logic

whereas the look-ahead carry output by successive 4-bit SCLA modules such as C(8), C(12),

etc. are produced after traversing relatively reduced levels of logic. Therefore, the cycle time of

an N-bit SCLA is given by O [{DSCLA
4b_first + ((N/M)– 1)×DSCLA

4b)} ×2]. The same order of

cycle time would be applicable for N-bit SCLAs realized using strong-indication and weak-

indication logic synthesis methods [25–27]. However, the logic composition of the SCLA

given in [34] is more optimized compared to the logic composition of the SCLA realized using

[25–27], and hence the latter is not preferable.

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 9 / 24

https://doi.org/10.1371/journal.pone.0289569


Fig 3(B) shows an N-bit BCLA constructed using (N/4) 4-bit BCLA modules. Each 4-bit

BCLA module consists of a 4-bit block carry look-ahead generator (BCLG), 3 full adders, and

a 3-input XOR function. Unlike an SCLA, in a BCLA only one look-ahead carry output is pro-

duced by each M-bit BCLA module which serves as the carry input for a successive BCLA

module. However, the look-ahead carry output generated by the last (i.e., most significant)

BCLA module signifies the carry overflow from the addition which is represented by SUM(N).

Each M-bit BCLA module internally consists of an M-bit RCA to process and produce M sum

bits corresponding to that BCLA module and the carry overflow from the M-bit RCA is dis-

carded. Hence, instead of a full adder a 3-input XOR function would suffice to produce the

most significant sum output of each BCLA module.

Given a QDI implementation of an N-bit BCLA [35–38], shown in Fig 3(B), its forward

latency is governed by O[DBCLG
4b_first + {(N/M)– 2}×DBCLG

4b_intermediate + DRCA
4b], and its

reverse latency is governed by O[DBCLG
4b_first + {(N/M)– 2}×DBCLG

4b_intermediate + DFA]. Here,

DBCLG
4b_first signifies the propagation delay encountered in the first 4-bit BCLA module that

processes inputs A(3) to A(0) and B(3) to B(0). DBCLG
4b_intermediate denotes the propagation

delay encountered in every subsequent 4-bit BCLA module up to the penultimate BCLA mod-

ule. DBCLG
4b_first is distinguished from DBCLG

4b_intermediate in that the look-ahead carry C(4)

output by the first 4-bit BCLA module is produced after traversing multiple levels of logic

whereas the look-ahead carry output by successive 4-bit BCLA modules such as C(8), C(12),

etc. are produced after traversing relatively reduced levels of logic. DRCA
4b denotes the propa-

gation delay encountered in the 4-bit RCA present in the last 4-bit BCLA module. DFA denotes

the propagation delay of a full adder. The forward latency and reverse latency of an N-bit

BCLA are close, and its cycle time is given by O[{DBCLG
4b_first + ((N/M)– 2) ×DBCLG

4b_intermedi-

ate)} ×2 + DRCA
4b + DFA]. An N-bit BCLA constructed using strong-indication and weak-indi-

cation logic synthesis methods of [25–27] would have a cycle time expressed by O

[{DBCLG
4b_first + ((N/M)– 2)×DBCLG

4b_intermediate) + DRCA
4b} ×2], which is somewhat greater

than the above-mentioned cycle time for an N-bit BCLA utilizing early output logic. Moreover,

[25–27] involves more logic and dissipates more power, as observed in [35], which is not

preferable.

The cycle times of N-bit QDI SCLA and BCLA mentioned above are rather significant and

likely to exceed the cycle time of certain N-bit QDI RCAs, as noted in [37, 38]. Hence, a novel

variant of the BCLA architecture that contains double carry logic was presented in [35], which

is especially suited for IO-mode asynchronous design–we shall refer to this as the BCLADC

architecture here. Improved versions of the BCLADC were subsequently presented in [36–38].

The architecture of an N-bit BCLADC is shown in Fig 4 for an illustration.

In contrast to an N-bit BCLA, shown in Fig 3(B), an N-bit BCLADC is constructed using

[(N/M)– 1] BCLADC modules and a most significant BCLA module. Similar to Fig 3, in Fig 4,

N and M are assumed to be even; N modulo M equates to 0; and M = 4. While an M-bit BCLA

module consists of an M-bit BCLG and an M-bit RCA, as seen in Fig 3(B), an M-bit BCLADC

module consists of an M-bit BCLG with double carry logic (i.e., M-bit BCLGDC) and an M-

bit RCA as seen in Fig 4.

A BCLADC module produces two logically equivalent look-ahead carry outputs called ‘reg-

ular’ and ‘redundant’ carry outputs, which are denoted by the notations ‘C’ and ‘RC’ in Fig 4

respectively. The redundant look-ahead carry output generated by a BCLADC module is given

as the carry input for the BCLG present in the successive BCLADC or BCLA module. On the

other hand, the regular look-ahead carry output generated by a BCLADC module is given as

the carry input to the RCA present in the successive BCLADC or BCLA module. In a BCLADC

module, the redundant look-ahead carry output is generated relatively faster than the regular

look-ahead carry output. This is because the redundant look-ahead carry output is freed from

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 10 / 24

https://doi.org/10.1371/journal.pone.0289569


the indication constraint thereby paving the way for an early generation while the regular

look-ahead carry output is made responsible for indication. The carry signal is thus propagated

faster between the BCLADC modules due to the redundant carry logic, and this helps to

improve the speed of a BCLADC. This speed improvement comes at the expense of just mod-

erate increases in area and power for a BCLADC compared to a BCLA due to the doubling of

the carry logic.

Concerning Figs 3 and 4, although strong-indication or weak-indication or early output

timing models may be used for realizing SCLA, BCLA, and BCLADC modules, an early output

realization was found to be preferable to achieve high speed and good energy efficiency, as

observed in [37, 38]. Among the different IO-mode asynchronous CLAs [34–38], the

BCLADC presented in [38] was found to be of higher speed (i.e., lesser cycle time) and more

energy-optimized than its counterparts. The forward latency of an N-bit BCLADC, as per the

architecture shown in Fig 4, is O[DBCLGDC
4b_first + {(N/M)– 2}×DBCLGDC

4b_intermediate

+ DRCA
4b], and the reverse latency is observed to be O[DBCLGDC

4b_first + DBCLGDC
4b_intermediate

+ DFA] [37, 38]. DBCLGDC
4b_first refers to the delay encountered in the first 4-bit BCLGDC

module that processes inputs A(3) to A(0) and B(3) to B(0), DBCLGDC
4b_intermediate refers to the

delay encountered in an intermediate 4-bit BCLGDC module, DRCA
4b refers to the delay

encountered in the 4-bit RCA of the last 4-bit BCLA module that processes inputs A(N–1) to

A(N–3) and B(N–1) to B(N–3). Thus, the cycle time of the N-bit BCLADC would be O[2×
DBCLGDC

4b_first + {(N/M)– 1}×DBCLGDC
4b_intermediate + DRCA

4b + DFA], which is less than the

cycle time of N-bit SCLA and BCLA counterparts.

Although there exist other adder architectures such as the carry select adder (CSLA), and

parallel-prefix adders (PFAs) in the literature, which are high-speed for synchronous design,

concerning IO-mode asynchronous design they may not be high-speed due to the consider-

ation of reverse latency and cycle time which are not accounted for in the synchronous design.

As mentioned earlier, in a synchronous design, the critical path delay is the main timing

parameter which is equivalent to the forward latency of an IO-mode asynchronous design. IO-

mode asynchronous CSLAs comprising uniform and non-uniform input partitions were real-

ized in [40], but as noted in [38], a 32-bit asynchronous CSLA featuring a uniform input parti-

tion where the inputs are split into 4 groups of 8-bit each has a reverse latency that is 77%

(78%) of the forward latency for RZH (ROH), and a 32-bit asynchronous CSLA featuring an

optimum non-uniform input partition where the inputs are split into 7 groups containing 8-,

7-, 6-, 4-, 3-, 2-, and 2- bits has almost the same forward and reverse latencies for RZH and

Fig 4. Example illustration of an N-bit BCLA comprising double carry logic (BCLADC).

https://doi.org/10.1371/journal.pone.0289569.g004

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 11 / 24

https://doi.org/10.1371/journal.pone.0289569.g004
https://doi.org/10.1371/journal.pone.0289569


ROH. Among these, the asynchronous CSLA featuring a uniform input partition was found to

have lesser forward and reverse latencies and thus less cycle time than its counterpart featuring a

non-uniform input partition. Nevertheless, the asynchronous CSLA of [40] featuring a uniform

input partition reported increased latencies and cycle time, and increased area and power dissipa-

tion compared to the asynchronous BCLADC of [37, 38], and increased latencies and cycle time,

and increased area and power dissipation compared to many asynchronous RCAs [28, 29, 31, 32].

Hence, IO-mode asynchronous CLA is preferable to IO-mode asynchronous CSLA. Further, to

our knowledge, no efficient IO-mode asynchronous PPA has been presented in the literature. In

the next section, we present the design of monotonic asynchronous CLAs that is found to surpass

the best existing asynchronous BCLADC in terms of all the design metrics.

4. Proposed asynchronous CLAs

We present novel monotonic (non-QDI) asynchronous CLAs which, as per definition, guaran-

tee the monotonic relationship between the primary adder inputs and adder outputs. The indi-

cation requirement is relaxed and the full completion of internal processing within the circuit

(especially for processing the spacer) is not mandated. The arrival of circuit inputs is acknowl-

edged by the completion detect circuit that is associated with the input register bank. Given

these, the use of the BCLADC architecture involving a double carry logic is not necessary;

rather, the SCLA and BCLA architectures would be sufficient to ensure monotonicity. There-

fore, monotonic N-bit SCLA and N-bit BCLA were realized using the proposed monotonic

SCLA and BCLA modules following the architectures shown in Fig 3(A) and 3(B).

It was stated in the previous section that the QDI SCLA and BCLA architectures have high

forward and reverse latencies, and this results in a high cycle time therefore they are inferior to

a QDI BCLADC. However, the proposed SCLA and BCLA being monotonic have a reduced

forward latency and a substantially reduced reverse latency in comparison, and hence the cycle

time of the proposed SCLA and BCLA was found to be lesser than the cycle time of the QDI

BCLADC (the results-based evidence for this shall be presented in the next section). This is

because the logical composition of the proposed SCLA and BCLA modules differs from the

conventional SCLA and BCLA modules, and these are discussed next. The physical realizations

of existing SCLA, BCLA, and BCLADC are shown in [34–38], and an interested reader may

refer to the same for details, so they are not repeated here.

Fig 5 shows the logical realization of the proposed monotonic SCLA module, which

employs dual-rail encoding and corresponds to RZH. To obtain the equivalent SCLA module

corresponding to ROH, all the gates shown in Fig 5 should be replaced by their duals–this

transformation principle [41] has already been proven in [42]. For example, AND, OR, AO21,

and AO22 gates in Fig 5 should be replaced by OR, AND, OA21, and OA22 gates respectively

to obtain the equivalent circuit corresponding to ROH. The monotonic SCLA module shown

in Fig 5 is 4 bits in size, and this can be used to realize an N-bit monotonic SCLA as per the

schematic shown in Fig 3(A). Nevertheless, any M-bit SCLA module can be realized by taking

a cue from Fig 5.

In Fig 5A and 5B represent 4-bit inputs, (C01, C00) represents the carry input. (C41, C40)

up to (C11, C10) represent the look-ahead carry outputs, and (SUMx1, SUMx0) represents an

arbitrary sum output. P3 to P0, G3 to G0, and K3 to K0 represent the carry propagate, gener-

ate, and kill signals respectively. Fig 5(A) shows the generic realization of carry propagate,

carry generate, and carry kill functions, and the notation ‘x’ denotes a bit position. Fig 5(B) to

5(E) show the realization of look-ahead carry outputs (C41, C40), (C31, C30), (C21, C20), and

(C11, C10) along with their respective equations given within the dashed rectangle boxes. Fig 5

(F) shows the realization of an arbitrary sum output.

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 12 / 24

https://doi.org/10.1371/journal.pone.0289569


Fig 5. Building blocks of proposed monotonic asynchronous SCLA based on dual-rail encoding, corresponding to RZH: (a) generic realization of

carry propagate, generate, and kill functions; (b)–(e) example implementation of 4-bit look-ahead carry outputs (C41, C40) up to (C11, C10); and

(f) generic realization of sum output.

https://doi.org/10.1371/journal.pone.0289569.g005

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 13 / 24

https://doi.org/10.1371/journal.pone.0289569.g005
https://doi.org/10.1371/journal.pone.0289569


From Fig 5(B) to 5(E), it may be noted that the carry input (C01, C00) is directly related to

a look-ahead carry output through a single complex gate i.e., AO21 gate. This would help to

achieve an optimal propagation delay in each intermediate SCLA module present in an N-bit

SCLA. From (6) and (7), it may be observed that the carry output (C1
Q+1, C0

Q+1) can be physi-

cally related to the carry input (C1
Q, C0

Q) using a single complex gate viz. an AO21 gate. The

same observation has been used to modify the logic expressions of all the look-ahead carry out-

puts (C41, C40) up to (C11, C10) such that these are physically related to the carry input (C01,

C00) using individual AO21 gates. For example, referring to Fig 5(D), the logic expressions of

(C21, C20) are initially given as,

C21 ¼ G1þ P1G0þ P1P0C01 ð8Þ

C20 ¼ K1þ P1K0þ P1P0C00 ð9Þ

We now introduce some intermediate Boolean variables say Z1, Z2, Z3, Z4, and Z5, and make

the following assignments: Z1 = P1G0; Z2 = P1K0; Z3 = P1P0; Z4 = G1 + Z1; and Z5 = K1

+ Z2, which result in simplified expressions for C21 and C20, given by (10) and (11). Subse-

quently, (10) and (11) can be realized using two individual AO21 gates, as seen in Fig 5(D).

C21 ¼ Z4þ Z3C01 ð10Þ

C20 ¼ Z5þ Z3C00 ð11Þ

This method of assigning intermediate Boolean variables to simplify the logic expressions of

look-ahead carry outputs would help to achieve optimal carry propagation delay (i.e., one

AO21 gate delay) in each intermediate SCLA module that would be incorporated in an N-bit

SCLA. Eventually, the forward latency of the N-bit SCLA would be optimized. When the 4-bit

SCLA module, shown in Fig 5, is replicated and cascaded to form an N-bit SCLA, its forward

latency would be given by O[DSCLA
4b_first + {(N/M)– 2}×DSCLA

4b_intermediate + DSCLA
4b_last],

where DSCLA
4b_first denotes the propagation delay encountered in the first 4-bit SCLA module

that processes inputs A(3) to A(0) and B(3) to B(0) in Fig 3(A), DSCLA
4b_intermediate denotes the

propagation delay encountered in each successive 4-bit SCLA module excepting the last 4-bit

SCLA module, and DSCLA
4b_last denotes the propagation delay encountered in the last 4-bit

SCLA module. There would only be a slight difference in delay between DSCLA
4b_intermediate

and DSCLA
4b_last given that the former relates to a most significant look-ahead carry output

generation involving an AO21 gate while the latter relates to the production of the most signif-

icant adder sum bit using an AO22 gate, as seen from Fig 5. DSCLA
4b_first is distinguished from

DSCLA
4b_intermediate in that the look-ahead carry C(4) output by the first 4-bit SCLA module is

produced after traversing multiple levels of logic whereas the look-ahead carry output by suc-

cessive 4-bit SCLA modules is produced after traversing one level of logic (i.e., an AO21 gate).

Contrary to the N-bit QDI SCLA, the reverse latency of the N-bit monotonic SCLA is gov-

erned by an optimal O[DSCLA
4b], which would be approximately equal to O[DSCLA

4b_first]. The

reduction in reverse latency becomes feasible since all the SCLA modules comprising the pro-

posed SCLA can process and output the spacer in parallel without waiting for the spacer carry’s

arrival due to the monotonic logic realization. The cycle time of the proposed N-bit monotonic

SCLA is O[(DSCLA
4b_first ×2) + {(N/M)– 2}×DSCLA

4b_intermediate + DSCLA
4b_last], which is sub-

stantially less than the cycle times of QDI SCLA, BCLA, and BCLADC discussed earlier.

Fig 6 shows the constituents of the proposed monotonic 4-bit BCLA module corresponding

to RZH, which can be replicated and cascaded to realize an N-bit BCLA as shown in Fig 3(B).

Nevertheless, any BCLA module of size M-bits can be realized by taking a cue from Fig 6. To

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 14 / 24

https://doi.org/10.1371/journal.pone.0289569


obtain the equivalent circuit of the monotonic 4-bit BCLA module corresponding to ROH, all

the gates shown in Fig 6 should be replaced by their duals, i.e., AND, OR, AO21, and AO22

gates in Fig 6 should be replaced by OR, AND, OA21, and OA22 gates to obtain the equivalent

circuit corresponding to ROH.

Fig 6(A) shows the generic realization of carry propagate, carry generate, and carry kill

functions, Fig 6(B) shows the monotonic 4-bit BCLG, Fig 6(C) shows a monotonic full adder,

and Fig 6(D) shows the monotonic realization of a 3-input XOR function whose inputs are

Fig 6. Building blocks of proposed monotonic asynchronous BCLA employing dual-rail encoding and corresponding to RZH: (a) generic realization of carry

propagate, generate and kill functions; (b) example 4-bit BCLG implementation; (c) monotonic full adder; and (d) monotonic 3-input XOR function.

https://doi.org/10.1371/journal.pone.0289569.g006

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 15 / 24

https://doi.org/10.1371/journal.pone.0289569.g006
https://doi.org/10.1371/journal.pone.0289569


(X1, X0), (Y1, Y0) and (Z1, Z0) and the output is (R1, R0). An M-bit monotonic BCLG along

with an M-bit monotonic RCA forms an M-bit monotonic BCLA module that can be repli-

cated and cascaded to realize an N-bit monotonic BCLA. Three copies of the monotonic full

adder shown in Fig 6(C) and one copy of the monotonic 3-input XOR function shown in Fig 6

(D) can be combined to realize a monotonic 4-bit RCA that would form a part of a monotonic

4-bit BCLA module.

Based on Figs 3(B) and 6, the forward latency of the proposed N-bit BCLA would be given

by O[DBCLG
4b_first + {(N/M)– 2}×DBCLG

4b_intermediate + DRCA
4b], where DBCLG

4b_first denotes

the propagation delay encountered in the first 4-bit BCLA module that processes inputs A(3)

to A(0) and B(3) to B(0) in Fig 3(B). DBCLG
4b_intermediate denotes the propagation delay encoun-

tered in any subsequent 4-bit BCLA module up to the penultimate BCLA module. DBCLG
4b_first

is distinguished from DBCLG
4b_intermediate in that the look-ahead carry C(4) output by the first

4-bit BCLA module is produced after traversing multiple levels of logic whereas the look-

ahead carry output by successive 4-bit BCLA modules are produced after traversing one level

of logic viz. an AO21 gate. The reverse latency of the monotonic N-bit BCLA would be an opti-

mal O[DBCLG
4b], which is the same as O[DBCLG

4b_first]. This becomes possible because all the

4-bit BCLG modules and 4-bit RCAs comprising a monotonic N-bit BCLA can process and

output the spacer in parallel regardless of the receipt of corresponding spacer carry inputs due

to the monotonic logic realization. The cycle time of the monotonic N-bit BCLA is thus given

by O[(DBCLG
4b_first ×2) + {(N/M)– 2}×DBCLG

4b_intermediate + DRCA
4b], which is considerably

less than the cycle times of N-bit QDI SCLA, BCLA, and BCLADC. The cycle time of the pro-

posed SCLA and BCLA was also found to be less than the cycle time of asynchronous RCAs

discussed in the previous section. This shall be substantiated by the design metrics presented

in the next section. Table 1 gives a summary of the theoretical cycle time evaluated for various

IO-mode asynchronous adders discussed previously for quick reference.

5. Design metrics

We considered 32-bit addition as an example and realized it using the asynchronous RCAs

and CLAs discussed. A typical IO-mode asynchronous circuit stage comprising an input regis-

ter bank and the asynchronous circuit (here, adder), as shown in Fig 1 was implemented. The

acknowledgment input signal (AKI) was assumed to be supplied from the environment. The

adders were realized in a semi-custom design style using a 28-nm CMOS standard digital cell

library [43]. The cell library does not comprise a native C-element and so this was custom

designed to realize the registers and completion detect logic. The proposed CLAs (SCLA and

BCLA), being monotonic, do not embed the C-element in their logic whereas the existing QDI

CLAs incorporate the C-element in their logic realization. The C-element was also used to

realize the logic of QDI RCAs and CLAs discussed in Section 3.

A typical case high Vt library specification [43] was considered for simulation and synthesis,

using a recommended supply voltage of 1.05V and an operating temperature of 25˚C.

Synopsys tools were used to simulate and estimate the design metrics of asynchronous adders.

About a thousand randomly generated inputs were supplied through a test bench to the asyn-

chronous adders at a constant latency of 15ns (to accommodate the slowest adder) to simulate

and verify their functionality. The switching activity was recorded, which was subsequently

used to estimate the total power dissipation. Two test benches were used, one corresponding

to RZH and another corresponding to ROH, but both are logically equivalent. This helps to

distinguish the variation in power based on RZH and ROH besides performing the functional

simulation. Default wire loads were included in the estimation of design metrics and a fanout-

of-4 drive strength was uniformly assigned to all the output ports i.e., the sum bits of the

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 16 / 24

https://doi.org/10.1371/journal.pone.0289569


adders. Following an advanced timing analysis, a virtual clock was used to constrain the input

and output ports of the adders. However, the clock being virtual does not form a part of the

implementation. The forward latency of the asynchronous adders (which is equivalent to the

critical path delay of synchronous adders) was estimated directly while the reverse latency of

the asynchronous adders was estimated based on the delay given in the timing reports, as done

in [37, 38]. Subsequently, the cycle time was calculated as the sum of forward and reverse

latencies, which signifies the time taken to complete a data transaction.

The standard design metrics estimated for the asynchronous adders corresponding to RZH

and ROH are given in Tables 2 and 3 respectively. The input register bank and the completion

detect logic are the same for all the adders; only the underlying logic differs between the

adders. Hence, the differences between the design metrics of adders given in Tables 2 and 3

are attributed to the differences between the adder logic. Adder legends are used in Tables 2

and 3 for ease of referencing while discussing the results and plotting the energy of the asyn-

chronous adders.

Tables 2 and 3 reflect almost a similar trend in the design metrics of different adders, and

the practical cycle time estimates correlate well with the theoretical cycle time prediction given

in Table 1. RCAs constructed using strong-indication full adders [23–25] not only have the

same forward and reverse latencies but the latency of such full adders is also high. This explains

why AZ1, AZ2, and AZ3 have greater cycle times in Table 2 and AO1, AO2, and AO3 have

greater cycle times in Table 3. As noted in Table 1, some of the RCAs incorporating weak-indi-

cation full adders have a cycle time of O[N×DFA] while the others have a cycle time of O[(N

+2) ×DFA]. Thus, AZ4, AZ5, and AZ8 in Table 2 and AO4, AO5, and AO8 in Table 3 feature a

cycle time with equal forward and reverse latencies while AZ6, AZ7, AZ9, and AZ10 in Table 2

Table 1. Cycle time (theoretical) of N-bit IO-mode asynchronous adders. N-bit RCAs were constructed using N full adders. N-bit CLAs were constructed using M-bit

CLA modules where N and M are even and N modulo M equals 0; here M = 4.

Asynchronous adder reference Adder architecture Cycle time (Approximate theoretical estimate)

[23–25] RCA a O[2×N×DFA]

[25, 27] RCA b O[2×N×DFA]

[28, 29] RCA b O[(N+2) ×DFA]

[30]

RCA b O[2×N×DFA]

RCA b O[(N+2) ×DFA]

RCA b O[(N+2) ×DFA]

[31] RCA c O[(N+2) ×DFA]

[32] RCA d O[(N+1) ×DFA]

RCA e O[(N+1) ×DFA]

[34] SCLA f O [{DSCLA
4b_first + ((N/M)– 1)×DSCLA

4b)} ×2]

[36–38]

BCLA f O[{DBCLG
4b_first + ((N/M)– 2)×DBCLG

4b_intermediate)} ×2 + DRCA
4b + DFA]

BCLADC f O[2×DBCLGDC
4b_first + {(N/M)– 1}×DBCLGDC

4b_intermediate + DRCA
4b + DFA]

Proposed

SCLA g [(2×DSCLA
4b_first) + {(N/M)– 2}×DSCLA

4b_intermediate + DSCLA
4b_last]

BCLA g O[(2×DBCLG
4b_first) + {(N/M)– 2}×DBCLG

4b_intermediate + DRCA
4b]

a Full adder used to construct this RCA is strongly indicating.
b Full adder used to construct this RCA is weakly indicating.
c Full adder used to construct this RCA is of early-output type and QDI.
d AOPT_EO_FA early output type full adder used to construct this RCA, which is relative-timed.
d LOPT_EO_FA early output type full adder used to construct this RCA, which is relative-timed.
f Constituent SCLA, BCLA, and BCLADC modules are of early-output QDI type.
g Constituent SCLA and BCLA modules are of early output type and monotonic (non-QDI) realizations.

https://doi.org/10.1371/journal.pone.0289569.t001

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 17 / 24

https://doi.org/10.1371/journal.pone.0289569.t001
https://doi.org/10.1371/journal.pone.0289569


and AO6, AO7, AO9, and AO10 in Table 3 feature a cycle time with much reduced reverse

latency. RCAs incorporating early output full adders would process the spacer quickly com-

pared to the processing of data, and the data may be processed slightly faster than in RCAs

incorporating weak-indication full adders. Hence, AZ11, AZ12, and AZ13 in Table 2 and

AO11, AO12, and AO13 in Table 3 have reduced cycle time than the rest of the RCAs.

The SCLA architecture would help to reduce the forward latency of an asynchronous

adder. However, the SCLA comprising indicating or early output QDI modules would con-

sume the same time for processing the spacer as the data and so its forward and reverse laten-

cies are equal, which causes an increase in the cycle time. AZ14 in Table 2 and AO14 in

Table 3 have a cycle time that is greater than the cycle time of some of the RCAs (AZ6, AZ7,

AZ11, AZ12, AZ13 in Table 2, and AO6, AO7, AO11, AO12, AO13 in Table 3). This is because

these RCAs have a much-reduced reverse latency (compared to their forward latency), which

could not be achieved in an SCLA.

Table 2. Design metrics of different 32-bit asynchronous adders corresponding to RZH, implemented using a 28-nm CMOS process.

Reference Adder architecture Adder legend Timing parameters Area (μm2) Power (μW)

FL α (ns) RL β (ns) CT γ (ns)

[23] RCA a AZ1 14.70 14.70 29.40 2518.32 1446

[24] RCA a AZ2 9.12 9.12 18.24 2282.47 1429

[25] RCA a AZ3 9.34 9.34 18.68 2493.93 1449

RCA b AZ4 8.31 8.31 16.62 2412.60 1445

[27] RCA b AZ5 7.07 7.07 14.14 2005.96 1415

[28] RCA b AZ6 4.52 0.74 5.26 2087.28 1431

[29] RCA b AZ7 3.40 0.82 4.22 2038.49 1421

[30] RCA b,1 AZ8 8.97 8.97 17.94 2103.55 1424

RCA b,2 AZ9 6.20 1.04 7.24 2339.40 1437

RCA b,3 AZ10 6.64 1.42 8.06 2282.47 1451

[31] RCA c AZ11 3.19 0.70 3.89 1648.12 1405

[32] RCA d AZ12 3.14 0.73 3.87 1534.27 1396

RCA e AZ13 3.02 0.72 3.74 1648.12 1403

[34] SCLA f AZ14 2.84 2.84 5.68 2558.98 1469

[36] BCLA f AZ15 3.22 2.98 6.20 2514.25 1443

BCLADC f AZ16 2.40 1.77 4.17 2549.83 1450

[37] BCLA f AZ17 2.84 2.59 5.43 2199.11 1437

BCLADC f AZ18 2.09 1.45 3.54 2234.69 1443

[38] BCLA f AZ19 3.55 3.29 6.84 2296.70 1454

BCLADC f AZ20 1.85 1.19 3.04 2332.28 1460

Proposed SCLA g PSZ 1.47 0.62 2.09 1739.62 1418

BCLA g PBZ 1.47 0.58 2.05 1656.26 1397

α FL–Forward latency
β RL–Reverse latency
γ CT–Cycle time.
a Full adder used in this RCA is strongly indicating.
b Full adder used in this RCA is weakly indicating; 1 SN full adder; 2 SNFC full adder; 3 SNX full adder
c Full adder used in this RCA is of early-output type and QDI.
d AOPT_EO_FA early output type full adder is used to construct this RCA, which is relative-timed.
e LOPT_EO_FA early output type full adder is used to construct this RCA, which is relative-timed.
f Constituent SCLA, BCLA, and BCLADC modules are of early-output QDI type.
g Constituent SCLA and BCLA modules are of early output type and monotonic non-QDI realizations.

https://doi.org/10.1371/journal.pone.0289569.t002

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 18 / 24

https://doi.org/10.1371/journal.pone.0289569.t002
https://doi.org/10.1371/journal.pone.0289569


As described in Section 3, and highlighted in Table 1, the BCLA architecture realized using

indicating or early output QDI modules is comparable to the SCLA architecture in terms of

the cycle time although its reverse latency is moderately less than its forward latency. Hence,

AZ15, AZ17, and AZ19 in Table 2, and AO15, AO17, and AO19 in Table 3 have cycle time

that is comparable to the cycle time of the SCLA. As noted in Section 3, the BCLADC architec-

ture was proposed specifically for IO-mode asynchronous design to improve the speed com-

pared to SCLA and BCLA architectures comprising indicating or early output QDI modules.

Thus, AZ16, AZ18, and AZ20 were found to have reduced cycle time than AZ14, AZ15, AZ17,

and AZ19 in Table 2, and AO16, AO18, and AO20 were found to have reduced cycle time

than AO14, AO15, AO17, and AO19 in Table 3.

The proposed CLAs (SCLA and BCLA) have two main advantages compared to their coun-

terparts. Firstly, the proposed CLAs being monotonic and non-QDI requires less logic than

Table 3. Design metrics of different 32-bit asynchronous adders corresponding to ROH, implemented using a 28-nm CMOS process.

Reference Adder architecture Adder legend Timing parameters Area (μm2) Power (μW)

FL α (ns) RL β (ns) CT γ (ns)

[23] RCA a AO1 14.24 14.24 28.48 2518.32 1445

[24] RCA a AO2 8.97 8.97 17.94 2282.47 1429

[25] RCA a AO3 8.84 8.84 17.68 2363.80 1443

RCA b AO4 8.12 8.12 16.24 2347.53 1442

[27] RCA b AO5 7.04 7.04 14.08 2005.96 1415

[28] RCA b AO6 3.88 0.73 4.61 2087.28 1431

[29] RCA b AO7 3.39 0.81 4.20 2038.49 1421

[30] RCA b,1 AO8 9.05 9.05 18.10 2103.55 1424

RCA b,2 AO9 6.31 1.03 7.34 2339.40 1437

RCA b,3 AO10 6.75 1.19 7.94 2282.47 1456

[31] RCA c AO11 3.02 0.70 3.72 1648.12 1404

[32] RCA d AO12 3.16 0.72 3.88 1534.27 1395

RCA e AO13 2.99 0.70 3.69 1648.12 1402

[34] SCLA f AO14 2.82 2.82 5.64 2558.98 1469

[36] BCLA f AO15 3.15 2.92 6.07 2546.78 1442

BCLADC f AO16 2.34 1.75 4.09 2582.36 1449

[37] BCLA f AO17 2.84 2.59 5.43 2199.11 1437

BCLADC f AO18 2.04 1.45 3.49 2218.42 1442

[38] BCLA f AO19 3.47 3.22 6.69 2304.83 1453

BCLADC f AO20 1.83 1.23 3.06 2340.41 1459

Proposed SCLA g PSO 1.45 0.65 2.10 1747.75 1418

BCLA g PBO 1.48 0.62 2.10 1664.39 1395

α FL–Forward latency
β RL–Reverse latency
γ CT–Cycle time.
a Full adder used in this RCA is strongly indicating.
b Full adder used in this RCA is weakly indicating; 1 SN full adder; 2 SNFC full adder; 3 SNX full adder
c Full adder used in this RCA is of early-output type and QDI.
d AOPT_EO_FA early output type full adder is used to construct this RCA, which is relative-timed.
e LOPT_EO_FA early output type full adder is used to construct this RCA, which is relative-timed.
f Constituent SCLA, BCLA, and BCLADC modules are of early-output QDI type.
g Constituent SCLA and BCLA modules are of early output type and monotonic non-QDI realizations.

https://doi.org/10.1371/journal.pone.0289569.t003

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 19 / 24

https://doi.org/10.1371/journal.pone.0289569.t003
https://doi.org/10.1371/journal.pone.0289569


CLAs which comprise indicating or early output QDI modules (such as QDI SCLA, BCLA,

and BCLADC) and do not involve the C-element in their logic realization. The C-element has

been used only for the registers and the completion detect logic. To make some comparisons,

the area of the 4-bit SCLA module of [34] is 223.65 μm2 while the area of the proposed 4-bit

SCLA module is 121.23 μm2 which implies a 45.8% reduction with respect to RZH. With

respect to ROH, the proposed 4-bit SCLA module (122.24 μm2) has a 45.3% reduced area than

the 4-bit SCLA module (221.61 μm2) of [34]. Among the QDI BCLAs [36–38], the BCLA

design of [37] is found to be better. In comparison with the 4-bit BCLG module of [37], which

consumes 73.96 μm2 of silicon for RZH and 71.92 μm2 of silicon for ROH, the proposed 4-bit

BCLG module consumes 54.90 μm2 of silicon for RZH and 55.91 μm2 of silicon for ROH, thus

achieving respective reductions in the area by 25.8% and 22.3%. Among the QDI BCLADCs

[36–38], the design presented in [38] is found to be better. The 4-bit BCLGDC comprising the

BCLADC [38] occupies an area of 91.24 μm2 for RZH and 92.25 μm2 for ROH. The 4-bit

BCLG of [38] occupies an area of 86.15 μm2 for RZH and 87.17 μm2 for ROH. Compared to

these, the proposed 4-bit BCLG occupies less area requiring 54.90 μm2 of silicon for RZH and

55.91 μm2 of silicon for ROH. Therefore, the reduced area occupancy of the proposed CLAs

compared to the rest of the CLAs translates into a reduction in power dissipation, as evident

from Tables 2 and 3.

Secondly, the proposed CLAs are constructed using CLA modules which require the least

possible time for processing the spacer. This becomes possible since each CLA module of the

proposed CLAs can process and produce the spacer as the output independently and simulta-

neously and this helps to achieve the least possible reverse latency. Given this, there does not

arise a need to have a double carry logic and so the BCLADC architecture is not relevant to

our proposition. The proposed CLAs realize the best of both worlds which are reducing the

forward latency compared to an RCA through the provision of the look-ahead carry output

logic and achieving a reduced reverse latency that is comparable to or better than an early out-

put or relative-timed RCA by incorporating CLA modules that can process and produce the

spacer faster. These two reasons explain why the proposed CLAs have less forward latency and

reverse latency and thus lesser cycle time compared to the rest in Tables 2 and 3.

Among the proposed CLAs, the proposed BCLA corresponding to RZH (i.e., PBZ in

Table 2) is found to be preferable as it has a slight edge over PSZ, PSO, and PBO overall. In

terms of the cycle time, compared to the best of existing designs given in Table 2 (which is

AZ20), PBZ reports a 32.6% reduction in cycle time, a 29% reduction in area, and a 4.4%

reduction in power for RZH. Likewise, for ROH, PBO reports a 31.4% reduction in cycle time,

a 28.9% reduction in area, and a 4.4% reduction in power. Nevertheless, PBZ is seen to be mar-

ginally superior to PBO from Tables 2 and 3.

It would be useful to estimate the energy of asynchronous adders, which is a widely

regarded figure of merit for low-power design [44]. For a synchronous circuit, energy is given

by the power-delay product (PDP) where power and delay are preferred to be less, and hence

PDP is also preferred to be less. For an (IO-mode) asynchronous circuit, energy is specified by

the power-cycle time product (PCTP). Given that power and cycle time are preferred to be

less, therefore PCTP is also preferred to be less. In other words, an asynchronous adder having

the least PCTP is an energy-efficient design. Based on the estimated design metrics (given in

Tables 2 and 3), the PCTP of all the asynchronous adders was calculated corresponding to

RZH and ROH separately. Then, the PCTP was normalized. To do the normalization, the

highest PCTP value was considered as the baseline and this was used to divide the actual PCTP

of all the asynchronous adders. This kind of normalization was done for RZH and ROH sepa-

rately. The normalized PCTP plots of asynchronous adders corresponding to RZH and ROH

are portrayed in Fig 7(A) and 7(B) respectively, where the red bars highlight the normalized

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 20 / 24

https://doi.org/10.1371/journal.pone.0289569


PCTP values of the proposed CLAs viz. PSZ and PBZ correspond to RZH, and PSO and PBO

correspond to ROH. From Fig 7(A) and 7(B), it is seen that the proposed asynchronous CLAs

achieve superior energy efficiency compared to their counterparts, and PBZ has a slight edge

over PSZ, PSO, and PBO in terms of energy, and hence it is preferred.

6. Conclusions

With respect to IO-mode asynchronous circuits, QDI asynchronous circuits guarantee delay

insensitivity internally and externally but their design metrics are generally expensive. In com-

parison, non-QDI asynchronous circuits such as relative-timed circuits and monotonic cir-

cuits are simpler and relaxed and could facilitate improved performance metrics. Relative-

timed circuits tend to incorporate sophisticated timing assumptions to sequence the arrival of

inputs to process and produce the outputs. In comparison, monotonic circuits are less sophis-

ticated in that they guarantee delay insensitivity externally and ensure the monotonicity of sig-

nal transitions between the primary inputs and outputs. Although QDI circuits are more

robust, their successful operation is subject to the satisfying of isochronic fork assumptions

imposed internally within the circuit, and a violation of those would affect the delay insensitiv-

ity. Given this, in practice, monotonic circuits tend to operate similarly to QDI circuits. There-

fore, concerning asynchronous logic design, monotonic circuits are a practically viable

alternative to QDI circuits, but this category of asynchronous circuits has been sparingly

explored in the literature. Given this, to our knowledge, this paper has presented the first

generic designs of monotonic asynchronous adders viz. a monotonic SCLA and a monotonic

BCLA, which report superior performance metrics compared to QDI asynchronous adders.

Among the proposed CLAs, the monotonic BCLA corresponding to RZH is noted to have a

slight edge over other monotonic CLAs. Compared to the best of the existing QDI asynchro-

nous adders (BCLADC) in the literature, determined based on cycle time, the proposed BCLA

achieves a 32.6% reduction in cycle time, a 29% reduction in area, a 4.3% reduction in power,

and a 35.5% reduction in energy for RZH, and (ii) a 31.4% reduction in cycle time, a 28.9%

reduction in area, a 4.4% reduction in power, and a 34.4% reduction in energy for ROH.

Given the significant improvements in design metrics achieved by the proposed asynchronous

adder, our future work would consider the monotonic design of other practically useful arith-

metic circuits such as multipliers, dividers, etc.

Author Contributions

Conceptualization: Padmanabhan Balasubramanian.

Fig 7. Normalized power-cycle time product (PCTP) of 32-bit asynchronous adders corresponding to (a) return-to-

zero handshaking, and (b) return-to-one handshaking. Adder legends used in (a) and (b) are referred to in Tables 2

and 3 respectively. The normalized PCTP values of proposed CLAs are highlighted by the red bars in (a) and (b).

https://doi.org/10.1371/journal.pone.0289569.g007

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 21 / 24

https://doi.org/10.1371/journal.pone.0289569.g007
https://doi.org/10.1371/journal.pone.0289569


Data curation: Padmanabhan Balasubramanian.

Formal analysis: Padmanabhan Balasubramanian, Weichen Liu.

Funding acquisition: Weichen Liu.

Investigation: Padmanabhan Balasubramanian, Weichen Liu.

Methodology: Padmanabhan Balasubramanian.

Project administration: Weichen Liu.

Resources: Weichen Liu.

Software: Padmanabhan Balasubramanian.

Supervision: Weichen Liu.

Validation: Padmanabhan Balasubramanian.

Visualization: Padmanabhan Balasubramanian.

Writing – original draft: Padmanabhan Balasubramanian.

References
1. Verhoeff T. Delay-insensitive codes–an overview. Distributed Computing. 1988; 3:1–8. https://doi.org/

10.1007/BF01788562

2. Sparsø J, Furber S. Principles of asynchronous circuit design: A systems perspective. Dordrecht:

Kluwer Academic Publishers; 2001.

3. van Berkel CH, Josephs MB, Nowick SM. Applications of asynchronous circuits. Proceedings of the

IEEE. 1999; 87: 223–233. https://doi.org/10.1109/5.740016

4. Martin AJ, Nystrom M. Asynchronous techniques for system-on-chip design. Proceedings of the IEEE.

2006; 94: 1089–1120. https://doi.org/10.1109/JPROC.2006.875789

5. Martin AJ, Can asynchronous techniques help the SoC designer?. In: Proceedings of the IFIP Interna-

tional Conference on Very Large Scale Integration (VLSI-SoC); 2006. pp. 7–11.

6. Nowick SM, Singh M. Asynchronous design-part 1: Overview and recent advances. IEEE Design and

Test. 2015; 32: 5–18.

7. Bouesse G, Sicard G, Baixas A, Renaudin M, Quasi delay insensitive asynchronous circuits for low

EMI. In: Proceedings of the 4th International Workshop on Electromagnetic Compatibility of Integrated

Circuits (EMC Compo); 2004. pp. 27–31.

8. Plana LA, Riocreux PA, Bainbridge WJ, Bardsley A, Temple S, Garside JD, Yu ZC. SPA–a secure amu-

let core for smartcard applications. Microprocessors and Microsystems. 2003; 27: 431–446. https://doi.

org/10.1016/S0141-9331(03)00093-0

9. Renaudin M, Monnet Y, Asynchronous design: fault robustness and security characteristics. In: Pro-

ceedings of the 12th IEEE International On-Line Testing Symposium (IOLTS); 2006. pp. 1–4.

10. David I, Ginosar R, Yoeli M. Self-timed is self-checking. Journal of Electronic Testing. 1995; 6: 219–

228. https://doi.org/10.1007/BF00993088

11. Martin AJ, The limitation to delay-insensitivity in asynchronous circuits. In: Proceedings of the 6th MIT

Conference on Advanced Research in VLSI; 1990. pp. 263–278.

12. Martin AJ, Prakash P, Asynchronous nano-electronics: preliminary investigation. In: Proceedings of the

14th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC); 2008. pp. 58–

68.

13. Seitz CL. System Timing. In: Mead C, Conway L, editors. Introduction to VLSI systems. Reading, Mas-

sachusetts; 1980. pp. 218–262.

14. Brej C. Early output logic and anti-tokens. Ph.D. Thesis, The University of Manchester. 2006. Available

from: http://apt.cs.manchester.ac.uk/ftp/pub/amulet/theses/Brej06_phd.pdf

15. Stevens KS, Ginosar R, Rotem S. Relative timing, IEEE Transactions on VLSI Systems. 2003; 11:

129–140. https://doi.org/10.1109/TVLSI.2002.801606

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 22 / 24

https://doi.org/10.1007/BF01788562
https://doi.org/10.1007/BF01788562
https://doi.org/10.1109/5.740016
https://doi.org/10.1109/JPROC.2006.875789
https://doi.org/10.1016/S0141-9331%2803%2900093-0
https://doi.org/10.1016/S0141-9331%2803%2900093-0
https://doi.org/10.1007/BF00993088
http://apt.cs.manchester.ac.uk/ftp/pub/amulet/theses/Brej06_phd.pdf
https://doi.org/10.1109/TVLSI.2002.801606
https://doi.org/10.1371/journal.pone.0289569


16. Varshavsky VI. Self-timed control of concurrent processes: The design of aperiodic logical circuits in

computers and discrete systems. (Translated from the Russian by Alexandre V. Yakovlev). Dordrecht:

Kluwer Academic Publishers; 1990. pp. 77–85.

17. Cortadella J, Kondratyev A, Lavagno L, Sotiriou C. Coping with the variability of combinational logic

delays. In: Proceedings of the IEEE International Conference on Computer Design (ICCD); 2004. pp.

1–4.

18. Jeong C, Nowick SM. Optimization of robust asynchronous circuits by local input completeness relaxa-

tion. In: Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC);

2007. pp. 622–627.

19. Toms WB, Edwards DA, Efficient synthesis of speed independent combinational logic circuits. In: Pro-

ceedings of the 10th Asia and South Pacific Design Automation Conference (ASP-DAC); 2005. pp.

1022–1026.

20. Toms WB, Edwards DA. M-of-N code decomposition for indicating combinational logic. In: Proceedings

of the IEEE Symposium on Asynchronous Circuits and Systems; 2010. pp. 15–25.

21. Muller DE, Bartky WS, A theory of asynchronous circuits. In: Proceedings of an International Sympo-

sium on the Theory of Switching; 1959. Part I, pp. 204–243.

22. Moreira MT, Guazzelli RA, Calazans NLV. Return-to-one protocol for reducing static power in C-ele-

ments of QDI circuits employing m-of-n codes. In: Proceedings of the 25th Symposium on Integrated

Circuits and Systems Design (SBCCI); 2012. pp. 1–6.

23. Singh NP. A design methodology for self-timed systems. M.Sc. Thesis, Massachusetts Institute of

Technology. 1981. Available from: https://pdfs.semanticscholar.org/c019/

0d6b135d409142a8703c6188284020a0c59b.pdf?_ga=2.184603823.789291288.1553256324-

1229169596.1553256324

24. Toms WB. Synthesis of quasi-delay-insensitive datapath circuits. Ph.D. Thesis, The University of Man-

chester. 2006. Available from: http://apt.cs.manchester.ac.uk/ftp/pub/amulet/theses/Toms06_phd.pdf

25. Sparsø J, Staunstrup J. Delay-insensitive multi-ring structures. Integration, the VLSI Journal. 1993; 15:

313–340. https://doi.org/10.1016/0167-9260(93)90035-B

26. Martin AJ. Asynchronous datapaths and the design of an asynchronous adder. Formal Methods in Sys-

tem Design. 1992: 1: 117–137. https://doi.org/10.1007/BF00464358

27. Folco B, Bregier V, Fesquet L, Renaudin M, Technology mapping for area optimized quasi delay insen-

sitive circuits. In: Proceedings of the IFIP 13th International Conference on Very Large Scale Integration

(VLSI-SoC); 2005. pp. 146–151.

28. Balasubramanian P, Edwards DA, A delay efficient robust self-timed full adder. In: Proceedings of the

IEEE 3rd International Design and Test Workshop (IDT); 2008. pp. 129–134.

29. Balasubramanian P. A latency optimized biased implementation style weak-indication self-timed full

adder. Facta Universitatis, Series: Electronics and Energetics. 2015; 28: 657–671. https://doi.org/10.

2298/FUEE1504657B

30. Huemer F, Steininger A. Sorting network based full adders for QDI circuits. In: Proceedings of the Aus-

trochip Workshop on Microelectronics (Austrochip); 2020. pp. 21–28.

31. Balasubramanian P. A robust asynchronous early output full adder. WSEAS Transactions on Circuits

and Systems. 2011; 10: 221–230.

32. Balasubramanian P, Yamashita S. Area/latency optimized early output asynchronous full adders and

relative-timed ripple carry adders. SpringerPlus. 2016; 5:440: 1–26. https://doi.org/10.1186/s40064-

016-2074-z PMID: 27104128

33. Cheng F-C, Unger SH, Theobald M. Self-timed carry-lookahead adders. IEEE Transactions on Com-

puters. 2000; 49: 659–672.

34. Balasubramanian P, Dhivyaa D, Jayakirthika JP, Kaviyarasi P, Prasad K, Low power self-timed carry

lookahead adders. In: Proceedings of the 56th IEEE International Midwest Symposium on Circuits and

Systems (MWSCAS); 2013. pp. 457–460.

35. Balasubramanian P, Edwards DA, Toms WB. Self-timed section-carry based carry lookahead adders

and the concept of alias logic. Journal Circuits, Systems, and Computers. 2013; 22: 1350028–1–

1350028–24. https://doi.org/10.1142/S021812661350028X

36. Balasubramanian P, Dang C, Maskell DL, Prasad K. Asynchronous early output section-carry based

carry lookahead adder with alias carry logic. In: Proceedings of the 30th International Conference on

Microelectronics (MIEL); 2017. pp. 293–298.

37. Balasubramanian P, Maskell D, Mastorakis N. Low power robust early output asynchronous block carry

lookahead adder with redundant carry logic. Electronics. 2018; 7: 1–21. Article #243. https://doi.org/10.

3390/electronics7100243

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 23 / 24

https://pdfs.semanticscholar.org/c019/0d6b135d409142a8703c6188284020a0c59b.pdf?_ga=2.184603823.789291288.1553256324-1229169596.1553256324
https://pdfs.semanticscholar.org/c019/0d6b135d409142a8703c6188284020a0c59b.pdf?_ga=2.184603823.789291288.1553256324-1229169596.1553256324
https://pdfs.semanticscholar.org/c019/0d6b135d409142a8703c6188284020a0c59b.pdf?_ga=2.184603823.789291288.1553256324-1229169596.1553256324
http://apt.cs.manchester.ac.uk/ftp/pub/amulet/theses/Toms06_phd.pdf
https://doi.org/10.1016/0167-9260%2893%2990035-B
https://doi.org/10.1007/BF00464358
https://doi.org/10.2298/FUEE1504657B
https://doi.org/10.2298/FUEE1504657B
https://doi.org/10.1186/s40064-016-2074-z
https://doi.org/10.1186/s40064-016-2074-z
http://www.ncbi.nlm.nih.gov/pubmed/27104128
https://doi.org/10.1142/S021812661350028X
https://doi.org/10.3390/electronics7100243
https://doi.org/10.3390/electronics7100243
https://doi.org/10.1371/journal.pone.0289569


38. Balasubramanian P, Maskell DL, Mastorakis NE. Speed and energy optimized quasi-delay-insensitive

block carry lookahead adder. PLOS ONE. 2019; 14: 1–27. Article ID e0218347. https://doi.org/10.1371/

journal.pone.0218347 PMID: 31226125

39. Omondi AR. Computer arithmetic systems: Algorithms, architecture and implementations. London:

Prentice Hall International (UK) Limited; 1994.

40. Balasubramanian P. Asynchronous carry select adders. Engineering Science and Technology, an Inter-

national Journal. 2017; 20: 1066–1074. https://doi.org/10.1016/j.jestch.2017.02.003

41. Moreira MT, Guazzelli RA, Calazans NLV. Return-to-one DIMS logic on 4-phase m-of-n asynchronous

circuits. In: Proceedings of the 19th IEEE International Conference on Electronics, Circuits, and Sys-

tems (ICECS); 2012. pp. 669–672.

42. Balasubramanian P. Comparative evaluation of quasi-delay-insensitive asynchronous adders corre-

sponding to return-to-zero and return-to-one handshaking. Facta Universitatis, Series: Electronics and

Energetics. 2018; 31: 25–39. https://doi.org/10.2298/FUEE1801025B

43. Synopsys SAED_EDK32/28_CORE Databook, Revision 1.0.0, 2012.

44. Rabaey JM, Chandrakasan A, Nikolic B. Digital integrated circuits: A design perspective. 2nd edition.

London: Pearson Education; 2003.

PLOS ONE High-speed and energy-efficient asynchronous carry look-ahead adder

PLOS ONE | https://doi.org/10.1371/journal.pone.0289569 October 5, 2023 24 / 24

https://doi.org/10.1371/journal.pone.0218347
https://doi.org/10.1371/journal.pone.0218347
http://www.ncbi.nlm.nih.gov/pubmed/31226125
https://doi.org/10.1016/j.jestch.2017.02.003
https://doi.org/10.2298/FUEE1801025B
https://doi.org/10.1371/journal.pone.0289569

